Nothing Special   »   [go: up one dir, main page]

2.BP1 T+H

Download as pdf or txt
Download as pdf or txt
You are on page 1of 19

Project:

Project no:
Author:

Project data
Project name
Project number
Author
Description
Date 04-Nov-23
Design code EN

Material
Steel S 355, S 235
Concrete C25/30, C20/25

1 / 19
Project:
Project no:
Author:

Project item Base plate connection (Tension and Horizontal Force)

Design
Name Base plate connection (Tension and Horizontal Force)
Description
Analysis Stress, strain/ simplified loading

Beams and columns


β – Direction γ - Pitch α - Rotation Offset ex Offset ey Offset ez
Name Cross-section Forces in
[°] [°] [°] [mm] [mm] [mm]
COL 13 - I100x55x4.5x6.5(I100) 0.0 -90.0 0.0 0 0 0 Node

2 / 19
Project:
Project no:
Author:

3 / 19
Project:
Project no:
Author:

Cross-sections
Name Material
13 - I100x55x4.5x6.5(I100) S 235

Cross-sections
Name Material Drawing

13 - I100x55x4.5x6.5(I100) S 235

Anchors
Diameter fu Gross area
Name Bolt assembly
[mm] [MPa] [mm2]
M12 4.8 M12 4.8 12 400.0 113

4 / 19
Project:
Project no:
Author:

Load effects (equilibrium not required)


N Vy Vz Mx My Mz
Name Member
[kN] [kN] [kN] [kNm] [kNm] [kNm]
LE1 COL 7.1 -1.4 -4.0 0.0 0.0 0.0

Foundation block
Item Value Unit
CB 1
Dimensions 200 x 200 mm
Depth 750 mm
Anchor M12 4.8
Anchoring length 150 mm
Shear force transfer Anchors

Check

Summary
Name Value Status
Analysis 100.0% OK
Plates 0.0 < 5.0% OK
Anchors 93.4 < 100% OK
Welds 10.4 < 100% OK
Concrete block Not calculated
Buckling Not calculated

Plates
Thickness σEd εPl σcEd
Name Loads Status
[mm] [MPa] [%] [MPa]
COL-bfl 1 6.5 LE1 40.0 0.0 0.0 OK
COL-tfl 1 6.5 LE1 27.8 0.0 0.0 OK
COL-w 1 4.5 LE1 28.5 0.0 0.0 OK
BP1 10.0 LE1 42.7 0.0 0.0 OK

Design data

fy εlim
Material
[MPa] [%]
S 235 235.0 5.0

5 / 19
Project:
Project no:
Author:

Overall check, LE1

Strain check, LE1

6 / 19
Project:
Project no:
Author:

Equivalent stress, LE1

Anchors
NEd VEd NRd,c VRd,cp Utt Uts Utts
Shape Item Loads Status
[kN] [kN] [kN] [kN] [%] [%] [%]

A5 LE1 3.7 2.1 7.8 9.4 93.4 13.1 90.3 OK

A6 LE1 3.7 2.1 7.8 9.4 93.4 13.1 90.3 OK

Design data
NRd,s VRd,s
Grade
[kN] [kN]
M12 4.8 - 1 19.1 16.2

7 / 19
Project:
Project no:
Author:

Detailed result for A5


Anchor tensile resistance (EN1992-4 - Cl. 7.2.1.3)
NRk,s
NRd,s =

γM s​

​ = 19.1 kN ≥ NEd =
​ 3.7 kN

NRk,s = c ⋅ As ⋅ fuk =
​ ​ ​
28.7 kN

Where:
c = 0.85 – reduction factor for cut thread

As = 84 mm2
​ – tensile stress area
fuk = 400.0 MPa – minimum tensile strength of the bolt

γM s = 1.50 ​ – safety factor for steel

γM s = 1.2 ⋅ ffuk

yk
≥ 1.4 , where:


fyk = 320.0 MPa – minimum yield strength of the bolt


8 / 19
Project:
Project no:
Author:

