RT3624BE
RT3624BE
RT3624BE
Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation
DS3624BE-P03 February 2021 www.richtek.com
1
RT3624BE Preliminary
Ordering Information Pin Configuration
RT3624BE (TOP VIEW)
Package Type
QW : WQFN-52L 6x6 (W-Type)
DRVEN_F
VIN/VSYS
DBLR_PS
ANS_EN
Lead Plating System
PWMA1
PWMA2
DRVEN
PWM3
PWM4
PWM2
PWM1
VRON
VCC
G : Green (Halogen Free and Pb Free)
Note : 52 51 50 49 48 47 46 45 44 43 42 41 40
ISEN3P 1 39 ISENN_AUX
Richtek products are : ISEN3N 2 38 ISENP_AUX
ISEN4N 3 37 ISENA1N
RoHS compliant and compatible with the current ISEN4P 4 36 ISENA1P
ISEN2P 5 35 ISENA2P
requirements of IPC/JEDEC J-STD-020.
ISEN2N 6 34 ISENA2N
VR_READY
VCLK
VDIO
ALERT
VR_HOT
IMON
VREF
IMONA
TSEN
TSENA
SET1
SET2
SET3
GQW
YMDNN
WQFN-52L 6x6
Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation
www.richtek.com DS3624BE-P03 February 2021
2
Preliminary RT3624BE
Functional Pin Description
Pin No. Pin Name Pin Function
8, 5, 1, 4 ISEN[1:4]P Positive inputs to current-sense amplifier for Phase 1 to 4 of VR CORE rail.
Negative inputs to current-sense amplifier for Phase 1 to 4 of VR CORE
7, 6, 2, 3 ISEN[1:4]N
rail.
Negative input of the error amplifier. This pin is for CORE rail VR output
9 FB
voltage feedback to controller.
10 COMP CORE rail VR compensation. This pin is an error amplifier output pin.
CORE rail VR voltage sense input. This pin is connected to the terminal of
11 VSEN
CORE rail VR output voltage.
Return ground for CORE rail VR. This pin is the negative node of the
12 RGND
differential remote voltage sensing.
Fixed 1.3V output reference voltage. This voltage is used to offset the
13 VREF_SPS smart power stage. Between this pin and GND must be placed an exact
0.22µF decoupling capacitor.
14 VR_READY VR ready indicator.
15 VCLK Synchronous clock from the CPU.
16 VDIO VR and CPU data transmission interface.
Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation
DS3624BE-P03 February 2021 www.richtek.com
3
RT3624BE Preliminary
Pin No. Pin Name Pin Function
System input power monitor. Place the PSYS resistor as close to the IC as
possible. The input power domain (SVID Address 0x0Dh) rail can be
disabled by pulling the voltage at the PSYS pin > (VCC – 0.5V). RT3624BE
29 PSYS
will reject any commands to the input power domain rail. If the platform
doesn't support PSYS function, It is recommended to connect PSYS pin to
GND to avoid affecting system performance.
Return ground for AXG rail VR. This pin is the negative node of the
30 RGNDA
differential remote voltage sensing.
AXG rail VR voltage sense input. This pin is connected to the terminal of
31 VSENA
AXG rail VR output voltage.
32 COMPA AXG rail VR compensation. This pin is an error amplifier output pin.
Negative input of the error amplifier. This pin is for AXG rail VR output
33 FBA
voltage feedback to controller.
37, 34 ISENA[1:2]N Negative inputs to current-sense amplifier for Phase 1 to 2 of VR AXG rail.
36, 35 ISENA[1:2]P Positive inputs to current-sense amplifier for Phase 1 to 2 of VR AXG rail.
38 ISENP_AUX Positive input to current-sense amplifier of VR AUX rail.
39 ISENN_AUX Negative input to current-sense amplifier of VR AUX rail.
External driver mode control. As received PS4 command, this pin will be
high state. This pin can work with RT9637 on 1 PWM drive 2 power stage.
40 DBLR_PS As PS0 command is received, this pin will be low state. As PS1 command
is received, this pin will be floating state. As PS2/3 command is received,
this pin will be high state.
External driver mode control. As PS4 command is received, this pin will be
41 DRVEN
low state. The output high level is VCC.
External driver mode control. As PS4 command is received, this pin will be
42 DRVEN_F
floating state. The output high level is VCC.
44, 43 PWMA[1:2] PWM outputs for AXG rail VR. The tri-state window = 1.6V to 2.2V.
45, 46, 48, 47 PWM[1:4] PWM outputs for CORE rail VR. The tri-state window = 1.6V to 2.2V.
Acoustic Noise Suppression function setting. When the pin is pulled to
49 ANS_EN
VCC, this function can be enabled. This pin is not allowed to be floating.
Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation
www.richtek.com DS3624BE-P03 February 2021
4
Preliminary RT3624BE
Functional Block Diagram
VR_READY
VR_HOT
VSENA
TSENA
ALERT
VRON
VSEN
PSYS
TSEN
VCLK
SET1
SET2
SET3
SET4
VDIO
VCC
IMONAVG
IMONAAVG
IMON_AUXAVG
UVLO GND
MUX
ADC
SVID Interface
Configuration Registers PIN Function
Control Logic DBLR_PS
VID Controlx Setting Code
Loop Control/ DRVEN
Protection Logic
DRVEN_F
ANS_EN
Loop logic
control
VID VIN/VSYS
VID Control
DAC
ERROR
AMP PWM
RGND Offset Loop logic control
+ CMP
Cancellation + PWM1
FB -
+ - TON
COMP ZCDx PWM2
GEN/
VCBx Driver
ISEN1P + Gm Interface PWM3
ISEN1N - IIMON1 kTON[2:0]
+ PWM4
ICB1
IZD1 -
Ai[1:0] Ring-back
ISEN2P + Gm Control RAMP
ISEN2N - IIMON2
ICB2
IZD2 VSEN Zero
AQR/
+ AQR_TH[2:0] To TONGEN IZDx Current ZCDx
ANTIOVS
ISEN3P + Gm 0.6V/3.2V Detection
- ANTIOVS_TH[1:0]
ISEN3N - IIMON3
ICB3
IZD3 VSEN OVP/
IOCx UVP/ To Protection Logic Current
ICBx VCBx
IMON OCP Balance
ISEN4P + Gm
ISEN4N - IIMON4
ICB4
IZD4
IMON
VREF IMONAVG
PER CSGM Filter
IMON
VIN/VSYS
VIDA Control VIDA
DAC
ERROR
AMP PWM
RGNDA Offset Loop logic control
+ CMP
Cancellation +
FBA -
+ - TON PWMA1
COMPA ZCDAx GEN/
Driver PWMA2
ISENA1P + Gm VCBAx
Interface
ISENA1N - IIMONA1 kTON_A[2:0]
+
ICBA1
IZDA1 -
VREF
Ai_A[1:0] Ring-back
ISENA2P + Gm Control RAMP
ISENA2N - IIMONA2
ANTIOVS_TH_A[1:0]
ICBA2
AQR/
IZDA2 AQR_TH_A[2:0] To TONGEN
ANTIOVS Zero
IMON VSENA
IMONA IMONAAVG IZDAx Current ZCDAx
PER CSGM Filter Detection
VSENA OVP/
IOCAx UVP/ To Protection Logic
IMONA OCP Current
ICBAx VCBAx
ISENP_AUX + Gm Balance
ISENN_AUX -
IMON
IMON_AUX IMON_AUXAVG
PER CSGM Filter
+
VREF_SPS 1.3V
-
Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation
DS3624BE-P03 February 2021 www.richtek.com
5
RT3624BE Preliminary
Operation
the sensed voltage that is inverted and amplified signal
G-NAVPTM Control Mode
of output voltage. While current loading is increasing,
The RT3624BE adopts G-NAVPTM (Green Native AVP)
referring to Figure 1, COMP basic G-NAVPTM behavior
which is Richtek’s proprietary topology. It is derived
waveforms. The COMP rises due to output voltage
from current mode constant on-time control with finite
droop. Then rising COMP forces PWM turn on earlier
DC gain of error amplifier and DC offset cancellation.
and closely. While inductor current reaches loading
The topology can achieve easy load-line design and
current, COMP enters another steady state of higher
provide high DC accuracy and fast transient response.
voltage and the corresponding output voltage is in the
When sensed current signal reaches sensed voltage
steady state of lower voltage. The load-line, output
signal, the RT3624BE generates a PWM pulse to
voltage drooping by an amount which is proportional to
achieve loop modulation. Figure 1 shows the basic
loading current, is achieved.
G-NAVPTM behavior waveforms. The COMP signal is
Steady State Load Transient
VOUT
VID
ΔIcc x RLL
COMP
PWM
RAMP OVP
The RAMP helps loop stability and transient response. The over-voltage protection threshold is linked to VID,
please refer to classification table and waveform in
PWM CMP
Table 17, Figure 23 and Figure 24.
The PWM comparator compares COMP signal and
sum current signal based on RAMP to trigger PWM. UVP
When the output voltage is lower than VID-650mV with
Offset Cancellation
3µs filter time, UVP will be triggered and all PWM will
The offset cancellation is based on VID, COMP voltage be in tri-state to turn off high-side power MOSFETs.
and current signal from SUM CSGM to control output
voltage accuracy.
Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation
DS3624BE-P03 February 2021 www.richtek.com
7
RT3624BE Preliminary
Absolute Maximum Ratings (Note 1)
VIN/VSYS to GND ---------------------------------------------------------------------------------------------------- −0.3V to 28V
VCC to GND - ---------------------------------------------------------------------------------------------------------- −0.3V to 6.5V
RGND to GND --------------------------------------------------------------------------------------------------------- −0.3V to 0.3V
Other Pins --------------------------------------------------------------------------------------------------------------- −0.3V to 6.8V
Power Dissipation, PD @ TA = 25°C
WQFN-52L 6x6 -------------------------------------------------------------------------------------------------------- 3.77W
Package Thermal Resistance (Note 2)
WQFN-52L 6x6, θJA -------------------------------------------------------------------------------------------------- 26.5°C/W
WQFN-52L 6x6, θJC -------------------------------------------------------------------------------------------------- 6.5°C/
Lead Temperature (Soldering, 10 sec.) -------------------------------------------------------------------------- 260°C
Junction Temperature ------------------------------------------------------------------------------------------------ 150°C
Storage Temperature Range --------------------------------------------------------------------------------------- −65°C to 150°C
ESD Susceptibility (Note 3)
HBM (Human Body Model) ----------------------------------------------------------------------------------------- 2kV
Electrical Characteristics
(VCC = 5V, typical values are referenced to TJ = 25°C, Min and Max values are referenced to TJ from −10°C to 105°C, unless
other noted)
Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation
www.richtek.com DS3624BE-P03 February 2021
8
Preliminary RT3624BE
Parameter Symbol Test Conditions Min Typ Max Unit
Differential voltage range of
DCR sense. (VCSIN=
CS Input Voltage VCSIN −10 -- 80 mV
Inductor current x
DCR x DCR divider)
Internal current mirror gain of
Current Sense Gain Error AMIRROR per phase current sense 0.97 1 1.03 A/A
IIMON / ICS,PERx
TON Setting
Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation
DS3624BE-P03 February 2021 www.richtek.com
9
RT3624BE Preliminary
Parameter Symbol Test Conditions Min Typ Max Unit
VREF
VREF Voltage VVREF Normal operation 0.59 0.6 0.61 V
VREF SPS Voltage VVREF_SPS Normal operation 1.2 1.3 1.4 V
ADC
VIMON − VREF = 0.8V @
ICCMAX >=80A
VIMON − VREF = 0.4V @
CORE dVIMON_ICCMAX -- 255 -- Decimal
ICCMAX >=40A
VIMON − VREF = 0.2V @
ICCMAX <40A
Digital IMON VIMONA − VREF = 0.4V @
Set ICCMAX >=40A
AXG dVIMONA_ICCMAX -- 255 -- Decimal
VIMONA − VREF = 0.2V @
ICCMAX <40A
dVIMON_AUX_IC
AUX VIMON_AUX-VREF=1.6V -- 255 -- Decimal
CMAX
Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation
www.richtek.com DS3624BE-P03 February 2021
10
Preliminary RT3624BE
Typical Application Circuit
VIN
5V
C17 C18
VCC BOOT
RT3624BE C16 Q1
1µF 0.1µF
UGATE
29 L1 VAUX_OUT
PSYS PHASE
Q2
R36 R37 C19 LOAD
C1 R1 EN LGATE
Optional EN RT6543
0.1µF
R38 R39
38
ISENP_AUX
R2 39 RNTC5
5V 50 VCC ISENN_AUX
C20
2.2 Ω C2 0.1µF
4.7µF
R3 VIN
24 SET1
R4 5V R40 C22
+
25 C23 C24
SET2 VCC BOOT
VREF C21 2.2Ω 0.1µF Q3
R5
26 SET3 1µF PGND UGATE
Optional L2
R6 27 44 PHASE
PWMA1 PWM Q4 R41
SET4 R42 R43 C26
DRVEN EN LGATE
RT9610C C25
R7 R8 R9 R10 0.1µF
R44 VSSAXG_SENSE
ISENA1P 36 VCCAXG_SENSE
37 R45 Optional
ISENA1N R53
680 Ω C27
R52 100Ω
R11 52 0.1µF
VIN VIN/VSYS 100Ω
VIN Optional
2.2 Ω C3 VAXG_OUT
0.47µF 5V R46 C29
+
C30 C31 C35 C37
C36
+
20 VCC BOOT LOAD
VREF VREF C28 2.2Ω 0.1µF Q5
1µF PGND UGATE
R13 Optional L3
R12 R15 PHASE
3.9Ω R14 RNTC1 19 IMON PWMA2 43 PWM Q6 R47
C33
LGATE R48 R49
DRVEN EN
R16 RT9610C C32
R18 0.1µF
C4 21
0.47µF R17 RNTC2 IMONA R50
ISENA2P 35
R19 R20 R51 Optional
28
IMON_AUX ISENA2N 34
680 Ω C34
0.1µF
VCCST 3.3V
VIN
FB C47 C48
C8 VCC BOOT
Optional C45 2.2Ω 0.1µF Q9
Optional 12 RGND 1µF PGND UGATE
VSS_SENSE Optional L5
C9 PHASE
PWM2 46 PWM Q10 R61
C50
LGATE R62 R63
DRVEN EN
31 RT9610C C49
VSENA 0.1µF
C10 C11
R64 VSS_SENSE
ISEN2P 5
R28 R29 VCC_SENSE
Optional 32 R65 Optional
VCCAXG_SENSE COMPA ISEN2N 6
C12 33 680 Ω C51 R79
FBA R78
C13 0.1µF 100Ω
Optional VIN 100Ω
Optional 30 Optional
VSSAXG_SENSE RGNDA VCORE_OUT
C14 5V R66 C53
+
C54 C55
VCC C66 C67 C68
+
BOOT
C52 2.2Ω 0.1µF Q11 LOAD
1µF PGND UGATE
Optional L6
R30 R32
22 TSEN PHASE
VREF
RNTC3 PWM3 48 PWM Q12 R67
C57
R31 LGATE R68 R69
DRVEN EN
RT9610C C56
0.1µF
R33 R35 R70
23 TSENA ISEN3P 1
VREF
RNTC4 R71
R34 2 Optional
ISEN3N
680 Ω C58
0.1µF
VIN
5V 49
ANS_EN 5V R72 C60
+
C61 C62
0V VCC BOOT
C59 2.2Ω 0.1µF Q13
1µF PGND UGATE
41 Optional L7
DRVEN DRVEN PHASE
PWM4 47 PWM Q14 R73
C64
LGATE R74 R75
DRVEN EN
42 RT9610C C63
DRVEN_F 0.1µF
R76
ISEN4P 4
40 R77
DBLR_PS 3 Optional
ISEN4N
680 Ω C65
13 0.1µF
VREF_SPS 53 (Exposed Pad)
C15 GND
0.22µF
Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation
DS3624BE-P03 February 2021 www.richtek.com
11
RT3624BE Preliminary
Application Information
The RT3624BE includes two voltage rails: a 4/3/2/1 MOSFET off. When VCC > 4.45, RT3624BE issues
phase synchronous buck controller, the CORE VR, and POR=high and waits for VRON signal. After POR=high
a 2/1 phase synchronous buck controller, the AXG VR, and VRON > 0.7V, controller powers on (Chip Enable =
designed to meet Intel IMVP9.1 compatible CPUs H) and starts VR internal settings, which include
specification with a serial SVID control interface. The internal circuit offset correction and function settings
controller uses an ADC to implement all kinds of (PIN-SETTING). Users can set multi-functions through
settings to save total pin number for easy use and SETx, TSEN and TSENA pins. Figure 2 shows the
increasing PCB space utilization. The RT3624BE is typical timing of controller power-on. The pull-high
used in desktop computers or notebook computers. power of VRON pin is recommended as 1.05V, the
Power-ON Sequence same power as SVID interface. That can ensure SVID
In order to confirm sufficient power supply for proper power is ready while VRON = H. Driver power (PVCC)
operation, the VR triggers UVLO if VCC pin drops is strongly suggested to be ready after VCC. This can
below 4.2V (max). UVLO protection shuts down prevent current flow back to VCC from PVCC through
controller and forces high-side MOSFET and low-side PWMx pin or DRVEN pin.
