2019 04 AM Rheology
2019 04 AM Rheology
2019 04 AM Rheology
Materials Characterization by
Rheological Methods
Rheology: An Introduction
TAINSTRUMENTS.COM
1
4/2/2019
F = F(x); F ≠ F(v)
0 1 2 3
x
Viscoelastic Materials: Force
F Maxwell
depends on both Deformation and
Rate of Deformation and vice versa.
F Kelvin,
Voigt
TAINSTRUMENTS.COM
Elastic Solids
Viscous Liquids Viscoelastic
Stress
Stress Modulus =
Viscosity = Strain
Strain Rate
TAINSTRUMENTS.COM
2
4/2/2019
Angular Velocity,
1. Apply Force (Torque)and
Shear Rate
measure Deformation and/or
Deformation Rate (Angular
Displacement, Angular Velocity) -
Controlled Force, Controlled
Stress Torque, Shear Stress
Angular Displacement,
Torque, Stress
Deformation Rate and measure
Force needed (Controlled
Strain
Displacement or Rotation,
Controlled Strain or Shear Rate)
TAINSTRUMENTS.COM
H
Bottom Plate
y
Velocity = 0
x
vx = (y/H)*V0
.
γ = dvx/dy = V0/H Shear Rate, sec-1
σ = F/A Shear Stress, Pascals
.
η = σ/γγ Viscosity, Pa-sec
These are the fundamental flow parameters. Shear rate is
always a change in velocity with respect to distance.
TAINSTRUMENTS.COM
3
4/2/2019
TAINSTRUMENTS.COM
.
Extruder: γ = πDN/(60*h)
D = Diameter; N = rpm; h = gap
. Q = Output rate;
πD3)
Circular, Rod: γ = 32Q/(π D = orifice diameter
compounding, cable
.
Rectangular, Slit: γ = 6Q/(wh2) Q = Output rate;
w = width
cast film, sheet h = gap
.
π(D1+D2)h2)
Annulus: γ = 12Q/(π Q = Output rate;
D1 = Inner diameter
blown film, blow molding D2 = Outer diameter
h = gap
TAINSTRUMENTS.COM
4
4/2/2019
1.E+05
Newtonian Pseudoplastic
Region Behavior
1.E+04
Viscosity (Pa-sec)
1.E+02
1.E+01
.
η = m*γγ (n-1)
1.E+00
1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05
η0 ∝ MW3.4
Shear Rate (sec-1)
TAINSTRUMENTS.COM
4
5
6 8 9
1 2 3 7 10 11
1.00E-5 1.00E-4 1.00E-3 0.0100 0.100 1.00 10.00 100.00 1000.00 1.00E4 1.00E5 1.00E6
10
5
4/2/2019
y
Bottom Plate
x Displacement = 0
x = (y/H)*X0
γ = dxx/dy = X0/H Shear Strain, unitless
σ = F/A Shear Stress, Pascals
G = σ/γγ Modulus, Pa
These are the fundamental deformation parameters. Shear strain
is always a change in displacement with respect to distance.
TAINSTRUMENTS.COM
11
Stress Relaxation
109
• Instantaneous Strain
• Note the decrease in
the modulus as a
function of time.
)
[Pa]
108
G(t) (
F
G(t)
T=20°C
T=30°C
T=40°C
T=50°C
7
10
100 101 102 103
time [s]
TAINSTRUMENTS.COM
12
6
4/2/2019
Rheological Parameters
FLUIDS TESTING
. .
Rate γ ε Seconds-1
Stress σ τ Pascals
. .
Viscosity η = σ/γγ ηE = τ/εε Pascal-seconds
SOLIDS TESTING
Strain γ ε Unitless
Stress σ τ Pascals
TAINSTRUMENTS.COM
13
Rheological Parameters
CREEP TESTING
Stress σ τ Pascals
Strain γ ε Unitless
Compliance J = γ /σ
σ D = ε/τ 1/Pascals
TAINSTRUMENTS.COM
14
7
4/2/2019
Creep Testing
HDPE
Compliance (1/Pa)
2x10 -3
Viscoelastic
1x10 -3 Fluid
Solid
0x10 0
0 5 10 15 20
Step time (min)
Viscosity = 1/Stress is held constant.
Strain is Slope in steady flow regime.