Concrete breakout resistance of anchor in tension (EN1992-4 - Cl. 7.2.1.4)


The check is performed for group of anchors that form common tension breakout cone: A5, A6

NRk,c
NRd,c =

γM c ​

​ = 7.8 kN ≥ NEd,g = ​ 7.3 kN

0 Ac,N
NRk,c = NRk,c
​ ⋅ ​

A0c,N


​ ⋅ ψs,N ⋅ ψre,N ⋅ ψec,N ⋅ ψM ,N = ​ ​ ​ ​
14.1 kN

Where:
NEd,g = 7.3 kN ​ – sum of tension forces of anchors with common concrete breakout cone area
0
NRk,c = 12.2 kN – characteristic strength of a fastener, remote from the effects of adjacent fasteners or edges of the

concrete member

0 = k1 ⋅ fc′ ⋅ h1.5
NRk,c ef , where:
​ ​ ​ ​ ​

k1 = 7.70 – parameter accounting for anchor type and concrete condition


fc′ = 20.0 MPa – concrete compressive strength


hef = min(hemb , max( ca,max smax


1.5 , 3 )) = 50 mm – depth of embedment, where:
​ ​


hemb = 150 mm – anchor length embedded in concrete ​

ca,max = 75 mm – maximum distance from the anchor to one of the three closest edges ​

smax = 71 mm – maximum spacing between anchors ​

Ac,N = 34799 mm2 – concrete breakout cone area for group of anchors

A0c,N = 22500 mm2 – concrete breakout cone area for single anchor not influenced by edges

A0c,N = (3 ⋅ hef )2 , where:


hef = 50 mm – depth of embedment ​

ψs,N = 1.00 – parameter related to the distribution of stresses in the concrete due to the proximity of the fastener to an

edge of the concrete member:

c
ψs,N = 0.7 + 0.3 ⋅ 1.5⋅h

ef
≤ 1 , where: ​

c = 75 mm – minimum distance from the anchor to the edge


hef = 50 mm – depth of embedment ​

ψre,N = 0.75 – parameter accounting for the shell spalling:


ψre,N = 0.5 + h200


emb
​ ≤ 1 , where: ​

hemb = 150 mm – anchor length embedded in concrete


ψec,N = 1.00 – modification factor for anchor groups loaded eccentrically in tension:

ψec,N = ψecx,N ⋅ ψecy,N , where:


​ ​ ​

ψecx,N = 2⋅e1 x,N = 1.00 – modification factor that depends on eccentricity in x-direction
​ ​

1+

3⋅hef

ex,N = 0 mm – tension load eccentricity in x-direction


ψecy,N = 2⋅e1 y,N = 1.00 – modification factor that depends on eccentricity in y-direction
​ ​

1+

3⋅hef

ey,N = 0 mm – tension load eccentricity in y-direction


hef = 50 mm – depth of embedment


ψM ,N = 1.00 – parameter accounting for the effect of a compression force between the fixture and concrete; this

parameter is equal to 1 if c < 1.5hef or the ratio of the compressive force (including the compression due
to bending) to the sum of tensile forces in anchors is smaller than 0.8

9 / 19
Project:
Project no:
Author:

2⋅z
ψM ,N = 2 − 3⋅hef
≥ 1 , where: ​


z = 10 mm – internal lever arm


hef = 50 mm – depth of embedment ​

γM c = 1.80 – safety factor for concrete


Shear resistance (EN1992-4 - Cl.7.2.2.3.1)


