MATH 3075 3975 s1
MATH 3075 3975 s1
MATH 3075 3975 s1
Tutorial 1: Solutions
1
We first compute the marginal density of Y . For y ≥ 0, we obtain
Z ∞ Z ∞
1 − xy −y 1 −x 1 −x ∞
h i
fY (y) = e e dx = e−y e y dx = e−y −ye y = e−y .
0 y y 0 y 0
f(X,Y ) (x, y) 1 −x
fX|Y (x| y) = = e y, ∀ x ≥ 0,
fY (y) y
Exercise 3 We first compute the conditional cumulative distribution function of X given the event
{X < 0.5}
FX|X< 0.5 (x) := P(X ≤ x| X < 0.5), ∀ x ∈ R.
We obtain
0,
if x ≤ 0,
P(X ≤ x, X < 0.5)
FX|X< 0.5 (x) = = 2 P(X ≤ x) = 2x, if x ∈ (0, 0.5),
P(X < 0.5)
1, if x ≥ 0.5.
so that the conditional density of X given the event {X < 0.5} equals
0, if x ≤ 0,
fX|X< 0.5 (x) = 2, if x ∈ (0, 0.5),
0, if x ≥ 0.5.
Therefore, Z ∞ Z 0.5
EP (X| X < 0.5) = xfX|X< 0.5 (x) dx = 2x dx = 0.25.
−∞ 0
Exercise 4 We have
1 −x
fX (x) = e λ , ∀ x > 0,
λ
and thus Z ∞
x
P(X > x) = 1 − FX (x) = fX (u) du = e− λ , ∀ x > 0.
x
Consequently,
x−1
P(X>x) −
P(X > x, X > 1) P(X>1) = e
λ , if x ≥ 1,
P(X > x| X > 1) = =
P(X > 1) 1, if x < 1.
2
Hence the conditional density equals
( x−1
1
λ e− λ , if x ≥ 1,
fX|X>1 (x) =
0, if x < 1,
and thus Z ∞
x − x−1
EP (X| X > 1) = e λ dx = 1 + λ = 1 + EP (X).
1 λ
Exercise 5 Since
since EP (X) = EP (X 3 ) = 0. Therefore, the random variables X and Y are uncorrelated. They are
not independent, however, since, for instance
EP (Y | X = 1) = 1 6= 4 = EP (Y | X = 2).