Intercept = non-recoverable Compliance
TAINSTRUMENTS.COM
15
GEOMETRIES
TAINSTRUMENTS.COM
16
8
4/2/2019
Geometry Options
Water to Steel
TAINSTRUMENTS.COM
17
M x Kσ = σ =η Machine Parameters
M: Torque
Ω : Angular Velocity
Ω x Kγ γ• θ : Angular Displacement
Conversion Factors
Kσ : Stress Conversion Factor
Mx Kσ σ
Kγ : Strain (Rate) Conversion Factor
Rheological Parameters
θ xKγ γ
η : Viscosity (Pa-sec)
γ : Shear Strain
G : Shear Modulus (Pa)
TAINSTRUMENTS.COM
18
9
4/2/2019
Geometry
Couette Cone & Plate Parallel Plates
Conversion
Factor
Kγ Ravg/(Ro-Ri) 1/β
β R/h
Kσ πRi2L)
1/(2*π πR3)
3/(2π πR3)
2/(π
TAINSTRUMENTS.COM
19
TAINSTRUMENTS.COM
20
10
4/2/2019
Geometry Options
With the variety of cones, plates, cups and rotors available, select a geometry
based on desired experimental parameters and the material properties
Concentric
Cylinders (or Cups)
and
Rotors (or Bobs)
TAINSTRUMENTS.COM
21
TAINSTRUMENTS.COM
22
11
4/2/2019
= h increases proportionally to dx, γ is uniform
TAINSTRUMENTS.COM
23
Cone Diameters
Shear Stress
20 mm
40 mm
60 mm
3
As diameter decreases, shear stress increases =
2
TAINSTRUMENTS.COM
24
12
4/2/2019
Cone Angles
Shear Rate
Increases
2°
1°
0.5 °
1
As cone angle decreases, shear rate increases = Ω
"
TAINSTRUMENTS.COM
25
TAINSTRUMENTS.COM
26
13
4/2/2019
Correct Filling
TAINSTRUMENTS.COM
27
TAINSTRUMENTS.COM
28
14
4/2/2019
Plate Diameters
Shear Stress
20 mm
40 mm
60 mm
2
As diameter decreases, shear stress increases =
#
TAINSTRUMENTS.COM
29
Plate Gaps
Shear
Rate
2 mm Increases
1 mm
0.5 mm
As gap height decreases, shear rate increases = Ω
TAINSTRUMENTS.COM
30
15
4/2/2019
TAINSTRUMENTS.COM
31
TAINSTRUMENTS.COM
32
16
4/2/2019
TAINSTRUMENTS.COM
33
TAINSTRUMENTS.COM
34
17
4/2/2019
Torsion Rectangular
&
$% =
- #
' 1 ( 0.378 . w = Width
l = Length
3 0 1.2 t = Thickness
.
$/ =
3 · &#
Advantages: Disadvantages:
35
TAINSTRUMENTS.COM
36
18
4/2/2019
Geometry Examples
Coatings Beverages
Concentric Cylinder Slurries (vane rotor option)
Starch pasting
Low viscosity fluids
Viscosity standards
Cone and Plate
Sparse materials
Polymer melts in steady shear
Widest range of materials
Adhesives Polymer melts
Parallel Plate Hydrogels Asphalt
Curing of thermosetting materials
Foods Cosmetics
Thermoplastic solids
Torsion Rectangular
Thermoset solids
TAINSTRUMENTS.COM
37
Geometry Overview
Couette low viscosity samples high shear rate large sample volume
< 10 mPas
Double Wall Couette very low viscosity high shear rate cleaning difficult
samples < 1mPas
TAINSTRUMENTS.COM
38
19
4/2/2019
• DHR
Most common is 40-mm parallel plate; 1000 micron gap
Use 60-mm cone and plate and parallel plate for low viscosity materials, say, up
to 100 mPa-sec, but 40-mm geometries can often handle these materials too.
20-mm plates are often used at higher viscosities.
25-mm parallel plates are the preferred choice for polymer melts.
40-mm 2-degree is the most common cone geometry. This is often used to
verify an instrument with a viscosity standard.
8-mm plates are often used for pressure sensitive adhesives and for asphalt
around room temperature.
• ARES-G2
The most common geometry on the ARES-G2 is the 25-mm parallel plate.
Examples would be polymer melts and thermosetting materials.
