Nothing Special   »   [go: up one dir, main page]

Main Tex

Download as txt, pdf, or txt
Download as txt, pdf, or txt
You are on page 1of 4

\documentclass{article}

\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsthm}
\usepackage{mathrsfs}

\usepackage{graphicx}
\newtheorem{Theorem}{Theorem}[section]
\newtheorem{Example}{Example}[Theorem]

\begin{document}

\begin{center}
\huge \textbf{INTERNAL ASSESSMENT } \vspace{0.5 cm} \\
\large\textbf{M. Sc in Mathematics Semester - II Examination 2024} \vspace{0.1cm}\\
\textbf{Paper - MATH205}\\(Application of Type setting Software Latex) \
vspace{1cm}\\
\includegraphics[width=3cm]{download.png} \\
\vspace{1cm}
Submitted by \vspace{1cm}\\
Name :\textbf{ SUBHANKAR BARMAN}\vspace{0.1cm} \\
Roll -\textbf{002416 }\hspace{0.5cm} No. :\textbf{ 0035}\vspace{0.1cm} \\
Registration Number :\textbf{101-1112-0397-20} \vspace{0.1cm}\\
Session :\textbf{2020-2021} \vspace{0.1cm} \\
\vspace{1cm}
Department of Mathematics \vspace{0.1cm}\\
University of Gour Banga \\
Malda - 732103, \\West Bengal
\end{center}
\newpage
\setcounter{section}{1}
\setcounter{Theorem}{0}
\begin{Theorem}
If $\mathcal{L} \{ f(t) \} = \bar{f}(s)$, then the Second Shifting property holds:
\begin{equation}
\mathcal{L} \{ f(t-a)H(t-a) \} = e^{-as} \bar{f}(s) = e^{-as} \mathcal{L} \
{ f(t) \}, \quad a > 0.
\label{equation(1)}
\end{equation}
Or, equivalently,
\begin{equation}
\mathcal{L} \{ f(t)H(t-a) \} = e^{-as} \mathcal{L} \{ f(t+a) \}.
\label{eq2}
\end{equation}
where $H(t-a)$ is the Heaviside unit step function defined by (***).

It follows from the definition that


\begin{equation*}
\begin{aligned}
\mathcal{L} \{ f(t-a)H(t-a) \} &= \int_{0}^{\infty} e^{-st} f(t-a) H(t-a) \, dt \\
&= \int_{a}^{\infty} e^{-st} f(t-a) \, dt,
\end{aligned}
\end{equation*}
which is, by putting $t-a = \tau$,
\begin{equation*}
\begin{aligned}
&= e^{-as} \int_{0}^{\infty} e^{-s\tau} f(\tau) \, d\tau = e^{-as} \bar{f}(s).
\end{aligned}
\end{equation*}

We leave it to the reader to prove (\ref{eq2}). In particular, if $f(t) = 1$, then


\begin{equation}
\mathcal{L} \{ H(t-a) \} = \frac{1}{s} e^{-sa}.
\end{equation}

\end{Theorem}
\begin{Example}

Use the shifting property (\ref{equation(1)}) or (\ref{eq2}) to find the Laplace


transform of
(a) $f(t) =
\begin{cases}
1, & 0<t<1 \\
-1, & 1<t<2 \\
0, & t>2
\end{cases}
$,
\qquad(b) $g(t) = \sin t H(t-\pi)$.

To find $\mathcal{L}\{f(t)\}$, we write $f(t)$ as \\


$f(t)=1-2H(t-1) + H(t-2)$.

Hence,\\
$\bar{f}(s) = \mathcal{L}\{f(t)\} = \mathcal{L}\{1\} - 2\mathcal{L}\{H(t-1)\} + \
mathcal{L}\{H(t-2)\}$ \\
$=\frac{1}{s} - \frac{2e^{-s}}{s} + \frac{e^{-2s}}{s}$.
\newpage
To obtain $\mathcal{L}{g(t)}$, we use (\ref{eq2}) so that \begin{align*} \bar{g}(s)
&= \mathcal{L}{\sin t H(t - \pi)}\ &=-e^{-\pi s} \mathcal{L}{\cos t}\ &=-\
frac{se^{-\pi s}}{s^2+1}. \end{align*}

\textbf{Scaling Property:}
\begin{equation}
\mathcal{L}{f(at)} = \frac{1}{|a|} \bar{f} \left( \frac{s}{a} \right), \ a \neq 0.
\end{equation}
\end{Example}
\begin{Example}

