Nothing Special   »   [go: up one dir, main page]

Instant Download (Ebook PDF) Developmental Biology 12th Edition PDF All Chapter

Download as pdf or txt
Download as pdf or txt
You are on page 1of 43

Full download ebooks at ebooksecure.

com

(eBook PDF) Developmental Biology 12th Edition

For dowload this book click LINK or Button below

http://ebooksecure.com/product/ebook-pdf-
developmental-biology-12th-edition/

OR CLICK BUTTON

DOWLOAD EBOOK

Download More ebooks from https://ebooksecure.com


More products digital (pdf, epub, mobi) instant
download maybe you interests ...

(eBook PDF) Developmental Biology, Tenth 10th Edition

http://ebooksecure.com/product/ebook-pdf-developmental-biology-
tenth-10th-edition/

(eBook PDF) Human Embryology and Developmental Biology


E-Book 5th Edition

http://ebooksecure.com/product/ebook-pdf-human-embryology-and-
developmental-biology-e-book-5th-edition/

Campbell Biology 12th Edition (eBook PDF)

http://ebooksecure.com/product/campbell-biology-12th-edition-
ebook-pdf/

(eBook PDF) Ecological Developmental Biology: The


Environmental Regulation of Development, Health, and
Evolution 2nd Edition

http://ebooksecure.com/product/ebook-pdf-ecological-
developmental-biology-the-environmental-regulation-of-
development-health-and-evolution-2nd-edition/
(eBook PDF) Biology Laboratory Manual 12th Edition

http://ebooksecure.com/product/ebook-pdf-biology-laboratory-
manual-12th-edition/

Biology Laboratory Manual 12th Edition (eBook PDF)

http://ebooksecure.com/product/biology-laboratory-manual-12th-
edition-ebook-pdf/

(eBook PDF) Biology 12th Edition by Sylvia Mader

http://ebooksecure.com/product/ebook-pdf-biology-12th-edition-by-
sylvia-mader/

Biology 12th Edition Peter H. Raven - eBook PDF

https://ebooksecure.com/download/biology-ebook-pdf-2/

Progress in Heterocyclic Chemistry Volume 29 1st


Edition - eBook PDF

https://ebooksecure.com/download/progress-in-heterocyclic-
chemistry-ebook-pdf/
Contents

PART I ● Patterns and Processes of Becoming:


A Framework for Understanding Animal Development

Personal Significance: Medical Embryology


1 and Teratology 36
Genetic malformations and syndromes 36
Disruptions and teratogens 36
The Making of a Body and a Field Coda 37
Introduction to Developmental Biology 1

“How Are You, You?” Comparative Embryology and


the Questions of Developmental Biology 2 2
The Cycle of Life 7
An animal’s life cycle 7 Specifying Identity
A flowering plant’s life cycle 8 Mechanisms of Developmental Patterning 39
Example 1: A Frog’s Life 8
Gametogenesis and fertilization 9 Levels of Commitment 40
Cleavage and gastrulation 9 Cell differentiation 40
Organogenesis 11 Cell fate maturation 40
Metamorphosis and gametogenesis 11 Autonomous Specification 41
Example 2: Even a Weed Can Have Cytoplasmic determinants and autonomous
a Flower-Full Life 12 specification in the tunicate 42
Reproductive and gametophytic phases 12 Conditional Specification 44
Embryogenesis and seed maturation 12 Cell position matters: Conditional specification
Vegetative phases: From sporophytic growth in the sea urchin embryo 45
to inflorescence identity 14
Syncytial Specification 48
An Overview of Early Animal Development 14 Opposing axial gradients define position 49
Patterns of cleavage 14
Gastrulation: “The most important time
in your life” 17
The primary germ layers and early organs 17 3
Understanding cell behavior in the embryo 19
A Basic Approach to Watch Development 20 Differential Gene Expression
Approaching the bench: Find it, lose it, move it 20 Mechanisms of Cell Differentiation 55
Direct observation of living embryos 21
Dye marking 22 Defining Differential Gene Expression 56
Genetic labeling 23
A Quick Primer on the Central Dogma 56
Transgenic DNA chimeras 24
Evidence for Genomic Equivalence 57
Evolutionary Embryology 25
Understanding the tree of life to see Anatomy of the Gene 59
our developmental relatedness 28 Chromatin composition 59
The developmental history of land plants 32 Exons and introns 60
Major parts of a eukaryotic gene 61
viii   
Contents

The transcription product and how it is processed 62 Signal transduction cascades: The response
Noncoding regulatory elements: The on, off, and to inducers 116
dimmer switches of a gene 62 Fibroblast growth factors and the RTK pathway 116
Mechanisms of Differential Gene Expression: FGFs and the JAK-STAT pathway 118
Transcription 67 The Hedgehog family 119
Epigenetic modification: Modulating access to genes 67 The Wnt family 123
Transcription factors regulate gene transcription 72 The TGF-β superfamily 126
The gene regulatory network: Defining Other paracrine factors 127
an individual cell 78 The Cell Biology of Paracrine Signaling 132
Mechanisms of Differential Gene Expression: Focal membrane protrusions as signaling sources 134
Pre-messenger RNA Processing 79
Juxtacrine Signaling for Cell Identity 137
Creating families of proteins through alternative
The Notch pathway: Juxtaposed ligands and receptors
pre-mRNA splicing 80
for pattern formation 137
Mechanisms of Differential Gene Expression: Paracrine and juxtacrine signaling in coordination:
mRNA Translation 82 Vulval induction in C. elegans 138
Differential mRNA longevity 82
Stored oocyte mRNAs: Selective inhibition of
mRNA translation 83
Ribosomal selectivity: Selective activation of 5
mRNA translation 84
microRNAs: Specific regulation of mRNA translation
and transcription 84 Stem Cells
Control of RNA expression by cytoplasmic Their Potential and Their Niches 143
localization 87
Mechanisms of Differential Gene Expression: The Stem Cell Concept 144
Posttranslational Protein Modification 88 Division and self-renewal 144
Potency defines a stem cell 145
Coda 95
Stem Cell Regulation 146
Pluripotent Cells in the Embryo 148
4 Meristem cells of the Arabidopsis thaliana embryo
and beyond 148
Cells of the inner cell mass in the mouse embryo 151
Cell-to-Cell Communication Adult Stem Cell Niches in Animals 153
Mechanisms of Morphogenesis 99 Stem cells fueling germ cell development in
the Drosophila ovary 153
A Primer on Cell-to-Cell Communication 100 Adult Neural Stem Cell Niche of the V-SVZ 155
Adhesion and Sorting: Juxtacrine Signaling and The neural stem cell niche of the V-SVZ 155
the Physics of Morphogenesis 101
The Adult Intestinal Stem Cell Niche 160
Differential cell affinity 101
Clonal renewal in the crypt 161
The thermodynamic model of cell interactions 103
Cadherins and cell adhesion 103 Stem Cells Fueling the Diverse Cell Lineages
in Adult Blood 162
The Extracellular Matrix as a Source of The hematopoietic stem cell niche 163
Developmental Signals 106
Integrins: Receptors for extracellular matrix The Mesenchymal Stem Cell: Supporting a Variety
molecules 108 of Adult Tissues 165
Regulation of MSC development 166
The Epithelial-Mesenchymal Transition 108
The Human Model System to Study Development
Cell Signaling 109 and Disease 167
Induction and competence 109 Pluripotent stem cells in the lab 167
Paracrine Factors: Inducer Molecules 114 Induced pluripotent stem cells 170
Morphogen gradients 114 Organoids: Studying human organogenesis
in a culture dish 173
Contents   ix

