AITS-2425-PT-II-JEEM-Sol
AITS-2425-PT-II-JEEM-Sol
AITS-2425-PT-II-JEEM-Sol
JEE (Main)-2025
TEST DATE: 01-12-2024
SECTION – A
1. B
Sol. Use principle of superposition,
2K
E2 sin
R 2
2K 1 ˆ K ˆ /2 /2
i i R
R 2 R
E2
2. C
Sol. dq (2xdx)
dq 2xdx
di xdx
dt 2
0 2(x3 dx)
dB
4 (y2 x 2 )3/2
0 r 2 2y 2
B 2y
2 r 2 y2
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
website: www.fiitjee.com
AITS-PT-II-PCM(Sol.)-JEE(Main)/2025 2
3. D
Sol. Equivalent circuit is 2RT RT
V
P (90C)
RT R (30C)
4. C
Sol. by solving
x T
dT Q
Q KA
dx
A
0
dx K 0 (1 T)dT
0
T
Q T2
x K0 T
A 2
0
By solving
Q T2
x K0 T
A 2
Q (300)2
So, x0 K 0 300
A 2
So, at x = 2x0 temperature T 425 K
5. B
Sol. P = VI
6. B
Sol. Let x be the temperature of block. In steady state
x 10 x 5 x 3
0 x = 6C
R R R
7. C
n1(4) 1
Sol. Now, n1 = 2n2
n2 (32) 4
3 5
n1 R n2 R
2 2 11R
Now, Cv
n1 n2 6
17
CP CV R R
11
CP 17 6
1
CV 11 11
8. D
d R2
Sol. B
dt 2
R2
Where, is area swept in unit time perpendicular to the magnetic field.
2
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
website: www.fiitjee.com
3 AITS-PT-II-PCM(Sol.)-JEE(Main)/2025
9. D
Sol. The voltage across the resistor R is equal to the voltage across the coil
UR = UL
Voltage across the resistor
UR= IRR
Voltage across the inductor coil:
dI
UL L L
dt
Current through a resistor
dq
IR R
dt
Then
dqR dL
R L L RdqR LdIL
dt dt
According to Kirchhoff's second law
INCT IR R
Then the current through the resistor at the moment of opening
(2R)r
IR
3r 6r
Then the current through the coil from Kirchhoff's first law:
IL INCT IR
2r 6r 3r
We sum (integrate) (1)
qR
IL
R dqR L
0
0
dIL RqR LIL
10. D
2
Sol. i
10
2 12
VBD 6 1.2 V
10 10
11. C
X 40
Sol. R = 6
R0 60
78R1
and 6 Rt= 6.5
R t 78
R t R0
8.3 104 K 1
R0 t
12. B
Sol. R 37 102 5%
= (3700 185)
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
website: www.fiitjee.com
AITS-PT-II-PCM(Sol.)-JEE(Main)/2025 4
13. D
Sol. Potential difference A and C = 4V
6
Current in above circuit = 1A
51
So, resistance of AD = 4
Hence length = 80 cm
14. C
1 q q q 1 5q
Sol. VC R 2R 3R 4
40 0 6R
15. C
1 1 1 1 1
Sol.
R 20 20 30 30
16. A
Sol. Eq E8q 0
Kqx K(8q)x
(R2 x2 )3/2 (16R2 x2 )3/2
x = 2R
1 Kq q K(8q) q
mv 2
2 2
(R x )2
(16R 2 x 2 )
v = 20 m/s
17. A
3 4
Sol. Ex , Ey
0 0
5
Enet
0
1 4
U 0E2 R3 0.45 J
2 3
18. A
0 id sin(90 ) d
dr
Sol. dB
4 r2 rd
i
dB 0 2 d cos
4r r
i id
dB 0 2 rd 0
4r 4r
0id
dB
c
4 b
B /2
0I0 d I c
dB = 0 0 n 1
c 4c 2b
0 0 4 b
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
website: www.fiitjee.com
5 AITS-PT-II-PCM(Sol.)-JEE(Main)/2025
19. C
2
Sol. d B sin xdx
0
x
I22
d = (B sin )
2 dx
1 1
= 4 1 1
2 2 p
20. A
y
Sol. B B1 B2 B3 B 4
i
B2 B3 0 (cos 1 cos 2 )jˆ
4a
0 i ˆ 4
B2 B3 j
4 2 a
i
B4 0 kˆ O
4 a O 1 x
(a, 0, 0)
i
B 0 ( 2ˆj k) ˆ
v2
3
4a (0, 0, a) v1
2
1
SECTION – B
21. 2
Q
Sol. Let us consider a cube of double side length of same density. Also, V and V becomes 4
r
1
times on doubling the side length. Let the potential at center due to of this cube is V1. This
8
point lies at corner of each of eight cubes of original size.