Show that the Laplace transform of the square wave function $f(t)$ defined by \
begin{equation} f(t) = H(t)-2H(t-a) + 2H(t-2a)-2H(t-3a) +... \quad \end{equation}
is \begin{equation} f(s) = \frac{1}{s}\tanh\left(\frac{as}{2}\right). \quad \
end{equation} The graph of $f(t)$ is shown in Figure 3.1.

\begin{align*} f(t) &= H(t)-2H(t-a)=1-2\cdot0=1, \qquad &0<t<a\ \\ f(t) &= H(t)-


2H(t-a) + 2H(t - 2a) \ \\&=1-2\cdot1+2\cdot0=-1, \qquad &0<a<t<2a\end{align*}

Thus,\begin{align*}f(s) &= \frac{1}{s} - 2\cdot\frac{e^{-as}}{s} + 2\cdot\frac{e^{-


2as}}{s} - 2\cdot\frac{e^{-3as}}{s} +... \ \\&= \frac{1}{s}[1 - 2r(1-r + r^2
- ...)], \qquad \text{where } r = e^{-as} \ \\&= \frac{1}{s}\left[1-\frac{2r}{1+r}\
right] = \frac{1}{s}\left[1-\frac{2e^{-as}}{1+e^{-as}}\right] \ \\&= \frac{1}{s}\
left(\frac{1-e^{-as}}{1+e^{-as}}\right) =
\frac{1}{s}\left(\frac{e^{sa/2}-e^{-sa/2}}{e^{sa/2}+e^{-sa/2}}\right) = \frac{1}
{s}\tanh\left(\frac{as}{2}\right). \end{align*}
\end{Example}
\begin{Example}
(The Laplace Transform of a periodic function)\\
If $f(t)$ is a periodic function of period a,and if $\mathcal{L}\{f(t)\} $exists,
Show that
\begin{equation}
\mathcal{L}\{f(t)\} = [1 - \exp(-as)]^{-1} \int_0^a e^{-st} f(t)dt.
\label{eq7}
\end{equation}
\newpage
Clearly, the property (\ref{eq7}) gives \begin{align*} \mathcal{L} {f(t)} &= \
frac{a}{s^2 + a^2} \cdot \frac{1 + \exp\left(-\frac{s\pi}{a}\right)}{1 - \exp\
left(-\frac{s\pi}{a}\right)} \ \\&= \frac{a}{s^2 + a^2} \left[ \frac{\exp\left(\
frac{s\pi}{2a}\right) + \exp\left(-\frac{s\pi}{2a}\right)}{\exp\left(\frac{s\pi}
{2a}\right) - \exp\left(-\frac{s\pi}{2a}\right)} \right] \ \\&= \frac{a}{s^2 + a^2}
\coth \left(\frac{\pi s}{2a}\right). \end{align*}

\end{Example}
\begin{Theorem}
(Laplace Transforms of Derivatives)

If $\mathcal{L} \{f(t)\} = f(s),$then


\begin{equation}
\mathcal{L} \{f'(t)\} = s\mathcal{L} \{f(t)\} - f(0) = sf(s) - f(0),
\label{eq8}
\end{equation}

\begin{equation}
\mathcal{L} \{f''(t)\} = s^2\mathcal{L} \{f(t)\} - sf (0) - f'(0) = s^2 f(s) -s
f(0) - f'(0).
\end{equation}

More generally,
\begin{equation}
\mathcal{L}\{f^{(n)}(t)\} = s^n f(s) - s^{n-1} f(0)-s^{n-2} f'(0) - \dots - sf^{(n-
2)}(0) - f^{(n-1)}(0),
\end{equation}
where $f^{(r)}(0)$is the value of $f^{(r)}(t)$ at $t=0, r=0,1,..., (n - 1).$\\
\end{Theorem}
\begin{proof} We have, by definition,
\begin{align*}
\mathcal{L}\{f'(t)\} &= \int_0^{\infty} e^{-st} f'(t)dt,
\end{align*}
which is, integrating by parts,
\begin{align*}
&= [e^{-st} f(t)]_0^{\infty} + s\int_0^{\infty} e^{-st} f(t)dt \\
&= sf(s) - f(0),
\end{align*}
in which we assumed $f(t) e^{-st}\to 0$ as $t\to\infty$.

Similarly,
\begin{align*}
\mathcal{L} \{f''(t)\} &= s\mathcal{L} \{f'(t)\} - f'(0),\qquad by(\ref{eq8})\\
&= s[s f(s) - f(0)] - f'(0) \\
&=s^2f(s) - sf (0) - f'(0),
\end{align*}

\end{proof}

\end{document}

You might also like