Low viscosity fluids are run with 50-mm plates or cone-and-plate.
Again, 8-mm plates are used for adhesives and asphalt at room temperature.
TAINSTRUMENTS.COM
39
TEST METHODS
UNIDIRECTIONAL
TAINSTRUMENTS.COM
40
20
4/2/2019
Flow
TAINSTRUMENTS.COM
41
TAINSTRUMENTS.COM
42
21
4/2/2019
TAINSTRUMENTS.COM
43
Rate Ramp
Toothpaste
3
10
10 2
10 1
10 -1 10 0 10 1
Shear rate (1/s)
TAINSTRUMENTS.COM
44
22
4/2/2019
TAINSTRUMENTS.COM
45
250.0
225.0
In this case, the yield point
200.0
was about 135 Pa.
175.0
shear stress (Pa)
150.0
125.0
100.0
75.00
50.00
25.00
0
0 0.1000 0.2000 0.3000 0.4000 0.5000
shear rate (1/s)
TAINSTRUMENTS.COM
46
23
4/2/2019
Ramp Selection
• Do a ramp as a preliminary scouting test, prior to the more fundamentally sound rate or stress
sweep.
• For rate ramps, a common acceleration rate is 1 sec-1 per second. For example, 0 to 100 sec-1
in 100 seconds. This is a starting point. The operator can select a rate or a range that is more
appropriate for the sample in question.
• Ramp up/Ramp down tests are common for determining thixotropy. The area between the up
and down curves is often reported as a thixotropy parameter.
• There have been times when the reproducibility is better with the down curve than it is with the
up curve.
• Ramps are good for characterizing materials that may slip or exude from the gap as the shear
rate is increased. Often one can get to higher shear rates with ramps than with sweeps because
one doesn’t dwell at the high rates as long.
• Stress ramps are often used to get the yield point of a material. Sometimes these are not always
clear-cut. Also, one has to be cautious when working with models. There have been instances
where negative (!?) yield stresses are determined by software for the selected model.
• For stress ramps, use the Step Termination feature to prevent over-speed.
TAINSTRUMENTS.COM
47
TAINSTRUMENTS.COM
48
24
4/2/2019
1.E+06
Williamson Model
Viscosity (Pa-sec)
.
η = η0/(1+(σγ)c)
1.E+05
Cone and
Plate
1.E+04
1.E+03
0.01 0.1 1 10
η0 = KMw 3.4 Steady testing
Shear Rate (1/sec)
with cone and
plate and
Mw = 400,000 Mw = 250,000 Mw = 160,000 parallel plate
geometries is
The shear rate and shear stress are constant throughout the gap with the often limited to
cone-and-plate geometry.
Parallel plate data can be corrected with the Rabinowitsch correction.
low shear rates.
TAINSTRUMENTS.COM
49
Structured fluids
Examples: Properties:
Paints Yield Stress
Coatings Non-Newtonian Viscous
Inks Behavior
Personal Care Products
Cosmetics Thixotropy
Foods Elasticity
TAINSTRUMENTS.COM
50
25
4/2/2019
TAINSTRUMENTS.COM
51
10
2 acrylamide solution
syrup
1
Cocoa butter lotion
10 Shower gel
Co-polymer 240 °C
0
10
-1
10
-2
10
1E-3 0.01 0.1 1 10 100 1000 10000
.