VRk,s
VRd,s =

γM s ​

​ = 16.2 kN ≥ VEd = ​ 2.1 kN

0
VRk,s = k7 ⋅ VRk,s =
​ ​ ​
20.2 kN

Where:
k7 = 1.00 – coefficient for anchor steel ductility

k7 = {
0.8, A < 0.08
, where:
1.0, A ≥ 0.08
​ ​ ​

A = 0.14 – bolt grade elongation at rupture

0
VRk,s = 20.2 kN – the characteristic shear strength

0
VRk,s = k6 ⋅ As ⋅ fuk , where:
​ ​ ​ ​

k6 = 0.60 – coefficient for anchor resistance in shear


As = 84 mm2 – tensile stress area ​

fuk = 400.0 MPa – specified ultimate strength of anchor steel


γM s = 1.25 – safety factor for steel


Concrete pryout resistance (EN1992-4 - Cl. 7.2.2.4)


The check is performed for group of anchors on common base plate

VRk,cp
VRd,cp = ​

γM c ​

​ = 9.4 kN ≥ VEd,g = ​ 0.0 kN

VRk,cp = k8 ⋅ NRk,c =
​ ​ ​
14.1 kN

Where:
k8 = 1.00 ​ – factor taking into account fastener embedment depth
NRk,c = 14.1 kN – characteristic concrete cone strength for a single fastener or fastener in a group

γM c = 1.50 ​ – safety factor for concrete

Interaction of tensile and shear forces in steel (EN 1992-4 - Table 7.3)
2 2
( NNRd,s
Ed
) + ( VVRd,s

Ed
​) = ​



0.05 ≤ 1.0

Where:
NEd = 3.7 kN ​ – design tension force

NRd,s = 19.1 kN – fastener tensile strength


VEd = 2.1 kN ​ – design shear force

VRd,s = 16.2 kN ​ – fastener shear strength

10 / 19
Project:
Project no:
Author:

Interaction of tensile and shear forces in concrete (EN 1992-4 - Table 7.3)

( NNRd,i
Ed​

)1.5 + ( VVRd,i


Ed
)1.5 = ​



0.90 ≤ 1.0

Where:
NEd
– the largest utilization value for tension failure modes

NRd,i ​

VEd
– the largest utilization value for shear failure modes

VRd,i ​

NEd,g
NRd,c


​ = 93% – concrete breakout failure of anchor in tension
NEd
NRd,p


​ = 0% – concrete pullout failure
NEd
NRd,cb


​ = 0% – concrete blowout failure
VEd
VRd,c


​ = 0% – concrete edge failure
VEd
VRd,cb


​ = 0% – concrete pryout failure

Supplementary reinforcement (EN 1992-4 - Cl. 7.2.2.6)


Supplementary reinforcement should resist force of 4.2 kN in shear.

Detailed result for A6


Anchor tensile resistance (EN1992-4 - Cl. 7.2.1.3)
NRk,s
NRd,s = ​

γM s ​

​ = 19.1 kN ≥ NEd = ​ 3.7 kN

NRk,s = c ⋅ As ⋅ fuk =​ ​ ​
28.7 kN

Where:
c = 0.85 – reduction factor for cut thread

As = 84 mm2
​ – tensile stress area
fuk = 400.0 MPa – minimum tensile strength of the bolt

γM s = 1.50 ​ – safety factor for steel

γM s = 1.2 ⋅ ffuk
yk
≥ 1.4 , where:


fyk = 320.0 MPa – minimum yield strength of the bolt


11 / 19
Project:
Project no:
Author:

Concrete breakout resistance of anchor in tension (EN1992-4 - Cl. 7.2.1.4)


The check is performed for group of anchors that form common tension breakout cone: A5, A6