PART II ● Gametogenesis and Fertilization: The Circle of Sex

6 7
Sex Determination and Gametogenesis 179 Fertilization Beginning a New Organism 215

Sex Determination 179 Structure of the Gametes 216


Chromosomal Sex Determination 180 Sperm 216
The egg 218
The Mammalian Pattern of Sex Determination 180
Recognition of egg and sperm 221
Gonadal sex determination in mammals 182
Secondary sex determination in mammals: External Fertilization in Sea Urchins 221
Hormonal regulation of the sexual phenotype 186 Sperm attraction: Action at a distance 221
The acrosome reaction 223
Chromosomal Sex Determination in Drosophila 191
Recognition of the egg’s extracellular coat 224
Sex determination by dosage of X 191
Fusion of the egg and sperm cell membranes 224
The Sex-lethal gene 191
Prevention of polyspermy: One egg, one sperm 224
Doublesex: The switch gene for sex determination 193
Activation of egg metabolism in sea urchins 228
Environmental Sex Determination 195 Fusion of genetic material in sea urchins 233
Gametogenesis in Animals 196 Internal Fertilization in Mammals 234
PGCs in mammals: From genital ridge to gonads 197 Getting the gametes into the oviduct:
Meiosis: The intertwining of life cycles 199 Translocation and capacitation 234
Spermatogenesis in mammals 202 In the vicinity of the oocyte: Hyperactivation, directed
Oogenesis in mammals 204 sperm migration, and the acrosome reaction 236
Sex Determination and Gametogenesis Recognition at the zona pellucida 236
in Angiosperm Plants 206 Gamete fusion and the prevention of polyspermy 237
Activation of the mammalian egg 239
Sex Determination 206
Fusion of genetic material 239
Gametogenesis 209
Fertilization in Angiosperm Plants 241
Pollen 211
Pollination and beyond: The progamic phase 241
The ovule 211
Pollen germination and tube elongation 242
Pollen tube navigation 242
Double fertilization 243
Coda 244

PART III ● Early Development: Cleavage, Gastrulation, and Axis Formation


The diploblastic animals: Cnidarians
8 and ctenophores 248
The triploblastic animals: Protostomes
and deuterostomes 248
Snails, Flowers, and Nematodes What’s to develop next 250
Different Mechanisms for Similar Patterns Early Development in Snails 250
of Specification 247 Cleavage in Snail Embryos 251
Maternal regulation of snail cleavage 252
A Reminder of the Evolutionary Context That Axis determination in the snail embryo 259
Built the Strategies Governing Early
Gastrulation in Snails 262
Development 248
x   
Contents

The Nematode C. elegans 263


Cleavage and Axis Formation in C. elegans 264 10
Rotational cleavage of the egg 264
Anterior-posterior axis formation 265
Dorsal-ventral and right-left axis formation 266
Sea Urchins and Tunicates
Control of blastomere identity 267 Deuterostome Invertebrates 303
Gastrulation of 66 Cells in C. elegans 270
Early Development in Sea Urchins 304
Early cleavage 304
Blastula formation 306
9 Fate maps and the determination
of sea urchin blastomeres 306
Gene regulatory networks and skeletogenic mesenchyme
The Genetics of Axis Specification specification 307
in Drosophila 273 Specification of the vegetal cells 310
Sea Urchin Gastrulation 311
Early Drosophila Development 275 Ingression of the skeletogenic mesenchyme 311
Fertilization 275 Invagination of the archenteron 315
Cleavage 276
Early Development in Tunicates 318
The mid-blastula transition 277
Cleavage 318
Gastrulation 278
The tunicate fate map 319
The Genetic Mechanisms Patterning Autonomous and conditional specification of tunicate
the Drosophila Body 281 blastomeres 320
Segmentation and the Anterior-Posterior
Body Plan 282
Maternal gradients: Polarity regulation
by oocyte cytoplasm 283 11
The anterior organizing center: The Bicoid and
Hunchback gradients 286
Amphibians and Fish 325
The terminal gene group 287
Summarizing early anterior-posterior axis
specification in Drosophila 288 Early Amphibian Development 325
Segmentation Genes 288 Fertilization, Cortical Rotation, and Cleavage 326
Segments and parasegments 288 Unequal radial holoblastic cleavage 328
The gap genes 289 The mid-blastula transition: Preparing
for gastrulation 329
The pair-rule genes 291
The segment polarity genes 292 Amphibian Gastrulation 329
Epiboly of the prospective ectoderm 330
The Homeotic Selector Genes 295
Vegetal rotation and the invagination
Generating the Dorsal-Ventral Axis 297 of the bottle cells 331
Dorsal-ventral patterning in the oocyte 297 Involution at the blastopore lip 334
Generating the dorsal-ventral axis Convergent extension of the dorsal mesoderm 336
within the embryo 298
Progressive Determination of
Axes and Organ Primordia: The Cartesian the Amphibian Axes 339
Coordinate Model 299 Specification of the germ layers 339
The dorsal-ventral and anterior-posterior axes 340
The Work of Hans Spemann and Hilde Mangold:
Primary Embryonic Induction 340
Molecular Mechanisms of Amphibian Axis
Formation 342
How does the organizer form? 343
Contents   xi

Functions of the organizer 348


Induction of neural ectoderm and dorsal mesoderm:
BMP inhibitors 348
12
Conservation of BMP signaling during
dorsal-ventral patterning 351 Birds and Mammals 369
Regional Specificity of Neural Induction along
the Anterior-Posterior Axis 351 Early Development in Birds 371
Specifying the Left-Right Axis 355 Avian Cleavage 372
Early Zebrafish Development 356 Gastrulation of the avian embryo 372
Axis specification and the avian “organizer” 377
Zebrafish Cleavages: Yolking Up the Process 358
Left-right axis formation 379
Gastrulation and Formation of the Germ Layers 361
Early Development in Mammals 380
Progression of epiboly 361
Mammalian cleavage 380
Internalization of the hypoblast 362
Trophoblast or ICM? The first decision of the rest of your
The embryonic shield and the neural keel 363 life 382
Dorsal-Ventral Axis Formation 364 Mammalian gastrulation 383
The fish blastopore lip 365 Mammalian axis formation 388
Teasing apart the powers of Nodal and BMP during axis Twins 394
determination 365
Coda 396
Left-Right Axis Formation 367