Shear rate γ [1/s]
Viscosity function of various structured fluids
TAINSTRUMENTS.COM
52
26
4/2/2019
2
10 0.50% Polystyrene-ethylacrylate
latex particles in water
1 0.47%
10
Viscosity η [Pa s]
0
10
0.43%
-1
10
-2 0.34%
10
0.28%
0.18%
-3
0.09%
10 water
-4 -3 -2 -1 0 1 2 3 4 5
10 10 10 10 10 10 10 10 10 10
Laun (1984,1988)
Shear Stress τ [Pa]
Rheological parameters of interest:Yield stress, viscosity, time dependence, linear viscoelasticity
TAINSTRUMENTS.COM
53
TAINSTRUMENTS.COM
54
27
4/2/2019
Blow
B o lw Molding
M o ld in gPolyethylene
P o ly e t h y le n e
6 6
10 10
5 5
10 10 M-1 M-2
1
MFI 0.6 0.5
4 4
10 10
GPC-MW 131K 133K
3
Ψ 1(γ) M -1 3 Viscosity 8.4K 8.3K
10 10
Ψ 1(γ) M -2 at 1 sec-1
η (γ) M -1 CP
2 η (γ) M -2 CP 2 Die Swell 28 42
10 10
η (γ) M -1 C a p illa r y
η (γ) M -2 C a p illa r y
1 1
10 10
0 .1 1 10
S h e a r r a te γ [1 /s ]
TAINSTRUMENTS.COM
55
TAINSTRUMENTS.COM
56
28
4/2/2019
Wall Slip
TAINSTRUMENTS.COM
57
TAINSTRUMENTS.COM
58
29
4/2/2019
TAINSTRUMENTS.COM
59
Stress Relaxation
TAINSTRUMENTS.COM
60
30
4/2/2019
Stress Relaxation
PDMS
TAINSTRUMENTS.COM
61
TAINSTRUMENTS.COM
62
31
4/2/2019
TAINSTRUMENTS.COM
63
TAINSTRUMENTS.COM
64
32
4/2/2019
1,000
Room
Temperature
Viscosity (Pa-sec)
100
10
Printing Press
Temperature
1
20 25 30 35 40 45 50
Temperatue (C)
TAINSTRUMENTS.COM
65
Tack Testing
TAINSTRUMENTS.COM
66
33
4/2/2019
TEST METHODS
DYNAMIC TESTING
TAINSTRUMENTS.COM
67
Dynamic Testing
STRAIN
Response, Strain
ELASTIC
RESPONSE
90o
VISCOUS
RESPONSE
VISCOELASTIC
RESPONSE
δo
68
34
4/2/2019
Storage Modulus
σ0/γ0)cosδ
G’ = (σ E’ = (ττ0/ε0)cosδ Pa
(Elasticity)
Loss Modulus
G” = (σ
σ0/γ0)sinδ E” = (ττ0/ε0)sinδ Pa
(Viscous Nature)
. .
Cox-Merz Rule for Linear Polymers: η*(ω) = η(γ) @ γ = ω
TAINSTRUMENTS.COM
69
TAINSTRUMENTS.COM
70
35
4/2/2019
TAINSTRUMENTS.COM
71
Linear Viscoelasticity
Linear Region:
• Osc Stress is linear with Strain.
• G’, G” are constant.
This is typically the first test
done on unknown materials.
Non-Linear Region
G’ = f(γγ)
Stress v. Strain
End of LVR or
Critical Strain γc
72
36
4/2/2019
1000
G' (Pa)
100.0
73
1.000E7 1.000E7
PDMS
1.000E6 1.000E6
The material is stable in
this time range.
G'' (Pa)
G' (Pa)
1.000E5 1.000E5
10000 10000
1000 1000
0 5.0000 15.000 25.000 35.000
time (s)
TAINSTRUMENTS.COM
74
37
4/2/2019
TAINSTRUMENTS.COM
75
TA Instruments
1000000 This is an isothermal 1000000
time sweep. G'
5 mins.