NRk,c
NRd,c =

γM c ​

​ = 7.8 kN ≥ NEd,g = ​ 7.3 kN

0 Ac,N
NRk,c = NRk,c
​ ⋅ ​

A0c,N


​ ⋅ ψs,N ⋅ ψre,N ⋅ ψec,N ⋅ ψM ,N = ​ ​ ​ ​

14.1 kN

Where:
NEd,g = 7.3 kN ​ – sum of tension forces of anchors with common concrete breakout cone area
0
NRk,c = 12.2 kN – characteristic strength of a fastener, remote from the effects of adjacent fasteners or edges of the

concrete member

0 = k1 ⋅ fc′ ⋅ h1.5
NRk,c ef , where:
​ ​ ​ ​ ​

k1 = 7.70 – parameter accounting for anchor type and concrete condition


fc′ = 20.0 MPa – concrete compressive strength


hef = min(hemb , max( ca,max smax


1.5 , 3 )) = 50 mm – depth of embedment, where:
​ ​


hemb = 150 mm – anchor length embedded in concrete ​

ca,max = 75 mm – maximum distance from the anchor to one of the three closest edges ​

smax = 71 mm – maximum spacing between anchors ​

Ac,N = 34799 mm2 – concrete breakout cone area for group of anchors

A0c,N = 22500 mm2 – concrete breakout cone area for single anchor not influenced by edges

A0c,N = (3 ⋅ hef )2 , where:


hef = 50 mm – depth of embedment ​

ψs,N = 1.00 – parameter related to the distribution of stresses in the concrete due to the proximity of the fastener to an

edge of the concrete member:

c
ψs,N = 0.7 + 0.3 ⋅ 1.5⋅h

ef
≤ 1 , where: ​

c = 75 mm – minimum distance from the anchor to the edge


hef = 50 mm – depth of embedment ​

ψre,N = 0.75 – parameter accounting for the shell spalling:


ψre,N = 0.5 + h200


emb
​ ≤ 1 , where: ​

hemb = 150 mm – anchor length embedded in concrete


ψec,N = 1.00 – modification factor for anchor groups loaded eccentrically in tension:

ψec,N = ψecx,N ⋅ ψecy,N , where:


​ ​ ​

ψecx,N = 2⋅e1 x,N = 1.00 – modification factor that depends on eccentricity in x-direction
​ ​

1+

3⋅hef

ex,N = 0 mm – tension load eccentricity in x-direction


ψecy,N = 2⋅e1 y,N = 1.00 – modification factor that depends on eccentricity in y-direction
​ ​

1+

3⋅hef

ey,N = 0 mm – tension load eccentricity in y-direction


hef = 50 mm – depth of embedment


ψM ,N = 1.00 – parameter accounting for the effect of a compression force between the fixture and concrete; this

parameter is equal to 1 if c < 1.5hef or the ratio of the compressive force (including the compression due
to bending) to the sum of tensile forces in anchors is smaller than 0.8

12 / 19
Project:
Project no:
Author:

2⋅z
ψM ,N = 2 − 3⋅hef
≥ 1 , where: ​


z = 10 mm – internal lever arm


hef = 50 mm – depth of embedment ​

γM c = 1.80 – safety factor for concrete


Shear resistance (EN1992-4 - Cl.7.2.2.3.1)


VRk,s
VRd,s =

γM s ​

​ = 16.2 kN ≥ VEd = ​ 2.1 kN

0
VRk,s = k7 ⋅ VRk,s =
​ ​ ​
20.2 kN

Where:
k7 = 1.00 – coefficient for anchor steel ductility

k7 = {
0.8, A < 0.08
, where:
1.0, A ≥ 0.08
​ ​ ​

A = 0.14 – bolt grade elongation at rupture

0
VRk,s = 20.2 kN – the characteristic shear strength

0
VRk,s = k6 ⋅ As ⋅ fuk , where:
​ ​ ​ ​

k6 = 0.60 – coefficient for anchor resistance in shear


As = 84 mm2 – tensile stress area ​

fuk = 400.0 MPa – specified ultimate strength of anchor steel


γM s = 1.25 – safety factor for steel


Concrete pryout resistance (EN1992-4 - Cl. 7.2.2.4)


The check is performed for group of anchors on common base plate

VRk,cp
VRd,cp = ​

γM c ​

​ = 9.4 kN ≥ VEd,g = ​ 0.0 kN

VRk,cp = k8 ⋅ NRk,c =
​ ​ ​
14.1 kN

Where:
k8 = 1.00 ​ – factor taking into account fastener embedment depth

NRk,c = 14.1 kN – characteristic concrete cone strength for a single fastener or fastener in a group

