Week 2.3E Complex Functions (1)
Week 2.3E Complex Functions (1)
Week 2.3E Complex Functions (1)
3 Complex Functions
Textbook: Section 17.6 – 17.7 (Zill)
which reminds us of the (real) exponential law, and thus can serve as a motivation for why eiθ is
defined as such.
This can be expanded to the following definition.
Similarly as in the real case, the following exponential laws are valid:
ez ew = ea+bi ec+di = ea ebi ec edi = ea ec ebi edi = ea+c e(b+d)i = ea+c+(b+d)i = ez+w
1
Solution:
3πi
z
(a) e = exp −2 + (b) ez = eln 5 e−2i
4
= 5 cos(−2) + i sin(−2)
3π 3π
= e−2 cos + i sin = 5 cos(2) − 5 sin(2)i
4 4
1 1
=− √ + √ i
2
e 2 e 2 2
z πi −3
πi
(c) e = exp 10 − 3 ln π + = exp 10 + ln π exp
2 2
e 10 π π e 10 e 10
= 3 cos + i sin = 3 0 + i(1) = 3 i
π 2 2 π π
=⇒ u = e2x cos(2y)
v = e2x sin(−2y) = −e2x sin(2y)
Theorem 2.3.5. The complex exponential function ez is periodic with period 2πi. That is
In particular, e2πi = 1
Proof:
√ 10
−1 + 3 i
Example 2.3.7. Write z = in the form a + ib.
(1 − i)14
√
Solution: Set z1 = −1 + 3i and z2 = 1 − i. Their polar representations are
2
√ y y
−1 + 3i
2π x
3 − π4
x 1−i
√
|z1 | = 2 |z2 | = 2
2π
arg(z1 ) = 3 = arg (z2 ) = − π4 arg(z2 ) = − π4
Thus
10
210 exp 2π 210 exp 20πi
z110 3 i 3
z = 14 = √ 14 14 = 7
z2 2 exp − π4 i 2 exp − 7πi 2
3 2π π π
since ez+10πi = ez
= 2 exp 6πi + 3 i + 4πi − 2 i = 8 exp 6 i
√ √
= 8 cos π6 + i sin π6 = 8 2 3 + 82 i = 4 3 + 4i
If we use the principal argument Arg(z) instead of the general argument arg(z), we will get a
function.
Notice that
Example 2.3.10. Determine ln(z) as well as the principal values Ln(z) in the following cases.
(a) z = −e3 (b) z = −i (c) z = −1 − i
3
Solution:
(a) z = −e3 (b) z = −i
3
θ = arg −e =π
θ = − π2 3π
of 2
−e 3 0
ln(z) = loge |z| + i arg(z) −i
Ln(z) = i − π2 = − π2 i
= 3 + iπ
(c) z = −1 − i
π
θ=π+ 4
−1
−1
√
5π 1 5
ln(z) = loge 2 +i 4 + 2πn = 2 loge (2) + iπ 4 + 2n , n∈Z
1 π 1 3π
Ln(z) = 2 loge (2) + i −π + 4 = 2 loge (2) − 4 i
√ √
=⇒ 1 + 2z = loge 1 − 3i + i arg 1 − 3 i
= loge (2) + i − π3 + 2πn
n∈Z
π
=⇒ 2z = −1 + loge (2) + i − 3 + 2nπ n∈Z
1 1 π
=⇒ z = − 2 + 2 loge (2) + i − 6 + nπ n∈Z
Similarly, as in the real case, the following properties are valid for the complex case.