PART IV ● Building with Ectoderm:


The Vertebrate Nervous Systyem and Epidermis

13 14
Neural Tube Formation and Patterning 401 Brain Growth 421

Transforming the Neural Plate into a Tube: Neuroanatomy of the Developing


The Birth of the Central Nervous System 403 Central Nervous System 422
Primary neurulation 404 The cells of the developing central nervous system 422
Secondary neurulation 412 Tissues of the developing central nervous system 422
Patterning the Central Nervous System 413 Developmental Mechanisms
The anterior-posterior axis 413 Regulating Brain Growth 427
The dorsal-ventral axis 415 Neural stem cell behaviors during division 427
Opposing morphogens 416 Neurogenesis: Building from the bottom up
(or from the inside out) 428
All Axes Come Together 419
Glia as scaffold for the layering of the cerebellum
and neocortex 430
Signaling mechanisms regulating development
of the neocortex 431
Development of the Human Brain 434
Fetal neuronal growth rate after birth 434
Hills raise the horizon for learning 435
Genes for brain growth 437
Changes in transcript quantity 438
Teenage brains: Wired and unchained 438
xii   
Contents

Local and long-range guidance molecules:


15 The street signs of the embryo 470
Repulsion patterns: Ephrins and semaphorins 470
How Did the Axon Cross the Road? 471
Neural Crest Cells and …Netrin 472
Axonal Specificity 441 Slit and Robo 473
The Travels of Retinal Ganglion Axons 475
The Neural Crest 441 Growth of the retinal ganglion axon to
Regionalization of the Neural Crest 443 the optic nerve 476
Growth of the retinal ganglion axon
Neural Crest: Multipotent Stem Cells? 444
through the optic chiasm 476
Specification of Neural Crest Cells 446
Target Selection: “Are We There Yet?” 477
Neural Crest Cell Migration: Epithelial to Chemotactic proteins 477
Mesenchymal and Beyond 447 Target selection by retinal axons:
Delamination 448 “Seeing is believing” 478
The driving force of contact inhibition 450
Synapse Formation 480
Collective migration 451
Migration Pathways of Trunk Neural Crest Cells 452
The ventral pathway 453
The dorsolateral pathway 455 16
Cranial Neural Crest 457
The “Chase and Run” Model 459
Ectodermal Placodes and
An elaborate collaboration of pushes and pulls 459 the Epidermis 485
Neural Crest-Derived Head Skeleton 461
Cranial Placodes: The Senses of Our Heads 486
Cardiac Neural Crest 462 Cranial placode induction 487
Establishing Axonal Pathways Otic-epibranchial development: A shared
in the Nervous System 464 experience 488
The Growth Cone: Driver and Engine Morphogenesis of the vertebrate eye 493
of Axon Pathfinding 465 Formation of the eye field: the beginnings
Rho, Rho, Rho your actin filaments down of the retina 494
the signaling stream 466 The lens-retina induction cascade 495

Axon Guidance 467 The Epidermis and Its Cutaneous Appendages 498
Origin of the epidermis 498
The Intrinsic Navigational Programming
of Motor Neurons 467 The ectodermal appendages 499
Cell adhesion: A mechanism to grab the road 469 Signaling pathways you can sink your teeth into 501
Ectodermal appendage stem cells 502

PART V ● Building with Mesoderm and Endoderm: Organogenesis


Establishing the Paraxial Mesoderm and
17 Cell Fates along the Anterior-Posterior Axis 511
Specification of the paraxial mesoderm 511
Spatiotemporal collinearity of Hox genes
Paraxial Mesoderm determines identity along the trunk 513
The Somites and Their Derivatives 507 Somitogenesis 516
Axis elongation: A caudal progenitor zone
Cell Types of the Somite 510 and tissue-to-tissue forces 516
How a somite forms: The clock-wavefront model 520
Contents   xiii

Linking the clock-wavefront to Hox-mediated axial


identity and the end of somitogenesis 526
19
Sclerotome Development 528
Vertebrae formation 528
Tendon formation: The syndetome 532 Development of the Tetrapod Limb 571
Dermomyotome Development 534
Determination of the central dermomyotome 535 Limb Anatomy 572
Determination of the myotome 535 The Limb Bud 572
Hox Gene Specification of Limb Skeleton Identity 574
From proximal to distal: Hox genes in the limb 574
18 Determining What Kind of Limb to Form
and Where to Put It 576
Specifying the limb fields 576
Intermediate and Lateral Plate Mesoderm Induction of the early limb bud 577
Heart, Blood, and Kidneys 541
Outgrowth: Generating the Proximal-Distal Axis
of the Limb 582
Intermediate Mesoderm: The Kidney 542 The apical ectodermal ridge 582
Specification of the Intermediate Mesoderm: Specifying the limb mesoderm:
Pax2, Pax8, and Lim1 544 Determining the proximal-distal polarity 584
Turing’s model: A reaction-diffusion mechanism
Reciprocal Interactions of Developing
of proximal-distal limb development 587
Kidney Tissues 545
Mechanisms of reciprocal induction 546 Specifying the Anterior-Posterior Axis 591
Sonic hedgehog defines a zone of polarizing activity 591
Lateral Plate Mesoderm: Heart and
Circulatory System 550 Specifying digit identity by Sonic hedgehog 591
Sonic hedgehog and FGFs: Another positive
Heart Development 552 feedback loop 594
A minimalist heart 552 Hox genes are part of the regulatory network specifying
Formation of the heart fields 552 digit identity 595
Specification of the cardiogenic mesoderm 554
Generating the Dorsal-Ventral Axis 599
Migration of the cardiac precursor cells 555
Initial heart cell differentiation 557 Cell Death and the Formation of Digits
and Joints 600
Looping of the heart 557
Sculpting the autopod 600
Blood Vessel Formation 559 Forming the joints 601
Vasculogenesis: The initial formation
of blood vessels 559 Evolution by Altering Limb Signaling Centers 602
Angiogenesis: Sprouting of blood vessels
and remodeling of vascular beds 561
Hematopoiesis: Stem Cells and Long-Lived
Progenitor Cells 563
20
Sites of hematopoiesis 563
The bone marrow HSC niche 565 The Endoderm Tubes and Organs for
Coda 567 Digestion and Respiration 607

The Pharynx 609


The Digestive Tube and Its Derivatives 611
Specification of the gut tissue 612
Accessory organs: The liver, pancreas, and gallbladder 614
The Respiratory Tube 619
Epithelial-mesenchymal interactions and
the biomechanics of branching in the lungs 620
xiv   
Contents

