Hassan2023-Single Atom
Hassan2023-Single Atom
Hassan2023-Single Atom
The tunable electronic structure of the central metal atoms in single-atom catalysts (SACs) helps to
control the adsorption energy of reactants and different reaction intermediates involved in multistep
chemical processes. Although SACs have been recently proposed to be effective for electrochemical
CO2 reduction to C1 products such as HCOOH, CH3OH and CH4, their role in catalysing CO2 reduction
to C2 products involving more complex reaction pathways is largely unknown. Herein, by means of
systematic first-principles simulations, we thoroughly evaluate a total of 27 transition metal-based SACs
supported on a g-C2N monolayer for CO2 reduction to C2 products such as ethene and ethanol. Our
results demonstrate that the SACs reveal limiting potential values ranging from 1.50 to 2.70 V and are
capable of effectively suppressing the competitive hydrogen evolution reaction. The most effective
candidates capable of reducing CO2 to C2 products were found to be Cu@C2N, Cr@C2N, and Fe@C2N
exhibiting limiting potential values of 1.50, 2.23, and 2.27 V, respectively. We further find that the
Received 16th January 2023, catalytic activities of all the SACs can be correlated with the adsorption free energy of one of the
Accepted 13th March 2023 intermediate species (*COCH2O) making it a suitable descriptor for evaluating their CO2 reduction
DOI: 10.1039/d3nj00247k activity. Hence, this study provides key inputs regarding CO2 conversion to C2 products on SACs and is
expected to lead to further explorations for future design of SACs for the formation of multicarbon
rsc.li/njc products.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023 New J. Chem., 2023, 47, 7225–7231 | 7225
View Article Online
Paper NJC
7226 | New J. Chem., 2023, 47, 7225–7231 This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023
View Article Online
NJC Paper
Published on 14 March 2023. Downloaded by CHULALONGKORN UNIVERSITY on 10/15/2024 10:02:18 AM.
Fig. 2 Calculated adsorption free energy values of the first protonation step (*COOH) in the CO2 reduction and H atom on the (a) 3d, (b) 4d and
(c) 5d TM@C2N catalysts.
Fig. 3 Computed limiting potentials for the CO2RR on different transition Fig. 4 Proposed reaction pathway for CO2 reduction to C2 products
metal-based SACs. (C2H4 and C2H5OH) on g-C2N based SACs.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023 New J. Chem., 2023, 47, 7225–7231 | 7227
View Article Online
Paper NJC
to C2 products (ethene and ethanol) as per the reaction scheme The computed free energy pathways for all the catalysts are
shown in Fig. 4. The above reaction mechanism is already well given in Fig. 5 and Fig. S1 and S2 (ESI†) with the limiting
documented in the literature47 for CO reduction to C2 products on potentials of the CO2RR towards the C2 products (C2H4 and
metal surfaces. Furthermore, it is known that CO2 is first trans- C2H5OH) for all SACs summarized in Fig. 3. Among the 27
formed to CO before being reduced further and leads to the same catalysts, 11 catalysts namely M@C2N (M = Cr, Mn, Fe, Co, Cu,
product distribution as CO2.17,48 As shown in the figure, one of the Tc, Rh, Pd, Re, Os and Ir) were found to reduce CO2 to C2H4 and
Published on 14 March 2023. Downloaded by CHULALONGKORN UNIVERSITY on 10/15/2024 10:02:18 AM.
routes involves *CHO or *COH intermediates, which then combine C2H5OH at low limiting potentials. Furthermore, Cu, Cr and
with an incoming *CO molecule before the formation of the final Fe-based SACs exhibit the lowest limiting potential values of
C2 products. The second route involves the coupling of a *CO 1.50, 2.23, and 2.27 V among the 27 screened catalysts as
molecule with an adsorbed *CO species generated from CO2 revealed by the reaction free energy pathways depicted in Fig. 5.
hydrogenation, resulting in the formation of *COCO species, It can be seen in the free energy pathways that *COCO
which undergo subsequent hydrogenation to form C2 products. formation is thermodynamically favourable whereas both *CHO
Fig. 5 The reaction pathways for CO2 reduction to C2H4 and C2H5OH on (a) Cr@C2N, (b) Fe@C2N, and (c) Cu@C2N. The most favourable pathways are
highlighted in blue colour.
7228 | New J. Chem., 2023, 47, 7225–7231 This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023
View Article Online
NJC Paper
and *COH are formed with some energy requirement in the case
of all eleven catalysts (Fig. 5 and Fig. S1, ESI†). Subsequently, with
the adsorption of CO on *CHO, *COH leads to the formation of
*COCHO and *COCOH, respectively, whereas both *COCHO or
*COCOH can be formed by the hydrogenation of *COCO. It is
worth noting that the coupling step i.e., formation of *COCO,
Published on 14 March 2023. Downloaded by CHULALONGKORN UNIVERSITY on 10/15/2024 10:02:18 AM.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023 New J. Chem., 2023, 47, 7225–7231 | 7229
View Article Online
Paper NJC
principles simulations. According to our thorough analysis, we 9 Y. Cheng, S. Yang, S. P. Jiang and S. Wang, Small Methods,
find that Cu@C2N, Cr@C2N, and Fe@C2N are the most active 2019, 3, 1800440.
electrocatalysts for the conversion of CO2 towards the C2 10 L. Lin, G. Wang, X. Bao and C. Yan, Chin. J. Catal., 2018, 40,
products C2H4 and C2H5OH with limiting potential values of 23–37.