γM c = 1.50 ​ – safety factor for concrete

Interaction of tensile and shear forces in steel (EN 1992-4 - Table 7.3)
2 2
( NNRd,s
Ed
) + ( VVRd,s

Ed
​) = ​



0.05 ≤ 1.0

Where:
NEd = 3.7 kN ​ – design tension force

NRd,s = 19.1 kN – fastener tensile strength


VEd = 2.1 kN ​ – design shear force

VRd,s = 16.2 kN ​ – fastener shear strength

13 / 19
Project:
Project no:
Author:

Interaction of tensile and shear forces in concrete (EN 1992-4 - Table 7.3)

( NNRd,i
Ed ​

)1.5 + ( VVRd,i


Ed
)1.5 = ​



0.90 ≤ 1.0

Where:
NEd
– the largest utilization value for tension failure modes

NRd,i ​

VEd
– the largest utilization value for shear failure modes

VRd,i ​

NEd,g
NRd,c


​ = 93% – concrete breakout failure of anchor in tension
NEd
NRd,p


​ = 0% – concrete pullout failure
NEd
NRd,cb


​ = 0% – concrete blowout failure
VEd
VRd,c


​ = 0% – concrete edge failure
VEd
VRd,cb


​ = 0% – concrete pryout failure

Supplementary reinforcement (EN 1992-4 - Cl. 7.2.2.6)


Supplementary reinforcement should resist force of 4.2 kN in shear.

Welds (Plastic redistribution)


Throat th. Length σw,Ed εPl σ⏊ τ|| τ⏊ Ut Utc
Item Edge Loads Status
[mm] [mm] [MPa] [%] [MPa] [MPa] [MPa] [%] [%]
BP1 COL-bfl 1 ◢3.0◣ 55 LE1 37.4 0.0 15.3 16.9 10.2 10.4 5.9 OK
◢3.0◣ 55 LE1 22.7 0.0 -8.3 -10.2 6.7 6.3 5.9 OK
BP1 COL-tfl 1 ◢3.0◣ 55 LE1 23.1 0.0 3.3 11.3 6.9 6.4 5.4 OK
◢3.0◣ 55 LE1 30.8 0.0 9.8 -15.7 -6.2 8.6 5.5 OK
BP1 COL-w 1 ◢3.0◣ 94 LE1 26.6 0.0 10.2 -9.5 10.5 7.4 4.9 OK
◢3.0◣ 94 LE1 26.3 0.0 11.5 7.3 -11.5 7.3 4.9 OK

Design data
βw σw,Rd 0.9 σ
[-] [MPa] [MPa]
S 235 0.80 360.0 259.2

Detailed result for BP1 COL-bfl 1


Weld resistance check (EN 1993-1-8 4.5.3.2)
2
σw,Rd = fu /(βw γM 2 ) =
​ ​ ​ ​
360.0 MPa ≥ σw,Ed = [σ⊥
​ + 3(τ⊥2 + τ∥2 )]0.5 =
​ ​ ​
37.4 MPa

σ⊥,Rd = 0.9fu /γM 2 = ​ ​ ​


259.2 MPa ≥ ∣σ⊥ ∣ =

15.3 MPa

where:
fu = 360.0 MPa – Ultimate strength

βw = 0.80 ​ – appropriate correlation factor taken from Table 4.1

γM 2 = 1.25 ​ – Safety factor

Stress utilization
σ ∣σ⊥ ∣
Ut = max( σw,Ed ; )= 10.4 %

w,Rd ​

σ⊥,Rd ​

14 / 19
Project:
Project no:
Author:

Weld resistance check (EN 1993-1-8 4.5.3.2)