PART VI ● Postembryonic Development


Defining the cells of the regeneration blastema 668
21 Luring the mechanisms of regeneration
from zebrafish organs 673
Regeneration in Mammals 679
Metamorphosis Compensatory regeneration in the mammalian liver 679
The Hormonal Reactivation of Development 625 The spiny mouse, at the tipping point between
scar and regeneration 681
Amphibian Metamorphosis 626
Morphological changes associated
with amphibian metamorphosis 627
Hormonal control of amphibian metamorphosis 629
23
Regionally specific developmental programs 631
Metamorphosis in Insects 632 Development in Health and Disease
Imaginal discs 633 Birth Defects, Endocrine Disruptors,
Hormonal control of insect metamorphosis 636 and Cancer 685
The molecular biology of 20-hydroxyecdysone
activity 638 The Role of Chance 686
Determination of the wing imaginal discs 639
Genetic Errors of Human Development 686
The developmental nature of human syndromes 686
Genetic and phenotypic heterogeneity 687
22 Teratogenesis: Environmental Assaults
on Animal Development 688
Alcohol as a teratogen 690
Regeneration
Retinoic acid as a teratogen 694
The Development of Rebuilding 643
Endocrine Disruptors: The Embryonic Origins
of Adult Disease 695
Defining The Problem of Regeneration 644
Diethylstilbestrol (DES) 697
Regeneration, a Recapitulation of Embryonic Bisphenol A (BPA) 698
Development? 645
Atrazine: Endocrine disruption through
An Evolutionary Perspective on Regeneration 647 hormone synthesis 700
Regenerative Mechanics 650 Fracking: A potential new source of
endocrine disruption 701
Plant Regeneration 650
Transgenerational Inheritance of Developmental
A totipotent way of regenerating 650
Disorders 702
A plant’s meri-aculous healing abilities 652
Cancer as a Disease of Development 703
Whole Body Animal Regeneration 656
Development-based therapies for cancer 708
Hydra: Stem cell-mediated regeneration, orphallaxis,
and epimorphosis 656 Coda 709
Stem cell-mediated regeneration in flatworms 659
Tissue-Restricted Animal Regeneration 668
Salamanders: Epimorphic limb regeneration 668
Contents  xv

PART VII ● Development in Wider Contexts


Mechanisms of Evolutionary Change 742
24 Heterotopy 742
Heterochrony 744
Heterometry 745
Development and the Environment Heterotypy 746
Biotic, Abiotic, and Symbiotic Regulation Developmental Constraints on Evolution 747
of Development 711 Physical constraints 748
Morphogenetic constraints 748
Developmental Plasticity: The Environment as Pleiotropic constraints and redundancy 748
an Agent in Producing Normal Phenotypes 711
Diet-induced polyphenisms 713
Ecological Evolutionary Developmental
Biology 749
Predator-induced polyphenisms 715
Temperature as an environmental agent 716 Plasticity-First Evolution 749
Reaction norms in plants 718 Genetic assimilation in the laboratory 750
Larval settlement 720 Genetic assimilation in natural environments 751
Stress as an agent: The hard life of Selectable Epigenetic Variation 752
spadefoot toads 720
Evolution and Developmental Symbiosis 754
Developmental Symbioses 721 The evolution of multicellularity 755
Developmental symbioses in plants 722 The evolution of placental mammals 756
Mechanisms of developmental symbiosis: Getting the
Coda 756
partners together 724
Developmental symbiosis in the mammalian
intestine 727 Appendix A-1
Coda 731
Glossary G-1

25 Index I-1

Development and Evolution


Developmental Mechanisms of Evolutionary
Change 735

The Developmental Genetic Model of


Evolutionary Change 756
Preconditions for Evolution:
The Developmental Structure of the
Genome 736
Modularity: Divergence through dissociation 736
Molecular parsimony: Gene duplication
and divergence 739
Preface: Thinking Grandly
about Developmental Biology

With biology going into smaller and smaller realms, it is sometimes good to
contemplate the grand scheme of things rather than the details, to “seat thyself
sultanically among the moons of Saturn” (in Herman Melville’s phrase). It is
good, for instance, to get a perspective of developmental biology from outside
the discipline rather than from inside it.

Remembering the Field’s Interdisciplinary Foundations


Developmental biology, history tells us, is an interdisciplinary field that is at the
foundations of biology. Indeed, before the word biology came to be used, the liv-
ing world was characterized as that part of the world that was developing. The
organizers of the first meeting (in 1939) of the Growth Society, which was the
precursor of the Society for Developmental Biology, claimed that development
must be studied by combining the insights of numerous disciplines, including ge-
netics, endocrinology, biochemistry, physiology, embryology, cytology, biophysics,
mathematics, and even philosophy. Developmental biology was to be more than
embryology. It also included stem cells, which were known to generate the adult
blood, and regeneration, which was seen to be the re-activation of developmental
processes and which was critical for healing in vertebrates and for reproduction of
hydra, flatworms, and numerous other invertebrates. The first articles published
in the journal Developmental Biology showcased embryology, regeneration, and
stem cells, and the different ways of studying them.
Throughout this new 12th edition you will see a return to some of these found-
ing ideas of interdisciplinary developmental biology, namely regeneration, mor-
phomechanics, plants, and the genetic control of development.
Indeed, regeneration has historically been a major part of developmental biol-
ogy, for it is a developmental phenomenon that can be readily studied. Experimen-
tal biology was born in the efforts of eighteenth-century naturalists to document
regeneration and to examine how it was possible. The regeneration experiments of
Tremblay (hydras), Réaumur (crustaceans), and Spallanzani (salamanders) set the
standard for experimental biology and for the intelligent discussion of one’s data.
More than two centuries later, we are beginning to find answers to the great
problems of both embryology and regeneration. Indeed, the conclusions of one
support the research of the other. We may soon be able to alter the human body
so as to permit our own limbs, nerves, and organs to regenerate. Severed limbs
could be restored, diseased organs could be removed and regrown, and nerve
cells altered by age, disease, or trauma could once again function normally. The
ethical issues this would exacerbate are only beginning to be appreciated. But if
we are to have such abilities, we first have to understand how regeneration oc-
curs in those species that have this ability. Our new knowledge of the roles that
paracrine factors and physical factors play in embryonic organ formation, plus
recent studies of stem cells and their niches, has propelled what Susan Bryant has
called “a regeneration renaissance.” Since “renaissance” literally means “rebirth,”
and since regeneration can be seen as a return to the embryonic state, the term
is apt in many ways.
xviii   
Preface

