Exam With Solutions
Exam With Solutions
Exam With Solutions
[ ] [
Y ( z ) 1 − 1.4142 z −1 + z −2 = X ( z ) 1 − 0.7071z −1 ]
H ( z) =
Y ( z)
=
[
1 − 0.7071z −1 ]
=
z 2 − 0.7071z[ ]
[
X ( z ) 1 − 1.4142 z −1 + z −2 ] [
z 2 − 1.4142 z + 1 ]
−n
1
h( n ) = −∞≤n≤0
2
=0 n>0
Is the system both stable and noncausal? Explain your reason. (5 marks)
The system is noncausal because it begins before n=0.
0
The system is stable because ∑ h ( n) < ∞ .
n = −∞
−n
0
1
∑
n = −∞ 2
<∞
c) A signal has a frequency representation that is given as
1 1
X ( f ) = δ ( f + 1000) + δ ( f ) + δ ( f − 1000)
2 2
1 j 2π 1000t 1
= e + 1 + e − j 2π 1000t
2 2
= 1 + cos 2π 1000t −∞ ≤t ≤ ∞
Question 2
z2 − z
H ( z) =
3 1
z2 − z +
4 8
When x(n) = u (n − 5) ,
1 n − 5 1 n −5
y (n) = 2 − u (n − 5)
2 4
=
(e ) − e j 2πf 2 j 2πf
(e ) − 34 (e ) + 18
j 2πf 2 j 2πf
=
(cos 4πf
− cos 2πf ) + j (sin 4πf − sin 2πf )
3 1 3
cos 4πf − cos 2πf + + j sin 4πf − sin 2πf
4 8 4