1.50, 2.23, and 2.27 V, respectively. The SACs can suppress 11 Y. Cheng, S. Zhao, B. Johannessen, J. P. Veder, M. Saunders,
the competitive hydrogen evolution reaction thereby making M. R. Rowles, M. Cheng, C. Liu, M. F. Chisholm, R. De
Published on 14 March 2023. Downloaded by CHULALONGKORN UNIVERSITY on 10/15/2024 10:02:18 AM.
CO2 reduction highly selective on these catalysts. In addition Marco, H. M. Cheng, S. Z. Yang and S. P. Jiang, Adv. Mater.,
to this, we find that the adsorption free energy of different 2018, 30, e1706287.
reaction intermediates can be linearly correlated with DGðCOCH2 OÞ 12 J. Hill, E. Nelson, D. Tilman, S. Polasky and D. Tiffany, Proc.
which helps in forecasting the activity of SACs. Natl. Acad. Sci., 2006, 103, 11206–11210.
13 A. E. Farrell, R. J. Plevin, B. T. Turner, A. D. Jones, M. O’Hare
and D. M. Kammen, Science, 2006, 311, 506–508.
Author contributions 14 Y. Zheng, A. Vasileff, X. Zhou, Y. Jiao, M. Jaroniec and S.-
Z. Qiao, J. Am. Chem. Soc., 2019, 141, 7646–7659.
A. H. performed the theoretical calculations and analysed the
15 D. U. Nielsen, X.-M. Hu, K. Daasbjerg and T. Skrydstrup,
results. M. A. D. conceptualized the study and carried out
Nat. Catal., 2018, 1, 244–254.
advising. Both the authors contributed to the preparation of
16 P. De Luna, C. Hahn, D. Higgins, S. A. Jaffer, T. F. Jaramillo
the manuscript.
and E. H. Sargent, Science, 2019, 364, 1–9.
17 K. J. P. Schouten, Y. Kwon, C. J. M. van der Ham, Z. Qin and
M. T. M. Koper, Chem. Sci., 2011, 2, 1902–1909.
Conflicts of interest
18 D. Gao, R. M. Arán-Ais, H. S. Jeon and B. Roldan Cuenya,
The authors declare no conflict of interest. Nat. Catal., 2019, 2, 198–210.
19 J. Qiao, Y. Liu, F. Hong and J. Zhang, Chem. Soc. Rev., 2014,
43, 631–675.
Acknowledgements 20 S. Nitopi, E. Bertheussen, S. B. Scott, X. Liu, A. K. Engstfeld,
S. Horch, B. Seger, I. E. L. Stephens, K. Chan, C. Hahn,
A. H. acknowledges the fellowship from SERB grant [SRG/2020/
J. K. Nørskov, T. F. Jaramillo and I. Chorkendorff, Chem.
000654]. M. A. D. acknowledges Start-up research grants from
Rev., 2019, 119, 7610–7672.
SERB [SRG/2020/000654], India for financial support towards
21 R. Kortlever, I. Peters, C. Balemans, R. Kas, Y. Kwon,
the completion of this work. We acknowledge National Super-
G. Mul and M. T. M. Koper, Chem. Commun., 2016, 52,
computing Mission (NSM) for providing computing resources
10229–10232.
of ‘PARAM Smriti’ at NABI, Mohali, which is implemented by
22 Y. Liu, S. Chen, X. Quan and H. Yu, J. Am. Chem. Soc., 2015,
C-DAC and supported by the Ministry of Electronics and
137, 11631–11636.
Information Technology (MeitY) and Department of Science
23 H. Yano, T. Tanaka, M. Nakayama and K. Ogura, J. Electroanal.
and Technology (DST), Government of India.
Chem., 2004, 565, 287–293.
24 A. Loiudice, P. Lobaccaro, E. A. Kamali, T. Thao, B. H.
References Huang, J. W. Ager and R. Buonsanti, Angew. Chem., Int.
Ed., 2016, 55, 5789–5792.
1 M. Aresta, A. Dibenedetto and A. Angelini, Chem. Rev., 2014, 25 J. H. Montoya, C. Shi, K. Chan and J. K. Nørskov, J. Phys.
114, 1709–1742. Chem. Lett., 2015, 6, 2032–2037.
2 G. Centi, E. A. Quadrelli and S. Perathoner, Energy Environ. 26 Z. W. Chen, L. X. Chen, C. C. Yang and Q. Jiang, J. Mater.
Sci., 2013, 6, 1711–1731. Chem. A, 2019, 7, 3492–3515.