VCC
PVCC
VRON
Chip Enable
(VRON=H and VCC>4.45V)
VR_READY
VSEN
Maximum Active phases Number Setting ISEN4N to VCC programs a 3-phase operation, while
The number of active phases is determined by ISENxN pulling ISEN3N to VCC programs a 2-phase operation.
voltages. The detection is only active and latched at The unused ISENxP pins are recommended to connect
Chip Enable rising edge (VRON = H and VCC > 4.45V). to VCC and the unused PWM pins can be floating.
While voltage at ISENxN > (VCC − 0.5V), maximum Figure 3 is a 3-phase operation example.
active phase number is (x-1). For example, pulling
Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation
www.richtek.com DS3624BE-P03 February 2021
12
Preliminary RT3624BE
VIN
RT3624BE 5V R66 C53
+
C54 C55
VCC BOOT
C52 2.2Ω 0.1µF Q11
1µF PGND UGATE
Optional L6
PHASE
PWM3 48 PWM Q12 R67
C57
LGATE R68 R69
DRVEN EN
RT9610C C56
0.1µF
R70
ISEN3P 1
R2 R71 Optional
50 2
5V VCC ISEN3N
2.2 Ω 680 Ω C58
C2
4.7µF PWM4 47 0.1µF
ISEN4P 4 R77
3
ISEN4N 10k
Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation
DS3624BE-P03 February 2021 www.richtek.com
13
RT3624BE Preliminary
Table 1. Summary of Pin Setting Functions
Function Setting Symbol Description
VBOOT[4]=0, 0V
Divider Register [4] Setting VBOOT of CORE rail VBOOT[4]
VBOOT[4]=1, non-zero
Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation
www.richtek.com DS3624BE-P03 February 2021
14
Preliminary RT3624BE
Function Setting Symbol Description
Divider Register[4:3] CORE VR Current Gain Ai[4:3] Current gain setting
TSEN CORE VR Adaptive Quick AQR for loop response speed-up of
Divider Register[2:1] AQR_TH[2:1]
Response(AQR) trigger level loading rising edge. Set trigger level.
Divider Register[4:3] AXG VR Current Gain Ai_A[4:3] Current gain setting
TSENA AXG VR Adaptive Quick AQR for loop response speed-up of
Divider Register[2:1] AQR_TH_A[2:1]
Response(AQR) trigger level loading rising edge. Set trigger level.
Referring to PIN-SETTING tables, Table 2 to 11, users Richtek provides a Microsoft Excel-based design tool to
can search corresponding Vdivider or VIXR according to calculate the desired PIN-SETTING resisters.
the desired function setting combinations. Then SETx TSEN and TSENA pins also have function settings
external resistors can be calculated as follows: except for thermal monitoring function. They only utilize
divider part of PIN-SETTING mechanism. The
3.2V × VIXR
R1 =
80µ A × Vdivider functions of TSEN and TSENA include current gain and
quick response triggle level. The detailed operation is
R1× Vdivider
R2 = described in Thermal Monitoring and Indicator section.