22. 8
Sol. Potential of plate 4 is zero 2Q
2Q
Q
(V3 V4) = V3
2Q Qd
(V3 V4 ) 2d 4
A 0 A 0
V3 = 8 volt
2Q Q 2Q
23. 4
Sol. H i2Rt
2
200 = 2 R 1
200 = 4R
1
H2 = 1 R 8 = 400 Joule
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
website: www.fiitjee.com
AITS-PT-II-PCM(Sol.)-JEE(Main)/2025 6
24. 3
0 J 0 J
Sol. B 0 J
2 2
B2
U 6L3 30 J2L3
20
25. 9
Sol. Hint: According to stefan's law, the power radiated by a black body at absolute temperature T is
given by
= AT4 …(i)
According to wein's displacement law
b
m T b T
m
From (1) and (2)
4
b Ab4
A 2
m m
For a sphere of radius r, A = 4r2
b4 4r 2 r2
Hence = 2
K 2
m m
Where K = 4b4 is a constant.
42
Hence 1 K 1
m2
1
r22
2 K
m4
2
2 2 4 2
1 r1 3 500 5
2 r2
4
m 2
4
m
5 300
1
3
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
website: www.fiitjee.com
7 AITS-PT-II-PCM(Sol.)-JEE(Main)/2025
Chemistry PART – B
SECTION – A
26. B
Sol. Possible products
OH
OH
O O O O
H3C H H3C H
27. C
Sol. OH
CH It gives yellow ppt. of CHI3 with I2 NaOH.
H3C CH3
Q
2 o
alcohol
28. C
Sol. O
O O O O
Et3 N MeO Cl
Ph C OH Ph C O Ph C O C OMe
Cl
O NH2
MeO C OH
Ph C NH
29. A
Sol. Factual
30. D
Sol. Me Me Me Me
Br H H Br Br H H Br
Br H H Br H Br Br H
Me Me Me Me
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
website: www.fiitjee.com
AITS-PT-II-PCM(Sol.)-JEE(Main)/2025 8
31. A
Sol. Factual
32. B
Sol. O OD
1. LiAlD4
H3C C H
2. D O
H3C C H
3
D
O OH
1. LiAlD4
H3C C OCH3
2. H O
H3C C D
3
D
O OD
1. LiAlH4
H3C C H
2. D O
H3C C H
3
H
33. C
Sol. O OH O O
H H
N N N N
N O N O N OH N OH
H H H
34. D
Sol. CF3 CF3 CF3
NH
2
Cl NH2
CH3 CH3 CH3
NH
2
Cl NH2
35. B
Sol. O
S S HO Me S HO Me Me
S
Me Me
H H
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
website: www.fiitjee.com
9 AITS-PT-II-PCM(Sol.)-JEE(Main)/2025
O
HO Ph
O HO Ph
(E) (F)
Symmetrical (3-isomers)
36. C
COOH
Hydrolysis
Sol. N C C N
Cyanogen COOH
Oxalic acid
37. C
Sol.
HO OH H2 SO4
HO OH2
38. D
Sol. 1 CH
2
3 4
H3C CH2 C CH CH3 2-ethyl-3-methyl but-1-ene
2
CH3
39. C
Sol. Order of electron withdrawing nature
NO2 OCH3 H
40. A
Sol. Enolate in option ‘A’ will form a stable six membered compound.
41. C
Sol. O
I2 + NaOH
CHI3
Ph
O
I2 + NaOH
Ph Ph No ppt.
42. B
Sol. Ph
O can't be synthesized
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
website: www.fiitjee.com
AITS-PT-II-PCM(Sol.)-JEE(Main)/2025 10
43. C
Sol.
O
O
Cl
Cl
Cl
Cl
44. C
Sol. (i)
H3C CH CH CH CH CH3
Cl Cl
(ii)
Ph CH2 CH CH CH3
(iii) H2C CH CH2 Ph
(iv)
Cl CH2 CH CH CH CH3
Cl
45. A
Sol. O O O O
HO OH
O O
H H H OH
SECTION – B
46. 3
Sol. Cl Cl
H3C C C H 2Zn CH3 C C H + 2ZnCl2
0.02 mol
Cl Cl
0.02 mol
CH3 C C H AgNO3 NH4 OH
CH3 C CAg + NH4NO3 H2 O
0.02 mol 0.02 mol
Moles of CH3 C CAg 0.02
Mass of CH3 C CAg 0.02 147 2.94 3 g
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
website: www.fiitjee.com
11 AITS-PT-II-PCM(Sol.)-JEE(Main)/2025
47. 4
Sol. O
C CH3
O O
NaOH
H3C C (CH2)4 C H
Number of – CH2 – unit ‘4’.