4
Theorem 2.3.12. For any two non-zero complex numbers z and w, we have
z
ln(zw) = ln z + ln w and ln = ln z − ln w
w
Solution: We have
√ √ √
|z1 | = 1 |z2 | = 2 |z3 | = 1 · 2= 2
π 3π π 3π 5π
arg(z1 ) =2 arg(z2 ) = 4 arg(z3 ) = 2 + 4 = 4
Arg(z1 ) = π2 Arg(z2 ) = 3π
4 Arg(z1 z2 ) = − 3π
4
Thus
√
ln(z1 ) + ln(z2 ) = loge 1 + i π2 + 2πn1 + loge 2 + i 3π
4 + 2πn2 , n1 , n2 ∈ Z
√ 5π
√ 5π
= loge 2 + i 4 + 2π(n1 + n2 ) = loge 2 + i 4 + 2π(n) , n ∈ Z
= log(z1 z2 )
But
√ √
Ln(z1 ) + Ln(z2 ) = loge 1 + π2 i + loge 3 + 3π 4 i = loge 3 +
5π
4 i
√
Ln(z1 z2 ) = loge 2 − 3π 4 i ̸= Ln(z1 ) + Ln(z2 )
Thus, Ln(z1 z2 ) ̸= Ln(z1 ) + Ln(z2 ) in this case.
5
Complex Trigonometric Functions
For x ∈ R, from Euler’s Formula it follows
eix = cos x + i sin x and e−ix = cos x − i sin x
that
1
eix + e−ix 1
eix − e−ix
cos x = 2 and sin x = 2i
We now define the complex trigonometric functions by replacing the real number x in the above
formula with the complex number z.
We define the other four trigonometric functions as usual, in terms of cos z and sin z:
sin z 1 1 cos z
tan z = sec z = cosec z = cot z =
cos z cos z sin z sin z
Proof: We prove the second point. The proof of the first point is similarly.
6
According to the definitions, we have
Solution:
(a) cos(π + i ln 2) = cos(π) cosh(ln 2) − i sin(π) sinh(ln 2)
eln 2 + e− ln 2
− i · 0 = − 12 2 + 21 = − 54
= −1 ·
2
sin 0 + i(− ln 3)
(b) tan(−i ln 3) =
cos 0 + i(− ln 3)
sin(0) cosh(− ln 3) + i cos(0) sinh(− ln 3)
=
cos(0) cosh(− ln 3) − i sin(0) sinh(− ln 3)
i − ln 3 − eln 3 i 13 − 3
i sinh(− ln 3) 2 e 8
= = 1 − ln 3 ln 3
= 1 = − 10 i = − 45 i
cosh(− ln 3) 2 (e +e ) 3 +3
(c) sin 3π 3π 3π
4 − 2i = sin 4 cosh(−2) + i cos 4 sinh(−2)
= √12 · 12 e−2 + e2 + i − √12 12 e−2 − e2
√ √
= 42 e−2 + e2 + i 42 e2 − e−2
cos z = i
7
With the quadratic formula, we have
√
√ √
p
iz 2i ± (−2i)2 − 4 2i ± −4 − 4
e = = = i ± 2i = 1 ± 2 i
2(1) 2
√ √
=⇒ iz = ln 1 + 2 i or iz = ln 1 − 2 i
√ √
=⇒ z = −i ln 1 + 2 i or z = −i ln 1 − 2 i
√
z = −i loge 1 + 2 + π2 + 2πn
=⇒
√
2 − 1 + − π2 + 2πn
or z = −i loge for n ∈ Z
Method 2: Identity
Suppose z = a + bi. Then
i = cos(a + bi) = cos(a) cosh b − i sin(a) sinh(b)
=⇒ cos(a) cosh(b) = 0 and sin(a) sinh(b) = −1
Since cosh(b) is always positive, we must have
π
cos(a) = 0 =⇒ a= 2 + πn n∈Z
Notice that
π π
sin 2 + π(2k) = +1 and sin 2 + π(2k + 1) = −1 k∈Z
So if n is even, then
−1 = sinh(b) = 1
2 eb − e−b
=⇒ 0 = e2b + 2eb − 1
√
b −2 ± 4 + 4 √ √
=⇒ e = = −1 ± 2 = −1 + 2 since eb > 0
2 √
=⇒ b = loge −1 + 2
8
Solution: Let z = a + bi, where a, b ∈ R. Then
sin(a) = 0 =⇒ a = nπ n∈Z
Notice that
cos(πn) = (−1)n
since sinh is an injective function (consider its graph!). And if n = 2k + 1 is odd, then we have