3.2V − Vdivider
Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation
DS3624BE-P03 February 2021 www.richtek.com
15
RT3624BE Preliminary
Table 2. SET1 Pin Setting for VBOOT and ICCMAX
Vdivider_SET1 ICCMAX(A)
VBOOT
(mV) 8 phase 6 phase 5 Phase 4 Phase 3 Phase 2 Phase 1 Phase
25 232 170 134 85 60 35 10
75 238 176 140 90 64 38 12
125 244 182 146 95 68 41 14
175 250 188 152 100 72 44 16
225 256 194 158 105 76 47 18
275 262 200 164 110 80 50 20
325 268 206 170 115 84 53 22
375 274 212 176 120 88 56 24
0V
425 280 218 182 125 92 59 26
475 286 224 188 130 96 62 28
525 292 230 194 135 100 65 30
575 298 236 200 140 104 68 32
625 304 242 206 145 108 71 34
675 310 248 212 150 112 74 36
725 316 254 218 155 116 77 38
775 322 260 224 160 120 80 40
825 232 170 134 85 60 35 10
875 238 176 140 90 64 38 12
925 244 182 146 95 68 41 14
975 250 188 152 100 72 44 16
1025 256 194 158 105 76 47 18
1075 262 200 164 110 80 50 20
1125 268 206 170 115 84 53 22
1175 274 212 176 120 88 56 24
non-zero
1225 280 218 182 125 92 59 26
1275 286 224 188 130 96 62 28
1325 292 230 194 135 100 65 30
1375 298 236 200 140 104 68 32
1425 304 242 206 145 108 71 34
1475 310 248 212 150 112 74 36
1525 316 254 218 155 116 77 38
1575 322 260 224 160 120 80 40
Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation
www.richtek.com DS3624BE-P03 February 2021
16
Preliminary RT3624BE
Table 3. SET1 Pin Setting for ICCMAX_A
ICCMAX_A (A)
VIXR_SET1 (mV)
2 Phase 1 Phase
50 35 10
150 38 12
250 41 14
350 44 16
450 47 18
550 50 20
650 53 22
750 56 24
850 59 26
950 62 28
1050 65 30
1150 68 32
1250 71 34
1350 74 36
1450 77 38
1550 80 40
Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation
DS3624BE-P03 February 2021 www.richtek.com
17
RT3624BE Preliminary
Table 4. SET2 Pin Setting for VBOOT_A, VIDT and kTON
Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation
www.richtek.com DS3624BE-P03 February 2021
18
Preliminary RT3624BE
Table 5. SET2 Pin Setting for ICCMAX_AUX and 0LL
VIXR_SET2 (mV) ICCMAX_AUX(A) 0LL
50 Disable
10
150 Enable
250 Disable
15
350 Enable
450 Disable
20
550 Enable
650 Disable
25
750 Enable
850 Disable
30
950 Enable
1050 Disable
35
1150 Enable
1250 Disable
40
1350 Enable
1450 Disable
55
1550 Enable
Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation
DS3624BE-P03 February 2021 www.richtek.com
19
RT3624BE Preliminary
Table 6. SET3 Pin Setting for UDS, DVID_LIFT and DVID fast_SR
UDS
Vdivider_SET3 (mV) DVID_LIFT DVID fast_SR
PS0 PS1
25 1/2*Fast_P
10uA
75 3/4*Fast_P
125 1/2*Fast_P
20uA
175 3/4*Fast_P
Disable Disable
225 Fast_P
10uA
275 Fast_S
325 Fast_P
20uA
375 Fast_S
425 1/2*Fast_P
10uA
475 3/4*Fast_P
525 1/2*Fast_P
20uA
575 3/4*Fast_P
200 125
625 Fast_P
10uA
675 Fast_S
725 Fast_P
20uA
775 Fast_S
825 1/2*Fast_P
10uA
875 3/4*Fast_P
925 1/2*Fast_P
20uA
975 3/4*Fast_P
200 175
1025 Fast_P
10uA
1075 Fast_S
1125 Fast_P
20uA
1175 Fast_S
1225 1/2*Fast_P
10uA
1275 3/4*Fast_P
1325 1/2*Fast_P
20uA
1375 3/4*Fast_P
250 150
1425 Fast_P
10uA
1475 Fast_S
1525 Fast_P
20uA
1575 Fast_S
Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation
www.richtek.com DS3624BE-P03 February 2021
20
Preliminary RT3624BE
Table 7. SET3 Pin Setting for UDS_A, VR_HOT _DVID and DVID_LIFT_ A
VIXR_SET3 UDS_A
VR_HOT _DVID DVID_LIFT_A
(mV) PS0 PS1
50 10uA
Enable
150 20uA
Disable Disable
250 10uA
Disable
350 20uA
450 10uA
Enable
550 20uA
200 125
650 10uA
Disable
750 20uA
850 10uA
Enable
950 20uA
200 175
1050 10uA
Disable
1150 20uA
1250 10uA
Enable
1350 20uA
250 150
1450 10uA
Disable
1550 20uA
Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation
DS3624BE-P03 February 2021 www.richtek.com
21
RT3624BE Preliminary
Table 8. SET4 Pin Setting for DBLR and kTON_A
Vdivider_SET4 (mV) DBLR kTON_A
25 0.64
75 0.82
125 1
175 Eable DBLR 1.18
225 8phase 1.36
275 1.55
325 1.73
375 2.27
425 0.64
475 0.82
525 1
575 1.18
Disable DBLR
625 1.36
675 1.55
725 1.73
775 2.27
825 0.64
875 0.82
925 1
975 Enable DBLR 1.18
1025 5 phase 1.36
1075 1.55
1125 1.73
1175 2.27
1225 0.64
1275 0.82
1325 1
1375 Enable DBLR 1.18
1425 6 phase 1.36
1475 1.55
1525 1.73
1575 2.27
Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation
www.richtek.com DS3624BE-P03 February 2021
22
Preliminary RT3624BE
Table 9. SET4 Pin Setting for ANTIOVS_TH and ANTIOVS_TH_A
VIXR_SET4 (mV) ANTIOVS_TH ANTIOVS_TH_A
50 90mV
150 150mV
90mV
250 210mV
350 Disable
450 90mV
550 150mV
150mV
650 210mV
750 Disable
850 90mV
950 150mV
210mV
1050 210mV
1150 Disable
1250 90mV
1350 150mV
Disable
1450 210mV
1550 Disable
Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation
DS3624BE-P03 February 2021 www.richtek.com
23
RT3624BE Preliminary
Table 10. TSEN Pin Setting for Ai and AQR_TH
Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation
www.richtek.com DS3624BE-P03 February 2021
24
Preliminary RT3624BE
Table 11. TSENA Pin Setting for Ai_A and AQR_TH_A
Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation
DS3624BE-P03 February 2021 www.richtek.com
25
RT3624BE Preliminary
Thermal Monitoring and Indicator 80μA
Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation
www.richtek.com DS3624BE-P03 February 2021
26
Preliminary RT3624BE
Zero Load-line controller will temporarily change VID target to
The RT3624BE also can support enable zero load-line short-term voltage target. Short-term voltage target is
function. When zero load-line function is enabled, the related to transient loading current ∆ICC and can be
output voltage is determined only by VID and does not represented as the following:
vary with the loading current like load-line system Short_Term_Voltage_Target=VID-∆ICC ×RLL
behavior. The RT3624BE adopts AC-droop to
The setting method of R LL is the same as loadline
effectively suppress load transient ring back and
system. The short-term voltage target reverts to VID
control overshoot for zero load-line application. Figure
target slowly after a period of time. The short-term
7 shows the condition without AC-droop control. The
voltage target can help inductor current not to exceed
output voltage without AC-droop control has extra ring
loading current too much and then the ring back ∆V2
back ∆V2 due to C area charge. Figure 8 shows the
can be suppressed. The overshoot amplitude is
condition with AC-droop control. While loading occurs,
reduced to only ∆V3.