48. 20
Sol. Number of H-bond between A and T are 2.
Number of H-bond between G and C are 3.
The complimentary strand is “TATACGCG”
Total H-bond = 4 × 2 + 4 × 3 = 20
49. 4
Sol. Copolymers are Bakelite, Buna-S, Melamine, Terylene.
50. 8
Sol. Br Cl Br Br Br Br
Cl
Cl
Cl
Br Br Br Br Br Cl
(1) (2) (2) (2) (1)
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
website: www.fiitjee.com
AITS-PT-II-PCM(Sol.)-JEE(Main)/2025 12
Mathematics PART – C
SECTION – A
51. D
2
Sol. x12 x 2 1 0
x1 0, x 2 1
y1 12 y 2 12 0
y1 1, y 2 1
52. A
2
41 i
Sol. Since BiCi is parallel to B0C0 triangles ABiCi are similar to AB0C0. So area of ABiCi is
41
2
1 1 41 i 41 i
of the area of the area of ABiCi. So the area of BiCi Ci+1 is .
41 i 41 i 41 412
41
i 41 42 21
The sum of all triangles BiCi Ci+1 is then 41
i1
2
2
41
. The height of AB0C0 is
412
1
412 9 2 40 , so its area is
40 18 360 .
2
21 7560
Hence total area 360 .
41 41
53. D
Sol.
x2 y2
1
P 2 cos , 3 sin
4 3
3h = 2cos, 3k 3 sin
cos(h, k)
2
x y2
1.
4 1/ 3
S(–1, 0) S (1, 0)
9
54. C
Sol. yt = x + t2 2
P(t , 2t)
pQ SN 1 t2 10 (0, k)
N 90º
t = 3, – 3. 90º Q
90º
S (1, 0)
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
website: www.fiitjee.com
13 AITS-PT-II-PCM(Sol.)-JEE(Main)/2025
55. B
Sol. y2 = 8x y3 = – 8 y = – 2, x = ½
equation of tangent is y + 2 = –2(x – ½)
y intercept = – 1
y = cos(x + y)(1 + y)
– 2 = cos(x + y)(– 1)
cos(x + y) = 2 not possible.
56. C
Sol. x 2 y 2 25 y 0
0 c
2 2
25
1 2 4
57. D
Sol. x 2 + y2 = 8
x 3 cos y 3 sin 8 … (i)
2 2 (h, k)
Also, hx + ky = h + k … (ii)
3 cos 3 sin 8 (3 cos, 3sin)
2
h k h k2
8h 8k
cos , sin
2
3 h k 2
3 h k2
2
2
8
Locus is S : x 2 y 2
3
The given line mult pass through centre of circle
c=2
hx + ky = 1 touches the ellipse
1 h2
8
k 2 k2
The locus is x2 + 8y2 = 1
Eccentricity of conjugates hyperbola 3.
58. A
xx1 yy1
Sol. The equation of tangent at (x 1, y1) is 2 1
a2 b
It passes through (0, – b), so
y1
0 1 y1= b
b
a2 x b2 y
Normal at (x1, y1) is a 2e 2
x1 y1
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
website: www.fiitjee.com
AITS-PT-II-PCM(Sol.)-JEE(Main)/2025 14
59. C
Sol. Quadrilateral PACB is cyclic and PC will be the A
diameter of any circle passing through any of given 4
points.