Notice that biophysics was also an early part of the mix of developmental biol-
ogy. This area, too, is having a renaissance. The physical connections between
cells, the strength of their bonding, and the tensile strength of the material sub-
strates of the cells are all seen to be critical for normal development. Physical
forces are necessary for sperm-egg binding, gastrulation, heart development,
gut development, the branching of the kidney and lung epithelia, and even the
development of tumors. Physical forces can direct the development of stem cells
toward particular fates, and they can determine which part of the body is left
and which is right. The patella of our kneecap doesn’t form until we put pres-
sure on it by walking. In many cases, physical forces can direct gene expression.
Lev Beloussov, a pioneer in this area, has called this the “morphomechanics of
development.”
Another area that was prominently represented in the early programs of devel-
opmental biology was plant development. Plant development had much in common
with regeneration, as “adult” plants could redevelop entire parts of their bodies.
Whereas in animal biology the study of development diverged from the study
of physiology, that separation was not evident in plant biology. Moreover, while
many animals quickly set aside a germline that was to become the sperm or eggs,
this was not the case in plants. Such comparisons between plants and animals are
now present throughout this text, and they serve to highlight the fundamental
developmental processes that are present across phyla and even kingdoms of life.
But the genes remain the center of focus in developmental biology. And the
more we learn about them, the more interesting and complex these genes be-
come. New advances in “single cell transcriptomics” have given us an amazing
privilege—the ability to look at the gene expression patterns of individual cells
as they develop. An individual’s cells may all have the same genes, but their dif-
ferent positions in the embryo cause different genes to be active in each cell. It’s a
symphony of relationships, each cell providing the context for another. If develop-
ment is the performance, then the genome is the script or score. As anyone who
has gone to concerts knows, different bands perform the same score differently,
and the same band will play the same song differently on two successive nights.
Environment is also critical—hence, the new interest in plasticity and symbiosis
in development.
Developmental biology has also taken on a new role in science. More than
any other biological science, it demonstrates the critical importance of processes
as opposed to entities. In many organisms, the same process can be done by
different molecules. “It’s the song, not the singer,” say Doolittle and Booth, and
we can be thankful that there are redundant pathways in development—if one
pathway fails, another is often able to take over its function. The entity/process
split in developmental biology mirrors the particle/wave dichotomy in physics.
It is a “both, and” situation, rather than an “either/or” situation. In 1908, the
Scottish physiologist J. S. Haldane said, “That a meeting point between biology
and physical science may at some time be found, there is no doubting. But we
may confidently predict that if that meeting-point is found, and one of the two
sciences is swallowed up, that one will not be biology.” Developmental biology
may well solve the longstanding mysteries of physics.

New to the Twelfth Edition


In this current volume, we have attempted to track this amazing fulfillment of
the early promises of developmental biology. To this end, the book has undergone
its own morphogenesis.

Plant development covered throughout


We have now incorporated plant material into the relevant chapters. Instead of
segregating plant developmental biology into a single (and often unassigned)
Preface   xix

chapter, we have integrated essential plant biology into the chapters on cell speci-
fication, gene regulation, cell communication, gamete production, fertilization,
axis determination, organ formation, and regeneration.

Upgraded and expanded chapter on regeneration


We have also expanded the chapter on regeneration, which we are proud to say
offers a unique summary of the field. It both captures the fascinating problems
of post-embryonic development that regeneration seems to solve and provides
a logical framework for the known mechanisms of regeneration, based on an
organism’s degree of regenerative capacity. We feel that this chapter will be an
excellent place for anyone interested in this area to start.

Updates throughout all chapters


All of the chapters have received important updates, from the introductory chap-
ter’s broader evolutionary perspective to new material on the morphomechanics
of development during Drosophila gastrulation and the formation of mammalian
lungs. Special consideration was also given to the increasing use of whole-ge-
nome, transcriptomic approaches, which are dramatically shaping our under-
standing of cell differentiation.

A new, student-centered approach


From a pedagogical standpoint, it is also good to get an outside perspective of
how students are learning developmental biology—the perspective of the student
experience. For decades, it has been the responsibility of textbooks like ours to be
the most comprehensive sources for the field’s foundational content. Although
this responsibility still remains, the reality is that students are inundated with an
overwhelming myriad of sources vying for their attention. If there was ever a time
a student of developmental biology needed a guidebook to navigate through this
dense and diverse ecosystem of texts, online resources, and infinitely expand-
ing scientific literature, the time is now and the guidebook this new volume of
Developmental Biology.

• Focused and streamlined coverage. Over the years, as new knowledge has
grown, so has our own textbook, which was reaching a size that might
itself trigger student overload and defeat the purposes of engagement
and deep learning. The information bombarding students is not going
away; therefore, they need not only access to the information but also a
clear guide that fosters movement from the essential ideas to the com-
plex mechanisms and finally to inclusive invitations that welcome their
research in this field. We have both reduced and reorganized the content
in each chapter to achieve a clear and supportive lattice so that both the
professor and the student can more easily navigate the increasing vol-
ume and complexity of developmental biology.
• Innovative pedagogy: Empowering students to craft their own learning. The
first material students will encounter in each section of a chapter rep-
resents the most essential content. We have introduced a new element
called “Further Development,” which highlights content we feel repre-
sents some of the more complex ideas in the field. In addition, students
will also come across invitations to view some Further Developments
online. These online topics represent fantastic opportunities for students
to further develop their understanding of developmental biology along
paths of their own interest—paths of investigation that professors can
have confidence match the standards of quality seen throughout the
textbook (unlike some other online sources). The special in-text fea-
tures of previous editions—Dev Tutorials, Developing Questions, Next
Step Investigations, and citations throughout—are still in place to play
xx   
Preface

important roles in empowering students to take that final leap to engage


with the developmental biology literature. To better support students’
use of the research literature, we now include a new Appendix focused
on how to find and analyze research articles in developmental biology.

Thanks to this new organization of content, professors and students will now
be in complete control of what level of material may be most appropriate. We are
proud to introduce Developmental Biology 12e, as it still provides direct access to
all levels of the content but without diluting its quality and the overall learning
experience.

Acknowledgments
First, the two authors gratefully acknowledge their mutual respect for one an-
other and for the enjoyment of each other’s work. Michael wants the community
to know that Scott has been most accepting and welcoming to new ideas and
that his enthusiasm for producing the best product has not wavered any day
of any edition. Scott wants the community to know that he is thrilled with the
new ideas that Michael has brought to the book and that Michael’s commitment
to undergraduate education is second to none.
Second, we are thrilled to acknowledge the importance of Mary Stott Tyler to
this book. The winner of the Viktor Hamburger Education Award and the author
of Fly Cycle, Differential Expressions, The Developmental Biology Vade Mecum, and
Inquiry Biology, Mary has been a mixture of author, editor, and curator of contents
for this 12th edition, helping us decide “what to leave in/what to leave out.” As we
added plant studies to the book and had to remove other studies, Mary’s insight
and vision for the finished book was essential.
If science is like a balloon expanding into the unknown—and the larger the
balloon, the more points in contact with the unknown—then developmental
biology has contacted an astounding number of unknowns. The accuracy and
coverage of the 12th edition owes much to the work of the many expert reviewers
who took the time to provide respectful formal and informal feedback throughout
the process (see list). The organization of these reviews was consistently executed
by Lauren Cahillane, Nina Rodriguez-Marty and Katie Tunkavige—thank you
for making this important part possible. This 12th edition is particularly unique
as it marks the new incorporation of plant developmental biology. There were
numerous reviewers who offered their expertise in select chapters, thank you to
all. Special thanks, however, go to Anna Edlund and Marta Laskowski for their
reviews of the plant content. They were very patient with us, and any misunder-
standings are those of the authors.
This edition also marks a dramatic change to the publishing of Developmental
Biology. With the retirement of Andy Sinauer, Sinauer Associates has become an
imprint of Oxford University Press. Our book overlaps these two periods, and has
seen the change of managers, art directors, and our long-time editor. We thank
both Sinauer Associates and Oxford University Press for their great efforts in
sustaining the book during this period of metamorphosis. We wish to especially
thank Dean Scudder for taking on the managerial tasks and allowing us to work
on new models of science education during this transition. Moreover, half-way
through production of this edition, Jason Noe of Oxford became our overseeing
editor. Such a transition and short timeline for production might rattle the best of
editors, but Jason helped to establish the best adaptable plans to keep things on
track. Sincere thanks for your efforts, Jason. Meanwhile, in the house of Sinauer,
production editors Laura Green and Kathaleen Emerson shared their expertise
and their truly collaborative insights, offering us respectful considerations during
key times that we will not forget. Thank you Laura for also sharing with us your
most valuable plant background throughout the editorial process.
Preface   xxi