B C
Inductor
A current
ΔV3
ΔV2
Output Voltage
VID Target
ΔV1
Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation
DS3624BE-P03 February 2021 www.richtek.com
27
RT3624BE Preliminary
Inductor
current
Inductor
A current
Loading Current ΔIcc
D
Load
Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation
www.richtek.com DS3624BE-P03 February 2021
28
Preliminary RT3624BE
ILx VCORE
LX DCR
VOUT
Lx ∆IOUT x RLL
R x × Cx =
RX1 CX DCR x
+ VCSIN -
RX2
ISENxP ∆IOUT
+ Option
Gm VIMON
- ISENxN RCSx=680ohm
IIMONx Ideal load transient waveform
ICBx ICS,PERx
IZDx
IOCx
+ VCSIN -
RX2
ISENP_AUX
Gm
+
- ISENN_AUX Option
VOUT
Lx ∆IOUT x RLL
IMON_AUX R x × Cx >
DCR x
Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation
DS3624BE-P03 February 2021 www.richtek.com
29
RT3624BE Preliminary
DCR For AXG rail,
VIMON -VVREF =(IL1 +IL2 +…)× ×R
680Ω IMON,EQ VICCMAX =0.4V, when ICCMAX≥40A
VCORE
IL1
L DCR
R C
VIMON ISEN1P
+
Gm
IMON - ISEN1N RCS1=680ohm
IIMON1 ICS,PER1
IL2
L DCR
R C
RIMON,EQ
ISEN2P
RNTC +
Gm
- RCS2=680ohm
ISEN2N
IIMON2 ICS,PER2
IL3
VREF L DCR
VVREF R C
ISEN3P
+
Gm
- ISEN3N RCS3=680ohm
IIMON3 ICS,PER3
IL4
L DCR
R C
ISEN4P
+
Gm
- ISEN4N RCS4=680ohm
IIMON4 ICS,PER4
+
- 0.6V
VID
Loadline=-RLL
RLL x ICCMAX
Loading
Current
ICCMAX
Voltage Loop
VCORE
REA2 PWM
CMP TON
-
REA1 +
+ GEN/
ERROR - Driver
VID Interface
AMP
IL1~IL4
DCR Lx
Rx Ai
+
-
Cx
ISENxP
+ Gm RIMON,EQ
ISENxN
-
IMON RNTC VREF
(sum of ICS,PERx)
Current Loop
Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation
DS3624BE-P03 February 2021 www.richtek.com
31
RT3624BE Preliminary
Dynamic VID (DVID) Compensation different scale of DVID SR, IDVID_LIFT is internally
During DVID transition, an extra current is required to adjusted. Compensating magnitude can also be
charge output capacitors for increasing voltage. The adjusted by REA1 . While DAC just arrives target
charging current approximates to the product of the ( ALERT issue timing), inductor current is still high and
DVID slew rate and output capacitance. For droop needs a time to settle down to the DC loading current.
system, the extra charging current induces extra In the settling time, the falling down current keeps to
voltage droop so that the output voltage cannot reach charge output capacitor (The magnitude is related with
target within the specified time. The extra voltage drop inductor, capacitance and VID). Thus, DVID
approximates to DVID Slew Rate x Output Capacitance compensation can be less than DVID Slew Rate x
x RLL (RLL is the loadline slope, Ω) This phenomenon is Output Capacitance (Capacitance degeneration should
called droop effect. How charging current affects loop be considered). While output capacitance is so large
is illustrated in Figure 15. The RT3624BE provides one that DVID compensation cannot cover, adding a
DVID compensation function as shown in Figure 16. An resistor and capacitor from FB to GND also can provide
internal current IDVID_LIFT is sinking internally from FB similar function. The ERROR AMP compensation
pin to generate DVID compensation, IDVID_LIFT ×REA1 . (resistance and capacitance network among VSEN, FB
IDVID_LIFT for fast DVID SR can be set from SET3 and COMP) also affects DVID behavior. The final
PIN-SETTING of DVID_LIFT[1], 10µA and 20µA. For setting should be based on actual measurement.