σw,Rd = fu /(βw γM 2 ) = 2 + 3(τ 2 + τ 2 )]0.5 =


σw,Ed = [σ⊥
​ ​ ​ ​
360.0 MPa ≥ ​ ​

⊥ ∥ ​ ​
22.7 MPa

σ⊥,Rd = 0.9fu /γM 2 =


​ ​ ​
259.2 MPa ≥ ∣σ⊥ ∣ =

8.3 MPa

where:
fu = 360.0 MPa – Ultimate strength

βw = 0.80
​ – appropriate correlation factor taken from Table 4.1
γM 2 = 1.25 ​ – Safety factor

Stress utilization
∣σ⊥ ∣
Ut = max( σσw,Ed

w,Rd
; ​


σ⊥,Rd


​ )= 6.3 %

Detailed result for BP1 COL-tfl 1


Weld resistance check (EN 1993-1-8 4.5.3.2)

σw,Rd = fu /(βw γM 2 ) = 2 + 3(τ 2 + τ 2 )]0.5 =


σw,Ed = [σ⊥
​ ​ ​ ​
360.0 MPa ≥ ​ ​

⊥ ∥ ​ ​
23.1 MPa

σ⊥,Rd = 0.9fu /γM 2 =


​ ​ ​
259.2 MPa ≥ ∣σ⊥ ∣ =

3.3 MPa

where:
fu = 360.0 MPa – Ultimate strength

βw = 0.80
​ – appropriate correlation factor taken from Table 4.1
γM 2 = 1.25 ​ – Safety factor

Stress utilization
∣σ⊥ ∣
Ut = max( σσw,Ed

w,Rd
; ​


σ⊥,Rd


​ )= 6.4 %

Weld resistance check (EN 1993-1-8 4.5.3.2)

σw,Rd = fu /(βw γM 2 ) = 2 + 3(τ 2 + τ 2 )]0.5 =


σw,Ed = [σ⊥
​ ​ ​ ​
360.0 MPa ≥ ​ ​

⊥ ∥ ​ ​
30.8 MPa

σ⊥,Rd = 0.9fu /γM 2 =


​ ​ ​
259.2 MPa ≥ ∣σ⊥ ∣ =

9.8 MPa

where:
fu = 360.0 MPa – Ultimate strength

βw = 0.80
​ – appropriate correlation factor taken from Table 4.1

γM 2 = 1.25 ​ – Safety factor

Stress utilization
∣σ⊥ ∣
Ut = max( σσw,Ed

w,Rd
; ​


σ⊥,Rd


​ )= 8.6 %

15 / 19
Project:
Project no:
Author:

Detailed result for BP1 COL-w 1


Weld resistance check (EN 1993-1-8 4.5.3.2)

σw,Rd = fu /(βw γM 2 ) = 2 + 3(τ 2 + τ 2 )]0.5 =


σw,Ed = [σ⊥
​ ​ ​ ​
360.0 MPa ≥ ​


∥ ​ ​
26.6 MPa

σ⊥,Rd = 0.9fu /γM 2 =


​ ​ ​
259.2 MPa ≥ ∣σ⊥ ∣ =

10.2 MPa

where:
fu = 360.0 MPa – Ultimate strength

βw = 0.80
​ – appropriate correlation factor taken from Table 4.1
γM 2 = 1.25 ​ – Safety factor

Stress utilization
∣σ⊥ ∣
Ut = max( σσw,Ed

w,Rd
; ​


σ⊥,Rd


​ )= 7.4 %

Weld resistance check (EN 1993-1-8 4.5.3.2)

σw,Rd = fu /(βw γM 2 ) = 2 + 3(τ 2 + τ 2 )]0.5 =


σw,Ed = [σ⊥
​ ​ ​ ​
360.0 MPa ≥ ​


∥ ​ ​
26.3 MPa

σ⊥,Rd = 0.9fu /γM 2 =


​ ​ ​
259.2 MPa ≥ ∣σ⊥ ∣ =

11.5 MPa

where:
fu = 360.0 MPa – Ultimate strength

βw = 0.80
​ – appropriate correlation factor taken from Table 4.1
γM 2 = 1.25 ​ – Safety factor

Stress utilization
∣σ⊥ ∣
Ut = max( σσw,Ed

w,Rd
; ​


σ⊥,Rd


​ )= 7.3 %

Buckling
Buckling analysis was not calculated.