The success of this and each edition equally rests on the quality of the book’s
design and look, for which we sincerely appreciate the wonderful work Sinauer’s
art, media, and overall production team have done. The media team was headed by
Suzanne Carter and supported by the creative drive of Peter Lacey. Sincere thanks
to you both. Further thanks to the entire group at Dragonfly Media, who continue
to do a great job taking care to represent many of Michael’s original drawings
with supreme accuracy. We’d also like to thank Joan Gemme, Beth Roberge, and
Annette Rapier for their excellent design, layout, and production of this edition.
One of the long-loved hallmarks of Developmental Biology has been the incor-
poration of actual data and images that represent the science. Special thanks to
the permissions team, Mark Siddall, Tracy Marton, and Michele Beckta for their
non-stop efforts in securing the rights to these essential pieces of the book. But
of course, a new book can only reach the hands of the students with the help of
a robust and strategic sales team. Many thanks to Susan McGlew and to all the
salespersons at Oxford now helping to support this textbook.
Lastly, it needs to be acknowledged that while Scott is blissfully retired,
Michael is still working his tail off doing teaching, research, committee assign-
ments, and so forth, in addition to his strong family commitments. He would
not be able to provide the time and energy to this textbook if he did not have
the support of his own institution and students. Thank you, Smith College, for
continuing to allow Michael to produce and disseminate his Web Conferences,
Developmental Documentaries, and the Dev Tutorials freely to the community.
Most sincere thanks to Michael’s research students, who had to endure their
principle investigator being too engrossed in all things development all the time!
Know that your patience, support, and insights surely made this book possible.

­— M.J.F.B.
—S.F.G.
May 24, 2019
Reviewers of the Twelfth Edition

Anna Allen, Howard University Dave McClay, Duke University


William Anderson, Harvard University Claus Nielsen, University of Copenhagen
Nicola Barber, University of Oregon Fred Nijhout, Duke University
Madelaine Bartlett, University of Massachusetts, Amherst Lee Niswander, University of Colorado, Boulder
Marianne Bronner, California Institute of Technology Julia Oxford, Boise State University
Timothy Brush, University of Texas, Rio Grande Valley Mark Peifer, University of North Carolina
Blanche Capel, Duke University Isabelle Peter, California Institute of Technology
Jacqueline Connour, Ohio Northern University Ann Rougvie, University of Minnesota
D. Cornelison, University of Missouri, Columbia Sabrina Sabatini, Sapienza University of Rome
Dr. Angus Davidson, The University of Nottingham Thomas F. Schilling, University of California, Irvine
Anna Edlund, Bethany College Nick Sokol, Indiana University
Elizabeth D. Eldon, California State University, Long Beach Richard Paul Sorrentino, Auburn University
Deborah Marie Garrity, Colorado State University Ana Soto, Tufts University
Bob Goldstein, University of North Carolina David Stachura, California State University, Chico
Eric Guisbert, Florida Institute of Technology Claudio Stern, University College London
Jeff Hardin, University of Wisconsin, Madison Andrea Streit, King’s College London
Richard Harland, University of California Berkeley Keiko Sugimoto, RIKEN
Marcus Heisler, The University of Sydney Jonathan Sylvester, Georgia State University
Arnold G Hyndman, Rutgers University Daniel E Wagner, Harvard Medical School
Zhi-Chun Lai, Pennsylvania State University Zhu Wang, University of California, Santa Cruz
Michael Lehmann, University of Arkansas Paul M. Wassarman, Icahn School of Medicine at Mount Sinai
Michael Levin, Tufts University Daniel Weinstein, Queens College, CUNY
Yuanyuan Rose Li, University of Alabama at Birmingham Jessica LaMae Whited, Harvard University
Barbara Mania-Farnell, Purdue University Northwest Jeanne Wilson-Rawls, Arizona State University
Adam C. Martin, Massachusetts Institute of Technology Colleen Winters, Towson University
David Matus, Stony Brook University Tracy Young-Pearse, Harvard Medical School
Roberto Mayor, University College London
Media and Supplements
to accompany Developmental Biology, Twelfth Edition

For the Student For the Instructor


Companion Website (Available to qualified adopters)
devbio.com Instructor’s Resource Library
Significantly enhanced for the Twelfth Edition, and refer- The Developmental Biology, Twelfth Edition Instructor’s
enced throughout the textbook, the Developmental Biology Resource Library includes the following resources:
Companion Website provides students with a range of en- • Case Studies in Dev Bio: This collection of case
gaging resources to help them learn the material presented study problems provides instructors with ready-
in the textbook. The companion site is available free of to-use in-class active learning exercises. The case
charge and includes resources in the following categories: studies foster deep learning in developmental
• Dev Tutorials: Professionally produced video biology by providing students an opportunity
tutorials, presented by the textbook’s authors, to apply course content to the critical analysis of
reinforce key concepts. data, to generate hypotheses, and to solve novel
• Watch Development: Putting concepts into problems in the field. Each case study includes a
action, these informative videos show real-life PowerPoint presentation and a student handout
developmental biology processes. with accompanying questions.
• Further Development: These extensive topics • Developing Questions: Thought-provoking
provide more information for advanced students, questions, many with answers, references, and
historical, philosophical, and ethical perspectives recommendations for further reading, are pro-
on issues in developmental biology, and links to vided so that you and your students can explore
additional online resources. questions that are posed throughout each chapter.
• Scientists Speak: In these lectures and question- • Textbook Figures & Tables: All of the textbook’s
and-answer interviews, developmental biology figures, photos, and tables are provided both in
topics are explored by leading experts in the field. JPEG and PowerPoint formats. All images have
been optimized for excellent legibility when pro-
• Flashcards: Per-chapter flashcard sets help stu-
jected in the classroom.
dents learn and review the many new terms and
definitions introduced in the textbook.
• Literature Cited: Full citations are provided for Value Options
all of the literature cited in the textbook (most eBook
linked to their PubMed citations).
(ISBN 978-1-60535-823-9)
• Research Guide: This illustrated and annotated
Developmental Biology, Twelfth Edition is available as
guide helps students find and comprehend
an eBook, via several different eBook providers, including
research articles in developmental biology.
RedShelf and VitalSource. Please visit the Oxford Univer-
sity Press website at oup.com/ushe for more information.