3 G. A. Olah, G. K. S. Prakash and A. Goeppert, J. Am. Chem. 27 Y. Zhu, J. Sokolowski, X. Song, Y. He, Y. Mei and G. Wu, Adv.
Soc., 2011, 133, 12881–12898. Energy Mater., 2020, 10, 1902844.
4 R. Francke, B. Schille and M. Roemelt, Chem. Rev., 2018, 28 A. Maibam, S. Krishnamurty and M. Ahmad Dar, Mater.
118, 4631–4701. Adv., 2022, 3, 592–598.
5 D. D. Zhu, J. L. Liu and S. Z. Qiao, Adv. Mater., 2016, 28, 29 S. S. Deshpande, M. D. Deshpande, T. Hussain and R. Ahuja,
3423–3452. J. CO2 Util., 2020, 35, 1–13.
6 Y. Hori, H. Wakebe, T. Tsukamoto and O. Koga, Electrochim. 30 A. Rasool, I. Anis, M. Dixit, A. Maibam, A. Hassan,
Acta, 1994, 39, 1833–1839. S. Krishnamurty and M. A. Dar, Catal. Sci. Technol., 2022,
7 B. C. Marepally, C. Ampelli, C. Genovese, T. Saboo, 12, 310–319.
S. Perathoner, F. M. Wisser, L. Veyre, J. Canivet, E. A. 31 A. S. Varela, W. Ju and P. Strasser, Adv. Energy Mater., 2018,
Quadrelli and G. Centi, ChemSusChem, 2017, 10, 4442–4446. 8, 1703614.
8 O. S. Bushuyev, P. De Luna, C. T. Dinh, L. Tao, G. Saur, J. van 32 A. Hassan, I. Anis, S. Shafi, A. Assad, A. Rasool, R. Khanam,
de Lagemaat, S. O. Kelley and E. H. Sargent, Joule, 2018, 2, G. A. Bhat, S. Krishnamurty and M. A. Dar, ACS Appl. Nano
825–832. Mater., 2022, 5, 15409–15417.
7230 | New J. Chem., 2023, 47, 7225–7231 This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023
View Article Online
NJC Paper
33 D. Karapinar, N. T. Huan, N. Ranjbar Sahraie, J. Li, 42 A. A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl and
D. Wakerley, N. Touati, S. Zanna, D. Taverna, L. H. Galvão J. K. Nørskov, Energy Environ. Sci., 2010, 3, 1311–1315.
Tizei, A. Zitolo, F. Jaouen, V. Mougel and M. Fontecave, 43 J. Rossmeisl, A. Logadottir and J. K. Nørskov, Chem. Phys.,
Angew. Chem., Int. Ed., 2019, 58, 15098–15103. 2005, 319, 178–184.
34 H. Guzmán, N. Russo and S. Hernández, Green Chem., 2021, 44 V. Wang, N. Xu, J.-C. Liu, G. Tang and W.-T. Geng, Comput.
23, 1896–1920. Phys. Commun., 2021, 267, 108033.
Published on 14 March 2023. Downloaded by CHULALONGKORN UNIVERSITY on 10/15/2024 10:02:18 AM.
35 K. Zhao, X. Nie, H. Wang, S. Chen, X. Quan, H. Yu, W. Choi, 45 K. Mathew, R. Sundararaman, K. Letchworth-Weaver, T. A.
G. Zhang, B. Kim and J. G. Chen, Nat. Commun., 2020, Arias and R. G. Hennig, J. Chem. Phys., 2014, 140, 084106.
11, 2455. 46 P. Janthon, S. Luo, S. M. Kozlov, F. Viñes, J. Limtrakul,
36 G. Kresse and J. Furthmüller, Phys. Rev. B: Condens. Matter D. G. Truhlar and F. Illas, J. Chem. Theory Comput., 2014, 10,
Mater. Phys., 1996, 54, 11169–11186. 3832–3839.
37 J. Hafner, J. Comput. Chem., 2008, 29, 2044–2078. 47 A. J. Garza, A. T. Bell and M. Head-Gordon, ACS Catal., 2018,
38 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 8, 1490–1499.
1996, 77, 3865–3868. 48 Y. Hori, R. Takahashi, Y. Yoshinami and A. Murata, J. Phys.
39 P. E. Blöchl, Phys. Rev. B: Condens. Matter Mater. Phys., 1994, Chem. B, 1997, 101, 7075–7081.
50, 17953–17979. 49 Q. Jiang, Y. Meng, K. Li, Y. Wang and Z. Wu, Appl. Surf. Sci.,
40 S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2021, 547, 149208.
2010, 132, 154104. 50 J. H. Montoya, C. Tsai, A. Vojvodic and J. K. Nørskov,
41 J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. ChemSusChem, 2015, 8, 2180–2186.
Kitchin, T. Bligaard and H. Jónsson, J. Phys. Chem. B, 2004, 51 J. Hutter, M. Iannuzzi, F. Schiffmann and J. VandeVondele,
108, 17886–17892. WIREs Comput. Mol. Sci., 2014, 4, 15–25.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023 New J. Chem., 2023, 47, 7225–7231 | 7231