M2 May - Jun - 2023
M2 May - Jun - 2023
M2 May - Jun - 2023
8
23
P3924 [Total No. of Pages : 4
ic-
[6001]-4009
tat
F.E.
7s
ENGINEERING MATHEMATICS-II
3:3
(2019 Pattern) (Semester - I/II) (107008)
02 91
0:3
0
Time : 2½ Hours] [Max. Marks : 70
31
3/0 13
Instructions to the candidates:
1) Q. No.1 is compulsory.
0
8/2
2) Solve Q.2 or Q.3, Q.4 or Q.5, Q.6 or Q.7, Q.8 or Q.9.
.23 GP
8
C
23
6) Assume suitable data, if necessary.
ic-
16
Q1) Write the correct option for the following multiple choice questions
tat
8.2
7s
2
sin dt
4
.24
3:3
a) [2]
91
0
49
0:3
30
3 3
31
i) ii)
16 8
01
02
8/2
GP
3 3
iii) iv)
3/0
16 8
CE
80
8
23
.23
tat
8.2
[2]
7s
3:3
91
49
x 1, x 1 yx
0:3
iii) iv)
30
31
01
02
1 1
1 1
2 1 y 2 dxdy
8/2
GP
2
i) ii)
.23
2 2
16
2
8.2
iii) iv)
4 8
.24
49
P.T.O.
8
23
i) C (0,0,0) ii) C (0,0,1)
ic-
tat
iii) C (0,1,0) iv) C (1,0,0)
7s
3:3
02 91
e) The curve r 2a sin is symmetrical about
0:3
[1]
0
31
i) Pole
3/0 13 ii) 0
0
8/2
iii) iv)
.23 GP
2 4
E
80
8
C
23
ic-
f) dxdydz represents [1]
16
tat
V
8.2
7s
i) Area ii) Mass
.24
3:3
91
iii) Mean Value iv) Volume
49
0:3
30
31
01
2
02
n 2
4
n2
8/2
[5]
n 1 n 1
3/0
0
CE
80
8
x 2 5 x dx
3 2
23
b) Evaluate [5]
.23
ic-
2
16
tat
e x e ax 1 a2 1
Using DUIS, prove that dx log ,a 0
8.2
7s
c) [5]
x sec x 2 2
.24
0
3:3
91
49
0:3
OR
30
31
Q3) a) Evaluate
01
02
8/2
2
GP
sin d
2
i) cos10 [3]
3/0
0 2 2
CE
80
2
cos t
.23
4
ii) dt [2]
16
2
8.2
.24
49
[6001]-4009 2
23
x log x
4
b) Evaluate : dx [5]
ic-
0
tat
1 d 1 d
erfc (ax)
7s
c) Prove that: erf (ax) [5]
x da a dx
3:3
02 91
0:3
Q4) a) Trace the curve x 2 y 2 a 2 ( y 2 x 2 ).
0
[5]
31
b) 3/0 13
Trace the curve r a (1 cos ). [5]
0
c) Find the are length of Astroid x 2 3 y 2 3 a 2 3
8/2
[5]
.23 GP
OR
E
80
8
C
23
Q5) a) Trace the curve x 3 y 3 3axy. [5]
ic-
b) Trace the curve r a cos 2
16
[5]
tat
Trace the curve x a (t sin t ), y a (1 cos t ).
8.2
c) [5]
7s
.24
3:3
91
Show that the plane x 2 y 2 z 7 touches the sphere x 2 y 2 z 2
49
Q6) a)
0:3
30
[5]
b) Find the equation of right circular cone whose vertex is at origin, whose
01
02
x y 8
8/2
GP
axis is the line and which has a semi-vertical angle of 60°. [5]
1 2 3
3/0
CE
80
8
c) Find the equation of right circular cylinder of radius 3 and axis is the line
23
.23
x 1 y 2 z 3
. ic-
16
[5]
tat
2 1 2
8.2
7s
OR
.24
3:3
0:3
contact. [5]
01
b) Find the equation of right circular cone whose vertex is at (0,0,10), axis
02
8/2
2
GP
5
CE
80
1 1 1
, , .
16
[6001]-4009 3
ic-
R
tat
b) Find area of cardioide r a (1 cos ) using double integration. [5]
7s
c) Find the moment of inertia of one loop of the lemniscate
3:3
r 2 a 2 cos 2 about initial line. Givenl that density 2m
02 91
, m is a mass
0:3
a2
0
31
of the area.
3/0 13
0 [5]
OR
8/2
.23 GP
5 2 x
8
0 2 x
C
23
b) Find the volume bounded by the cone x 2 y 2 z 2 and paraboloid
ic-
16
tat
x2 y 2 z . [5]
8.2
7s
c) Find the x - co-ordinate of centre of gravity of one loop of r a cos 2 ,
.24
3:3 a2
91
which is in the first quadrant, given that area of loop is A .
49
[5]
0:3
8
30
31
01
02
8/2
GP
3/0
CE
80
8
23
.23
ic-
16
tat
8.2
7s
.24
3:3
91
49
0:3
30
31
01
02
8/2
GP
3/0
CE
80
.23
16
8.2
.24
49
[6001]-4009 4