Looseleaf Textbook
(ISBN 978-1-60535-824-6)
Developmental Biology, Twelfth Edition is also available in
a three-hole punched, looseleaf format. Students can take
just the sections they need to class and can easily integrate
instructor material with the text.
Another random document with
no related content on Scribd:
Eron tanssin kanssa,
Kaikilt' piioiltansa,
Ringissä olless' ottaa,
Wiimen varsin totta
Taiten tanssinsa lopettaavat.

Sitte alkaa akat,


Niinkuin täydet vakat,
Lattialla itseens väännellä,
Siinä ilman taksaa,
Kuinka kukin jaksaa,
Morsianta kyllä käännellä.
Saavat kanssa huutaa,
Jos on heillä suuta:
Taas on meillen nuori
Tullut uusi muori;
Terve olkoon tulos,
Sisälle ja ulos!
Kaikki Ämmät yhdell’ äänellä.

Nyt se tansi loppuu,


Mutta toinen hoppu
Morsianta vielä noudattaa:
Wuoden päästä meri
Avaupi eri,
Joka häntä kyllä soudattaa.
Wasta käypi keli,
Eikä puutu peli,
Uuden tanssin tuisku,
Hyssytys ja huisku;
Silloin tussa-lulla
Kyllä saadaan kuulla,
Waikka tänä vuonna Falla-laa.

H. Achrenius
WEKKULIN KOTO-PERÄ

Harjun-mäen kalliolla
oli huono tölli,
Jossa raja-suutarilla
oli poika-mölli.

Isä oli Wekka-Heikki,


poika myöskin siksi
Ensimmältä kutsuttiin ja
sitte Wekkuliksi

Äite, niinkun tuuli-mylly,


suuri nuuska-kuono,
Roima-pirjo nimeltänsä,
tavoiltansa huono.

Niin kun naulan lanka-kerät


kieppui silmät päässä,
Huulet niikun tallukan, ja
lesti-nokka räässä.

Poika oli kasvoiltansa


juuri yhtäläinen,
Mutta varsin, niinkuin isä,
tyhjä kommo-päinen.

Koska vihdoin viimmenkin se


häijy poika-kloppi
Seurakunnan kenki-rajat
rypistämään oppi;

Sitte isä mielissänsä


jutteleepi sille
Taitavalle pojallensa,
pikku Wekkulille:

"Hyvä olet hyppysistäs"


eikös olis sulla,
Poikaseni, itse halu
mestariksi tulla?

"Mutta tässä töllissä on


kahden ahdas olla;
Ota perintös ja lähde
pois nyt sovinnolla.

"Tästä vanhan lesti-pussin


ensin annan sulle,
Joka tuli perinnöksi
isältäni mulle.

"Näistä lesti-lusistani
annan sulle kuusi,
Wiisi vanhan aikasta ja
kuudes varsin uusi.
"Naskaleita muutaman ja
piki-rippuloita,
Hohtimet ja veitsi-kaakki,
pistä pussiis noita.

"Harjaksista kymmenkunta
polvi-hihnan myötä
Annnan, ettäs yösioillas
saisit tehdä työtä.

"Rasiaa ei ole mulla


muuta kun yks' ainoo,
Jota äites nuuskuansa
vasta multa vainoo.

"Muuta myös ei antamista


enää ole mulla;
Nyt on kaikki, poikaseni,
perintös jo sulla.

"Työmme on nyt päätetty ja


eikä puutu muuta
Kun se pieni lähtö-ryyppy,
sitte lyömme suuta.

"Nosta pussi hartioilles,


jää hyvästi sitte,
Kulje miinkä lystis on ja
miinkäs tahdot itte".

Poika parka pussin heitti


olallensa kohta,
Itkun-helmet silmistänsä
poskipäillä hohtaa.

Itse isä Wekka-Heikki


klani-päinen ukko,
Tuli tästä totiseks' kun
aakkos-kirjan kukko.

Mutta äite aivasteli


nuusku-rasiaansa,
Eikä paljo huomannutkaan
koko asiaansa.

Lähtö-ryypyt ryypättiin ja
muiskasteltiin suuta,
Eikä pikku Wekkulikaan
tohdi toivoo muuta.

Sitte meni lerputteli


pois hän kotoansa,
Pitkin tietä lauleskeli
yksin surussansa.

J. F. Granlund

[Ensikerran painettu 1842.]


JUSSIN LAULU KUKOSTA

Nuotti: "Tuoll' on kultani" j.n.e.

Tuo on mun kukkoni, tuo puna-harja,


Tuon hellan-lehdet ne hohtaa kun marja.
Woi, oma lintuni! voi, kulta kukkoni!
Laulappastas jo!

Kyllä on lintuja, on korioita,


Mutt' eivät kukkoni muotoa voita.
Woi, oma lintuni! voi, kulta kukkoni!
Laulappastas jo!

Reipas sen luonto ja muoto on muhkee,


Raikas sen ääni, kun lauluun se puhkee.
Woi, oma lintuni! kulta kukkoni!
Laulappas nyt jo!

Seinät ne soivat, ja kalliot kaikuu,


Kun oman kukkoni ääni se raikuu.
Woi, oma lintuni! voi, kulta kukkoni!
Laulappas nyt jo!
En minä kurkeenkaan kukkooni antais,
En, vaikka kotkakin väliä pantais.
Woi, oma lintuni! voi, kulta kukkoni!
Etkös laula jo!

Nyt, kulta kukkoni! nyt keno-kaula!


Hiukankin kauniita virsiäs laula!
Woi, oma lintuni! voi kulta kukkoni!
Etkös laula jo!

Hei, jopas, lintuni, laulat nyt mulle;


Mutta jo myös minä lauloinkin sulle.
Woi, oma lintuni! voi, kulta kukkoni!
Jopas laulat jo!

J. F. Granlund

[Ensikerran painettu 1858.]


JUOMA-LAULU

Juoma janon sammuttaa,


Janotakin juoda saa
Kuiva-kaulanen
Poika-joukko laula, juo;
Makea on malja tuo
Wahto-harjanen.

Olut voiman vahvistaa,


Kannu kestin kaunista
Lorutessamme
Riemu rinnat ylentää,
Waivammekin vähentää
Hurratessamme.

Kyllä joskus seura suo,


Että poika-joukko ju
Ämpäristäkin.
Älä näänny nukkumaan,
Saata kannu kulkemaan
Nääntyneenäkin.
J. Juteini
SAKSAN-WIINA JA KALJA

Pojat! pois nyt kalja tieltä,


Koska viinaa koitellaan;
Kaljan kautta miehen mieltä
Moniasti moitellaan

Kuinka siis on kaljan laatu?