100000 100000
10000 10000
G"
G' (Pa)
G'' (Pa)
1000 1000
1.000 1.000
0 200.0 400.0 600.0 800.0 1000 1200
time (s)
TAINSTRUMENTS.COM
76
38
4/2/2019
130°C
140°C 135°C 120°C
145°C 125°C
Time (min)
TAINSTRUMENTS.COM
77
TAINSTRUMENTS.COM
78
39
4/2/2019
Frequency Sweep
TAINSTRUMENTS.COM
79
TAINSTRUMENTS.COM
80
40
4/2/2019
H D P E p ip e s u r f a c e d e f e c ts
Indicated by T = 220 C
o
5 5
10 10
Elasticity at
η* ro u g h s u rfa c e
MWD η* s m o o th s u rfa c e
0 .1 1 10 100
F r e q u e n c y ω [r a d /s ]
TAINSTRUMENTS.COM
81
TAINSTRUMENTS.COM
82
41
4/2/2019
10000
1000
Flow instability
100.0
1.000E-3 0.01000 0.1000 1.000 10.00 100.0 1000
shear rate (1/s)
TAINSTRUMENTS.COM
83
7
10
Molecular weight
130 000 Zero shear viscosity increases
6 230 000
10
320 000 with increasing MW
430 000
Viscosity η* [Pa s]
5
10
Zero Shear Viscosityηo [Pa s]
4
10 Zero Shear
Viscosity
0
10
6
10
10
3
Slope 3.08 +/- 0.39
increasing MWD
-1
10
5
10
100000
2
10 Molecilar weight Mw [Daltons]
Viscosity η*/ηo
-4 -3 -2 -1 0 1 2 3 4 5 -2
SBR polymer broad,
10 10 10 10 10 10 10 10 10 1010
narrow distribution
Frequency ω aT [rad/s] η*red 430 000
10
-3 η*red 320 000
When shifting along an η*red 230 000
η*red 130 000
axis of -1, all the curves 10
-4
TAINSTRUMENTS.COM
84
42
4/2/2019
5
10
4
10
SBR polymer melt
G' 310 000 broad
3
G" 310 000 broad
10
G' 320 000 narrow
G" 320 000 narrow
-3 -2 -1 0 1 2 3 4
10 10 10 10 10 10 10 10
85
1.000E6 1.000E6
Extended Frequency range with TTS
Reference Temperature = 210°C
1.000E5 1.000E5
10000 10000
G”G''(Pa)
G’G'(Pa)
(Pa)
(Pa)
1000 1000
Frequency range
10.00 10.00
0.01000 0.1000 1.000 10.00 100.0 1000 10000 1.000E5
ang. frequency (rad/s)
ang. frequency (rad/s)
TAINSTRUMENTS.COM
86
43
4/2/2019
TAINSTRUMENTS.COM
87
with Time-
Temperature
Superposition (TTS)
Measure in Flow Mode & Cox-Merz
1.00E-5 1.00E-4 1.00E-3 0.0100 0.100 1.00 10.00 100.00 1000.00 1.00E4 1.00E5
88
44
4/2/2019
TAINSTRUMENTS.COM
89
TAINSTRUMENTS.COM
90
45
4/2/2019
(Pa.s)
η0 = A*exp(Eact/(R*T))
.
η = η0/(1+(η0*γ/σcrit)c)
Viscosity
A 2.09E-3 1.01E0
c 0.60 0.56
TAINSTRUMENTS.COM
91
T a c k a n d P e e l p e rfo rm a n c e o f a P S A
g o o d ta c k a n d p e e l
B a d ta c k a n d p e e l
Storage Modulus G' [Pa]
4
10
peel
3
10
ta c k
0 .1 1 10
F r e q u e n c y ω [r a d /s ]
Desirable PSA characteristics
Tack: high G‘ at low frequency
Peel: low G‘ at high frequency
TAINSTRUMENTS.COM
92
46
4/2/2019
Practical Adhesive
Property Rheological Properties
Property
TAINSTRUMENTS.COM
93
TAINSTRUMENTS.COM
94
47
4/2/2019
High
Low Med.
MW
MW MW
Temperature
TAINSTRUMENTS.COM
95
Effect of Crosslinking
Mc = MW between
crosslinks
120
160
log E' (G')
300
1500
9000
30,000
Temperature
TAINSTRUMENTS.COM
96
48
4/2/2019
Good Bad
High Strain tan δ
Viscosity, η* Similar
tan δ (low γ) 1.0 0.8
S' [dNm ]
14.0
13.0
12.0
11.0
10.0
9.0
8.0
4.0 6 6
3.0
2.0
1.0
0.0
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
Tim e [m in]
11.0 12.0
5 5
13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0
4 4
1010 3 3
2 2
1 1
1 0 0
0.1 1 10 100 1000
97
σ(t) = σ0 sin(ωt+δ)
LAOS
γ(t) = γ0 sin(ωt)
= Σ σ sin(nω +ϕ )
n=1
n 1 n LAOS is often called Fourier Transform Rheology, or FT Rheology.
A useful way of quantifying non-linear behavior is to compare
odd intensity ratios like σ3/σ1, σ5/σ1.
TAINSTRUMENTS.COM
98
49
4/2/2019
0 .1 5
P IB 2 4 9 0 Ability to “fingerprint”
T = 2 8 .1 o C a material.