diameter will be PC 2(3, 4) C P 1(0, 0)
Locus of C is (x – 3)2 + (y – 4)2 = 1
Minimum distance O1O2 – r1 – r2 = 3. B
60. B
Sol. By using cosine formula we get, A
a 17 3 21
a2 3 3a 5 0 2 3 2
a1 10
30º
B C
61. D
Sol. Let the variable line be lx + my + n = 0
3al1 3am 1
n
P1 = a b c a b c
l2 m2
3bl 2 3bm 2
n
P2 = a b c a bc
l2 m2
3cl 3 3cm 3
n
P3 = a b c a bc
l2 m2
P1 + P2 + P3 = 0
3l a1 b 2 c3 3m a1 b2 c3
3n = 0
abc abc
62. B
Sol. Let 768 32cos
16 3 32cos
3
cos =
2 6
4 8 32 32cos
6
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
website: www.fiitjee.com
15 AITS-PT-II-PCM(Sol.)-JEE(Main)/2025
= 4 8 8 cos
12
= 4 4 sin
24
11
= 4 4 cos
24
11 b
= 2 2 cos 24
48 a
63. D
Sol. The tangent 3x + 4y 25 = 0 is tangent at vertex and axis is 4x 3y = 0
so PS = a = 5
L.R = 20
64. D
Sol. m3 + (2p + 5) m2 6m 2p = 0
m1 + m2 + m3 = (2p + 5)
m1m2 = 6
m1m2m3 = 2p
For A
3
P mi 1
i 1
P 2P 5 = 1 P = 4
m1m2m3 = 8
m1 = 1, m2 = 2, m3 = 4
For B
P 2P 5 = 5 P = 0
m1m2m3 = 0
m1 = 1, m2 = 0, m3 = 6
For D
P + 2P = 32 not possible.
65. A
2
3x 6y
Sol. 2x2 + 2xy + 3y2 0
P
2P2 9 + 3P2 36 P2 = 9
66. B
x2 y 2
Sol. 1
a2 b2
Tangent at P(asec, btan)
x sec y tan
1
a b
b
y= x
a
M = [a(sec tan), b(sec tan)]
N = [a(sec + tan), b(sec + tan)]
ON = a2 b2 (sec + tan) = ae(sec + tan) and OM = ae(sec tan)
OM + ON = 2ae sec
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
website: www.fiitjee.com
AITS-PT-II-PCM(Sol.)-JEE(Main)/2025 16
a a
SP + SP = e a sec e a sec = 2ae sec
e e
67. C
Sol. Orthocentre lies on the rectangular hyperbola and
2 1
H(, ) G(h, k) O(3x1, 3y1)
2 3x1 2 3y1
h ,k
3 3
= 3h 6x1 , = 3k 6y1
2 2
9(h 2x1) 9(k 2y1) = 36 = 4
68. C
Sol. l1l2 = 2 and t1 + t2 + t3 = 0 and a = 2
Let the circumcentre be (h, k)
at t at 32
h= 12 h 2 t 23
2
a t1 t 2 2at 3
k= k = t3
2
h = 2 + k2
y2 = x 2
69. D
Sol. Let A be the vertex
AR = a2 t 42 4a2 t 22 at 2 t 22 4
a=1
2
|t2| = t1 2 2
t1
AR 4 6
70. B
Sol. ATC is isosceles, BHFC is cyclic
BFH = BHC. Then TBF ~ THC
Since TBF is isosceles, so THC
1
Area = 10 63 15 7
2
SECTION – B
71. 0
Sol. Let =
28
cos2 cos6 cos18
sin3 sin9 sin27
1 2cos2 sin 2cos6 sin3 2cos18 sin9
=
2 sin sin sin9 sin3 sin27 sin9
1 sin3 sin sin9 sin3 sin 27 sin9
=
2 sin sin sin9 sin3 sin27 sin9
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
website: www.fiitjee.com
17 AITS-PT-II-PCM(Sol.)-JEE(Main)/2025
1
= [cosec cosec3 + cosec3 cosec9 + cosec9 cosec27]
2
1
= [cosec cosec27] = 0
2
72. 2
sin x 1 sin x sin y 3
Sol.
sin y 2 sin x sin y 1
x y xy
2 sin cos
2 2 = 3
xy xy
2cos sin
2 2
cos x 3
cos y 2
cos x cos y 3 2
cos x cos y 3 2
xy xy
2cos cos
2 2 = 5
xy xy
2sin sin
2 2
xy 3
tan2
2 5
k=2
73. 2
Sol. m2sin2 2mtan + tan2 + cos2 = 0
2 tan
m1 + m2 =
sin2
tan2 cos2
m1m2 =
sin2
m1 m2 = m1 m2 2 4m1m2
4 tan2 4 tan2 4 cos2
=
sin4 sin2
2
= tan2 tan2 cos2 sin2 = 2
sin2
74. 1
1 sin 46 45 sin 48 47 sin 50 49 sin 134 133
Sol. .....
sin1 sin 45 sin 46 sin 49 sin 48 sin 49 sin50 sin133 sin134
1
= cot 45 cot 46 cot 47 cot 48 cot 49 cot 50 ..... cot133 cot134 1
sin1 sin1
75. 0
Sol. Perpendicular distance = 2
Now sec2 + 2cosec2 = 2
No value of is possible.
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
website: www.fiitjee.com