Nothing Special   »   [go: up one dir, main page]

Exam With Solutions

Download as pdf or txt
Download as pdf or txt
You are on page 1of 4

Question 1

a) The difference equation for a linear time-invariant system is

y (n) − 1.4142 y (n − 1) + y (n − 2) = x(n) − 0.7071x(n − 1)

Calculate the transfer function for the system. (5 marks)


y (n) − 1.4142 y (n − 1) + y (n − 2) = x(n) − 0.7071x(n − 1)

Y ( z ) − 1.4142 z −1Y ( z ) + z −2Y ( z ) = X ( z ) − 0.7071z −1 X ( z )

[ ] [
Y ( z ) 1 − 1.4142 z −1 + z −2 = X ( z ) 1 − 0.7071z −1 ]
H ( z) =
Y ( z)
=
[
1 − 0.7071z −1 ]
=
z 2 − 0.7071z[ ]
[
X ( z ) 1 − 1.4142 z −1 + z −2 ] [
z 2 − 1.4142 z + 1 ]

b) A system is defined with an impulse response

−n
1
h( n ) =   −∞≤n≤0
2
=0 n>0

Is the system both stable and noncausal? Explain your reason. (5 marks)
The system is noncausal because it begins before n=0.
0
The system is stable because ∑ h ( n) < ∞ .
n = −∞

−n
0
1
∑  
n = −∞  2 
<∞
c) A signal has a frequency representation that is given as

1 1
X ( f ) = δ ( f + 1000) + δ ( f ) + δ ( f − 1000)
2 2

i) Is the time representation continuous or discrete-time? Explain your


reasons. (5 marks)
The time representation is continuous.

ii) Calculate the time representation of the signal. (5 marks)


∞ j 2πft
x(t ) = ∫ X ( f )e df
−∞

j 2πft j 2πft j 2πft


∞ 1 ∞ 1∞
=∫ δ ( f − 1000)e df + ∫ δ ( f )e df + ∫ δ ( f + 1000 )e df
−∞ 2 −∞ −∞ 2

1 j 2π 1000t 1
= e + 1 + e − j 2π 1000t
2 2
= 1 + cos 2π 1000t −∞ ≤t ≤ ∞
Question 2

The transfer function of a linear time-invariant system is given as

z2 − z
H ( z) =
3 1
z2 − z +
4 8

a) From the transfer function, is the system continuous or discrete-time? Explain


your reasons. (5 marks)
The system is discrete-time because the transfer function is in z domain. For
continuous time, the transfer function is represented in s domain (Laplace
domain).

b) Draw the pole-zero plot for the system. (5 marks)


z ( z − 1)
H ( z) =
(z − 1 2)(z − 1 4)
Poles at z=0.5, z=0.25
Zeros at z=0, z=1

c) Is the system stable? Explain your reasons. (5 marks)


The system is stable because the poles are inside the unit circle.

d) Calculate the output y(n) if the input is

x(n) = u (n − 5) (10 marks)


Let x(n) = u (n)
z
X ( z) =
z −1
Y ( z) = X ( z) • H ( z)
z z ( z − 1)
= •
z − 1 (z − 1 2 )( z − 1 4 )
z2
=
(z − 1 2)(z − 1 4)
Y ( z) z A B
= ≡ +
z (z − 1 2)(z − 1 4) (z − 1 2) (z − 1 4 )
Y ( z)
A= (z − 1 2) z =1 2 = 2
( z)
Y ( z)
B= (z − 1 4) z =1 4 = −1
( z)
Y ( z) 2 −1
= +
z ( z − 1 2 ) (z − 1 4 )
2z −z
Y ( z) = +
(z − 1 2) (z − 1 4 )
  1 n  1 n 
y (n) = 2  −   u (n)
  2   4  

When x(n) = u (n − 5) ,

  1  n − 5  1  n −5 
y (n) = 2  −   u (n − 5)
  2   4  

d) Calculate the frequency representation of the system. (5 marks)


z2 − z
H ( z) =
3 1
z2 − z +
4 8
H (e j 2πf ) = H ( z ) z = exp( j 2πf )

=
(e ) − e j 2πf 2 j 2πf

(e ) − 34 (e ) + 18
j 2πf 2 j 2πf

=
(cos 4πf
− cos 2πf ) + j (sin 4πf − sin 2πf )
 3 1  3 
 cos 4πf − cos 2πf +  + j  sin 4πf − sin 2πf 
 4 8  4 

You might also like