Charging
Inductor Current Current
for DVID
Droop Effect
VSEN
VID
REA2 C1
TON
- REA1+
Improved VSEN
GEN/ - VID
-
Driver + EA DVID Compensation
Interface PWM +
CMP VID IDVID_LIFT
Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation
www.richtek.com DS3624BE-P03 February 2021
32
Preliminary RT3624BE
Compensator Design Switching Frequency Setting
The compensator of the RT3624BE doesn't need a The RT3624BE topology G-NAVPTM (Green Native
complex type II or type III compensator to optimize AVP) is one kind of current-mode constant on-time
control loop performance. It can adopt a simple type I control. It generates an adaptive TON (PWM) with input
compensator (one pole, one zero) in the G-NAVPTM voltage (VIN) for better line regulation. The TON is also
topology to fine tune ACLL performance. The one pole adaptive to VID voltage to achieve constant frequency
and one zero compensator is shown in Figure 17. For concept. The constant frequency will let switching
IMVP9.1 ACLL specification, it is recommended to thermal easier to estimate. The RT3624BE provides a
adjust compensator according to load transient ring parameter setting of kTON to design TON width. kTON is
back level. Default compensator values are referred to set by PIN-SETTING of kTON[2:0]. The related setting
the design tool. table is listed in Table 13.
C2
The equations of TON are listed as below :
VID ≥ 0.93V
REA2 C1
VID
REA1 Ton=2.206u× +14ns
- VSEN kTon ∙(VIN)
COMP EA FB
+
FB REA1 100
-
EA CPU VCC_SENSE
+
+ COUT
CPU
VID -
RGND CPU VSS_SENSE
100
Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation
DS3624BE-P03 February 2021 www.richtek.com
33
RT3624BE Preliminary
The switching frequency can be derived from TON as shown as below. The losses in the CORE power stage and
driver characteristics are considered.
ICC RON LS,max
VID+ N
×(DCR+ nLS
-N×RLL )
Freq= RON LS,max R ONHS,max RON LS,max
ICC ICC
�VIN + ×� - �� ×�TON-TD +TON, VAR �+ × ×TD
N nLS nHS N nLS
Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation
www.richtek.com DS3624BE-P03 February 2021
34
Preliminary RT3624BE
Adaptive Quick Response (AQR) Anti-overshoot (ANTI-OVS)
The RT3624BE adopts Adaptive Quick Response The RT3624BE provides anti-overshoot function to
(AQR) to optimize transient response. The mechanism depress output voltage overshoot. Controller detects
concept is illustrated in Figure 19. Controller detects overshoot by signals related to output voltage. The
output voltage drop slew rate. While the slew rate overshoot trigger level can be adjusted by
exceeds the AQR threshold, all PWM will turn on an PIN-SETTING as listed in Table 15. The CORE
53.3% constant on time. The RT3624BE provides detecting signal comes from COMP. However, COMP
various AQR threshold through PIN-SETTING of varies with compensation. Initial trigger level setting is
AQR_TH. The following equation can initially decide based on the following equation :
the AQR starting trigger threshold. Note that the 4 REA2 4
threshold should be larger than steady-state output ∆COMP× =∆VSEN× × >
3 REA1 3
voltage ripple falling slew rate and also the overshoot
falling slew rate to avoid miss trigger AQR. Antiovershoot Threshold of ANTIOVS_TH[1:0]
The final setting should be according to actual Error
AQR Starting Trigger Threshold = − 4µ × dVSEN
dt AMP compensator design and measurement.
While overshoot exceeds the setting trigger level, all
VBIAS Vdiff
Output voltage PWM_AQR
PWMs keep in tri-state until the zero current is detected
or VSEN back to normal level. Turning off LGs forces
AQR Threshold
positive current flow through body diode to cause diode
VBIAS forward voltage. The extra forward voltage can speed
Output voltage
up inductor current discharge and decrease overshoot.
Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation
DS3624BE-P03 February 2021 www.richtek.com
35
RT3624BE Preliminary
ACLL Performance Enhancement VRAMP will increase when the VCOMP intersects the
The RT3624BE provides another optional function to positive offset. In order to send out another on-time
improve undershoot by applying a positive offset at earlier to improve undershoot. In PS1, except for the
loading edge. Controller detects the COMP signal and
positive offset, an additional 10mV is applied to the
compares it with steady state. While VCOMP variation
exceeds a threshold, an additional positive offset will DAC and one pulse of PWM is also forced to turn on
apply to the output voltage. The threshold can be set while the function is triggered. The positive offset is
through PINSETTING and separately for PS0 and PS1 released gradually with about hundred micro-second.
as listed in Table 16. The smaller index indicates the Figure 20 and Figure 21 show undershoot suppression
easier detection being triggered. The positive offset is
behavior in PS0 and PS1. For different platform, the
related to the compensation.
optimized setting is different. The final setting must be
The ACLL performance enhancement threshold can
based on actual measurement
VEA2
approximate to 60mV/ . In PS0, the slew rate of
VEA1
Load
Trigger UD
PWM
w/o UD
PWM
w/ UD
Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation
www.richtek.com DS3624BE-P03 February 2021
36
Preliminary RT3624BE
Load
Trigger UD
PWM
PWM
1 RCS 1
ISUMOC ,PS1,2,3 = ×K ×VIMON × ×
phase number SOCP ICCMAX
DCR RIMON,EQ
ICCMAX<40, KSOCP=1.6
ICCMAX>=40, KSOCP=1.3
DCR
While RIMON,EQ is designed exactly for VIMONICCMAX =ICCMAX register value× 680Ω ×RIMON,EQ ,
ICCMAX register value=ICCMAX, and VIMONICCMAX =0.2V, 0.4V or 0.8V according to ICCMAX.