Mitä viina vaikuttaa?
Kotoa on kalja saatu,
Saksan-viina saavuttaa.

Janoa jähdyttääpi kalja,


Mutta leikin lyhentää.
Wasta viina, veljein malja,
Ystävyyttä ylentää.

Tosin meitä kalja täällä


Hiljallensa hyödyttää,
Wiina kiehuu kielen päällä,
Sitte päätä pyörryttää.

J. Juteini
OLUT JA WIINA

Löytyypi kultaa kupiksi,


Jos talon-poika tahtoo,
Hopiata housun napiksi,
Ken kaluksi sen katsoo;
Löytyy myös sanoja virsiksi,
Kun edempätä etsii,
Ja laitteleepi lauluiksi,
Runoiksi tehdä viitsii.

Waan aina tulee varoa


Ne monet väärät värsyt.
Ett'ei laki sua sakota,
Ja pane pahat reisut;
Niin saatin laulaa helistää,
Ett' oikein seinät soipi
Olutta juoda välistä,
Kuin kallo kantaa voipi.

Se mielen tanssiin taivuttaa,


Antaa myös vähän voimaa;
Kyll' uni muuten saavuttaa,
Jos välill' ei sa hoivaa.
Ja tekin, neidet naitavat!
Sen mielellänne suotte,
Myös olettekin taitavat,
Jos itse vähän juotte.

Ei miehelle tuo mitään tee,


Jos ryypyn, kaksi ottaa,
Waan kolmas mieltä koittelee,
Ja neljäs älyn voittaa.
Wiinasta ei tule viisaus,
Kun sitä paljon ryyppää,
Waan kevyt mieli, kerkeys
Sen kanssa olla pyytää.

Paavo Korhonen
JUOMA-LAULU

Ruotsinkielisestä: "Toma glas i godt kalas", etc.

Tyhjät maljat pidossa


Isäntää ei kiitä;
Weljet, kaiken ilossa,
Täytetääs nyt niitä!

Täydet maljat pidossa


Wieraita ei kiitä;
Weljet, kaiken ilossa,
Tyhjennetääs niitä!

Tyhjät maljat, j.n.e.

J. F. Granlund

[Ensikerran painettu v. 1837.]


JUOMA-LAULU

Nuotti: "Se, Movitz! hvi står du och gråter".

Ei maljasta maisteta maaten;


Pois torkka, ja aukase suus!
Salutem et prosperitatem! (1)
Juo virkuksi kieles ja luus!
Et riemua rinnassas huomaa,
Jos vaan klasin huulilles tuot,
Ja siitä kuin kärpänen juot
Noin kaunista juomaa.

Jos nyökkäisit, veikkosen, mulle


Ja tietäisit tehtävän työs,
Salutem sitt' sanoisin sulle
Et prosperitatem-kin myös.
Jo käteni noussunna olis
Ja suuhuni klasia tois,
Ja kurkkuni nielis ja jois
Ja soivaksi tulis.
Noh, tartu nyt klasiis ja käytä
Niin sulasti suutas kuin voit,
Ja kaikille yllyksi näytä
Se juoma, kun juodakses toit;
Ja kirkkaise sitten: Salutem
et prosperitatem! ett' soi,
Ja niin kukin juo, minkä voi,
"Sun muistoas!" huuten.

Salutem! – Se kaikille olkoon,


et prosperitatem! mutt' tuo
Sen osaksi parhaiten tulkoon,
Ken klasinsa tyhjäksi juo.
Noh, suuhun tuo viimmenen tilkka!
Jos hiukkakin jäljelle jää,
Niin semmoinen varpusen pää
On nauru ja pilkka.

J. f. Granlund

[Ensikerran painettu v. 1861.]

(1) Näitä latinalaisia sanoja, jotka merkitseevät (toivotan) terveyttä


ja onnellisuutta, ovat muutaman laulun-tekiän ystävistä ottaneet
tavaksensa matkasta aina toisen muistoa juodessansa, ja sen
tähden on siittä tämä laulu tullut.
PUNSI-PULLON KUOLEMASTA.

(Jos sinulle, ystävä hyvä, osaisi tapaturmassa se suuri ja sydäntä


katkerasti surettava vahinko tapahtua, että punsi-pullos täytenä
särkyisi, niin laula tuskissas, jos tahdot tätä laulua sillä nuotilla kun
Ring'i kuninkaan kuolemaa Fritjofin jutussa: "Gullmanig fåle,
Skinfaxe drager".)

Mull' oli pullo,


Kaunis kuin kulta,
Kirkas kun tähti ja täysi kun kuu.
Surma sen sullo'
Murskaksi multa,
Nyt vesi on silmissä, irvissä suu.

Woi! sydän parka,


Kuinka se tytkii,
Kuinka se paisuu ja rinnassa lyö;
Kuinka se arka
Nääntyen nytkii,
Kun hänen aarteensa kuolema syö.
Hui! raju surma,
Tunnoton, jolkka,
Surkeesti pulloni sormissas soi.
Ryöväri julma!
Jälkes on kolkka,
Työs surun suurimman rintani toi.

Riemuni kuoli!
Kuolla nyt tahdon,
Pulloni vierehen hautani suon.
Siellä en huoli
Muusta, jos vahdon
Wielä sen pirstoista saan, niin sen juon!

J. F. Granlund

[Ensikerran painettu v. 1861.]


JUOPPO-ÄMMÄN WALITUS

(Iva-mukaus.) Nuotti: "Ny är det höst", etc.

Syksy nyt on,


Wiina jo poltolla kodassa on;
Ah! mutta kelpais' mun siellä
Olla ja niellä.

Nurkassa näin
Pulloni tyhjinä, suut alaspäin.
Kas, kuinka harmiksi vielä
Tippuuvat siellä.

Pulloset, – so'!
Eikö ne pisarta lopukkaan jo'?
Loistappas kynttilä tälle
Pullo-läjälle.

Keväällä noi
Juoppojen kynsissä täytenä soi;
Waan minä niistä en maistaa
Saa, enkä haistaa.
Siksi jo saan
Kuoleman ryyppyjen puutteesta vaan,
Elikkä janosta kivun,
Jossa ma hivun.

Kannuni noin
Tyhjäksi viinasta tuonan jo join;
Hauska on vieläkin sitä
Rakkaana pitää.

Neulojen saan
Muotonsa liinani syrjähän vaan:
Hopia laidat ja ranteet,
Kultaset vanteet.

Kannunsa toi
Muinanen ämmäkin tyhjäksi joi,
Sitte hän meni taloista
Pyytämään toista.

Minä en vois
Pitkälle lähteä paikalta pois;
Kuolema kohta mun kaataa
Maan ale maata.

Kannuni, – so'!
Kurkistas pihalle kanssani jo'.
Ah! mutta viinaa ei tuoda,
Että sais juoda.

Sitte kun mun


Kuolema ottaa, niin juopot saa sun;

You might also like