7 1
Harmonics I /I , I /I , I /I
100 ω = 1 ra d /s
Modulus G', G", [Pa]
5 1
80
60
σ (t )
600
400
σ (t )
0 .1 0
40
200
20
T im e Tim e
Strain
Strain
0 0
70 75 80 70 75 80
3 1
-20
P IB 2 4 9 0 -200
PIB 2490
-40 o o
T = 2 8 .1 C T= 28.1 C
ω =1 ra d /s -400 ω =1 rad/s
-60
γ =1 0 0 % γ=3000%
-80 -600
linear Non-linear 0 .0 5
10
0 .0 0
1 E -4 1 E -3 0 .0 1 0 .1 1 10 100
S tra in γ []
99
LAOS on PDMS
0.2
10 4 0.1
0.0
10 3 -0.1
10 1 10 2 10 3
Oscillation strain (%)
TAINSTRUMENTS.COM
100
50
4/2/2019
TAINSTRUMENTS.COM
101
PDMS_LAOS_2015_Transient -h
1.0 1.5
0.8
1.0
0.6
0.5
0.4
0.0
0.2
-0.5
0.0
-0.2 -1.0
10 1 10 2 10 3
Oscillation strain (%)
102
51
4/2/2019
Dynamic Testing
TAINSTRUMENTS.COM
103
THE RHEOMETERS
TAINSTRUMENTS.COM
104
52
4/2/2019
Torque range
Angular Resolution
Angular Velocity Range
Frequency Range
Normal Force
TAINSTRUMENTS.COM
105
106
53
4/2/2019
DHR ARES
Separate motor & transducer
Combined motor & transducer Or Dual Head
Or Single Head
Displacement Measured
Sensor Transducer
Torque
Measured (Stress)
Strain or
Non-Contact Rotation
Drag Cup Motor
Applied
Torque
(Stress)
Sample
Applied Direct Drive
Static Plate Strain or Motor
Rotation
TAINSTRUMENTS.COM
107
TAINSTRUMENTS.COM
108
54
4/2/2019
All Discovery Hybrid Rheometers Feature: Moving from HR-1 to HR-2 Adds: Moving from HR-2 to HR-3 Adds:
- Patented Ultra-low Inertia Drag-Cup Motor - 5X better low torque in Oscillation - 4X better low torque in Oscillation
- Single-Thrust & Dual-Radial Bearing Design - 2X better low torque in steady Shear - 2X better low torque in steady Shear
- Patented Second Generation Magnetic Bearing - 25% Higher torque - Optical Encoder Dual Reader (pat. Pend.)
- Nano-Torque Motor Control - 2X better NF Sensitivity - 5X better angular resolution
- High-Resolution Optical Encoder - Direct Strain Oscillation - 3X better phase angle resolution
- Superior Stress and Strain Control - Fast data sampling - No encoder drift
- Force Rebalance Normal Force (FRT) - Transient Data Acquisition/LAOS
- Patented Smart Swap Geometries - Stress Growth (Transient NF)
- True Position Sensor (Patent Pending) - Access to UV Curing Options
- Ultra-low Compliance Single-Piece Frame - Access to SALS Option
- Heat and vibration Isolated Electronics Design - Access to Interfacial Options
- Smart Swap™ Temperature Systems
- Superior Peltier Technology
- Patented Heat Spreader Technology
- Patented Active Temperature Control
- Color Display
- Capacitive Touch Keypad
- TRIOS Software
- Navigator Software
- Electronic Bearing Lock
- NIST Traceable Torque Calibration
TAINSTRUMENTS.COM
109
TAINSTRUMENTS.COM
110
55
4/2/2019
1000
10
ARES-G2
DHR-1
1 DHR-2
DHR-3
0.1
Oscillation Steady
ARES-G2 50 100
DHR-1 10 20
DHR-2 2 10
DHR-3 0.5 5
TAINSTRUMENTS.COM
111
SELECTED ACCESSORIES
TAINSTRUMENTS.COM
112
56
4/2/2019
TAINSTRUMENTS.COM
113
TAINSTRUMENTS.COM
114
57
4/2/2019
ARES-G2 Accessories
TAINSTRUMENTS.COM
115
DMA Capabilities
TAINSTRUMENTS.COM
116
58
4/2/2019
TAINSTRUMENTS.COM
117