Sum OCP threshold can be simplified as ISUM_OC,PS0 =KSOCP ×ICCMAX and
1
ISUM_OC,PS1,2,3 = ×K ×ICCMAX. Note that the modification of ICCMAX register value cannot change
phase number SOCP
While inductor current above sum OCP threshold lasts 40µs or 0.5µs during the first DVID up plus 80µs, controller
de-asserts VR_READY and latches PWM in tri-state to turn off high-side and low-side power MOSFETs. Sum OCP
is masked during DVID period and 80μs after VID settles except for the first DVID up plus 80µs. It's also masked
while VID = 0V condition.
Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation
DS3624BE-P03 February 2021 www.richtek.com
37
RT3624BE Preliminary
Mask sum OCP
VID 80μs
Inductor Current
Over-Voltage Protection (OVP) 23 and Figure 24. When OVP is triggered with 0.5µs
The OVP threshold is linked with VID. The filter time, controller de-asserts VR_READY and forces
classification table is illustrated in Table 17. While VID all PWMs low to turn on low-side power MOSFETs.
= 0V, in case of VR internal setting mode or DACOFF PWM remains low until the output voltage is pulled
or PS4, OVP is masked. When VID ramps up from VID down below 2.1V for DVID from 0V and VID for other
= 0V till the first PWM after VID settles, OVP threshold conditions. After 60µs from OVP trigger, VID starts to
is 2.45V to allow not-fully-discharged VSEN. Otherwise, ramp down to 0V with slow slew rate. During the period,
the OVP threshold is relative to VID and equals to PWM is not allowed to turn on. Controller controls
VID+350mV with minimum limit = 1.35V. While VID ≤ PWM to be low or tri-state to pull down the output
1.0V, the OVP threshold is limited at 1.35V. voltage along with VID.
Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation
www.richtek.com DS3624BE-P03 February 2021
38
Preliminary RT3624BE
Table 17. Summary of Over Voltage Protection
Protection Protection
VID Condition OVP Threshold Example Protection Action
Flag Reset
VID=0
(EN=L or VR internal
OVP is masked
setting mode or
DACOFF or PS4)
VR_READY latched
DVID up period from low. Actively pulls
0V to 1st PWM pulse 2.45V. the output voltage to
after VID settles below 2.1V, then
ramp down to 0V
VID = 1.2V,
VCC/VRON
OVP threshold = VREF=1V
VID+350mV if VID Toggle
DVID period from 1.55V.
>1.0V, 1.35V if VID
non-zero VID VID = 0.9V,
≤1.0V VR_READY latched
OVP threshold =
low. Actively pulls
1.35V.
the output voltage to
VID = 1.2V,
below VID, then
OVP threshold =
VID+350mV if VID ramp down to 0V
1.55V.
VID≠0 >1.0V, 1.35V if VID
VID = 0.9V,
≤1.0V
OVP threshold =
1.35V.
2.45V
OVP Threshold
2.1V
VSEN
0V
VR_READY
PWM
Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation
DS3624BE-P03 February 2021 www.richtek.com
39
RT3624BE Preliminary
OVP Threshold
350mV +- 50mV
VSEN
0V
VR_READY
PWM
VSEN
VID
650mV
UVP Threshold
PWM
VR_READY
All protections are reset only by VCC/VRON toggle. rate. For user friendly, RT3624BE provides protection
UVP and OCP protections are listed in Table 18. Note flag to promptly determine which kind of protections is
that the real filter time also depends on the magnitude triggered. As protection happens, VREF will be forced
of detected signal. The signal magnitude will affect to 1V/1.5V/2V for OVP/UVP/SUM_OCP, respectively.
analog comparator’s overdrive voltage and output slew
Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation
www.richtek.com DS3624BE-P03 February 2021
40
Preliminary RT3624BE
Table 18. Summary of UVP and OCP Protection
DVID
Protection Protection Protection Protection
Protection Threshold mask
Type Flag Action Reset
time
Four-Layer PCB
4.5
formula :
4.0
PD(MAX) = (TJ(MAX) − TA) / θJA 3.5
Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation
DS3624BE-P03 February 2021 www.richtek.com
41
RT3624BE Preliminary
Outline Dimension
Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation
www.richtek.com DS3624BE-P03 February 2021
42
Preliminary RT3624BE
Footprint Information
Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation
DS3624BE-P03 February 2021 www.richtek.com
43
RT3624BE Preliminary
Datasheet Revision History
Version Date Item Description
P00 2020/4/8 First Edition
Pin Configuration
P01 2020/8/3 Modify
Functional Pin Description
General Description
Features
Simplified Application Circuit
Functional Pin Description
Functional Block Diagram
P02 2020/11/23 Modify
Operation
Absolute Maximum Ratings
Electrical Characteristics
Typical Application Circuit
Application Information
Simplified Application Circuit
P03 2021/2/1 Functional Pin Description Modify
Application Information
Copyright © 2021 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation
www.richtek.com DS3624BE-P03 February 2021
44