Bill of material

Manufacturing operations
Plates Welds Length
Name Shape Nr. Bolts Nr.
[mm] [mm] [mm]

BP1 P10.0x200.0-200.0 (S 235) 1 Double fillet: a = 3.0 203.5 M12 4.8 2

16 / 19
Project:
Project no:
Author:

Welds
Throat thickness Leg size Length
Type Material
[mm] [mm] [mm]
Double fillet S 235 3.0 4.2 203.5

Anchors
Length Drill length
Name Count
[mm] [mm]
M12 4.8 160 150 2

Drawing

BP1

P10.0x200-200 (S 235)

17 / 19
Project:
Project no:
Author:

Symbol explanation
Symbol Symbol explanation
εPl Strain
σEd Eq. stress
fy Yield strength
εlim Limit of plastic strain
NEd Tension force
VEd Resultant of shear forces Vy, Vz in bolt
NRd,c Concrete cone breakout resistance in tension - EN1992-4 - Cl. 7.2.1.4
VRd,cp Concrete pryout resistance - EN1992-4 - Cl. 7.2.2.4
Utt Utilization in tension
Uts Utilization in shear
Utts Utilization in tension and shear EN 1993-1-8 table 3.4
NRd,s Design tensile resistance of a fastener in case of steel failure - EN1992-4 - Cl. 7.2.1.3
VRd,s Design shear resistance in case of steel failure - EN1992-4 - Cl.7.2.2.3.1
σw,Ed Equivalent stress
σw,Rd Equivalent stress resistance
σ⏊ Perpendicular stress
τ|| Shear stress parallel to weld axis
τ⏊ Shear stress perpendicular to weld axis
0.9 σw,Rd Perpendicular stress resistance - 0.9*fu/γM2
βw Corelation factor EN 1993-1-8 tab. 4.1
Ut Utilization
Utc Weld capacity utilization

Code settings
Item Value Unit Reference
γM0 1.00 - EN 1993-1-1: 6.1
γM1 1.00 - EN 1993-1-1: 6.1
γM2 1.25 - EN 1993-1-1: 6.1
γM3 1.25 - EN 1993-1-8: 2.2
γC 1.50 - EN 1992-1-1: 2.4.2.4
γInst 1.20 - EN 1992-4: Table 4.1
Joint coefficient βj 0.67 - EN 1993-1-8: 6.2.5
Effective area - influence of mesh size 0.10 -
Friction coefficient - concrete 0.25 - EN 1993-1-8
Friction coefficient in slip-resistance 0.30 - EN 1993-1-8 tab 3.7
Limit plastic strain 0.05 - EN 1993-1-5
Weld stress evaluation Plastic redistribution
Detailing No
Distance between bolts [d] 2.20 - EN 1993-1-8: tab 3.3

18 / 19
Project:
Project no:
Author:

Item Value Unit Reference


Distance between bolts and edge [d] 1.20 - EN 1993-1-8: tab 3.3
Concrete breakout resistance check Tension EN 1992-4: 7.2.1.4 and 7.2.2.5
Use calculated αb in bearing check. Yes EN 1993-1-8: tab 3.4
Cracked concrete Yes EN 1992-4
Local deformation check No CIDECT DG 1, 3 - 1.1
Local deformation limit 0.03 - CIDECT DG 1, 3 - 1.1
Geometrical nonlinearity (GMNA) Yes Analysis with large deformations for hollow section joints
Braced system No EN 1993-1-8: 5.2.2.5

19 / 19

You might also like