TAINSTRUMENTS.COM
118
59
4/2/2019
TAINSTRUMENTS.COM
119
DMA Specifications
Frequency Range 1e-5 to 628 rad/s 6.28e-3 to 1250 rad/s 6.3e-5to 100 rad/s 6.3e-5to 100 rad/s
(1.6e-6 to 100 Hz) (0.001 to 200 Hz) (1.0e-5 to 16 Hz) (1.0e-5 to 16 Hz)
Dynamic +/- 0.05 to 1,500µm +/- 0.005 to 1e4 µm +/- 1 to 50 µm +/- 1 to 100 µm
Deformation Range
Control Control Strain (SMT) Control Stress (CMT) Control Strain Control Stress
Stress/Strain (CMT) (CMT)
Heating Rate 0.1oC to 60oC/min 0.1oC to 20oC/min 0.1oC to 60oC/min 0.1oC to 60oC/min
Cooling Rate 0.1oC to 60oC/min 0.1oC to 20oC/min 0.1oC to 60oC/min 0.1oC to 60oC/min
TAINSTRUMENTS.COM
120
60
4/2/2019
121
122
61
4/2/2019
Extensional Viscosity
ηΕ = 3 x η0
• LCB polymer shows strain hardening effect
Linear Branched
TAINSTRUMENTS.COM
123
• Collimated light and mirror assembly insure uniform irradiance across plate diameter
• Maximum intensity at plate 300 mW/cm2
• Broad range spectrum with main peak at 365 nm with wavelength filtering options
• Cover with nitrogen purge ports
• Optional disposable acrylic plates
TAINSTRUMENTS.COM
124
62
4/2/2019
TAINSTRUMENTS.COM
125
UV Curing Procedure
TAINSTRUMENTS.COM
126
63
4/2/2019
UV Curing Procedure
TAINSTRUMENTS.COM
127
TAINSTRUMENTS.COM
128
64
4/2/2019
Tribology
TAINSTRUMENTS.COM
129
TAINSTRUMENTS.COM
130
65
4/2/2019
Coefficient of
Friction, µ
1
(ηoilΩ)/FL
TAINSTRUMENTS.COM
131
TAINSTRUMENTS.COM
132
66
4/2/2019
TAINSTRUMENTS.COM
133
TAINSTRUMENTS.COM
134
67
4/2/2019
Interfacial Rheology
TAINSTRUMENTS.COM
135
TAINSTRUMENTS.COM
136
68
4/2/2019
1.8 0.0
1.08
0.01 Both dynamic and
steady flow tests
can be performed
1E-3 with the interfacial
geometry. This is
an example of a
1E-4 dynamic strain
sweep.
subphase base line
1E-5
137
DHR-RH Accessory
Temperature-
Technology Controlled
Transfer Line
Geometry
Heat Breaks
Chamber Heat
Spreaders Humidity
Generator Sample Chamber
Peltier-controlled
Sample Chamber
TAINSTRUMENTS.COM
138
69
4/2/2019
Temperature
Temperature
RH
RH
RH
time time time
Isothermal, RH Step Isohume, Temp Step RH Step, Temp Step
Temperature
Temperature
Temperature
RH
RH
RH
time time time
TAINSTRUMENTS.COM
139
Test Geometries
TAINSTRUMENTS.COM
140
70
4/2/2019
DiffusionDiffusion
TAINSTRUMENTS.COM
141
Ring
Vessel
• Surface rheological
properties and process
kinetics
• Very simple sample loading
• Ideal for:
Fast evolving systems
Samples with shallow
interaction depth
Drying, curing…
TAINSTRUMENTS.COM
142
71
4/2/2019
Rheo-Raman Accessory
Rheo-Raman on a
hand lotion
TAINSTRUMENTS.COM
143
• Instrument Manuals
• Help Feature in Trios
• TA Instruments website
• TA Instruments Rheology Helpline
rsupport@tainstruments.com
TAINSTRUMENTS.COM
144
72
4/2/2019
Website: www.tainstruments.com
TAINSTRUMENTS.COM
145
Website: www.tainstruments.com
TAINSTRUMENTS.COM
146
73
4/2/2019
TA Tech Tips
TAINSTRUMENTS.COM
147
On Line Training
TAINSTRUMENTS.COM
148
74
4/2/2019
TAINSTRUMENTS.COM
149
TAINSTRUMENTS.COM
150
75
4/2/2019
Thank You
TAINSTRUMENTS.COM
151
76