Inductance, Capacitance, Etc
Inductance, Capacitance, Etc
Inductance, Capacitance, Etc
Inductor
An inductor is an electrical component that opposes any change in electrical
current based on the magnetic field. The source of the magnetic field is the
charges in motion.
di
v=L
dt
di
vdt = L dt = Ldi
dt
1
di = vdt
L
i ( t1 ) 1 t1
∫i (t0 ) di = L ∫t0 v(t )dt
1 t1
i (t1 ) − i (t0 ) = ∫ v(t )dt
L t0
1 t1
i (t1 ) = ∫ v(τ )dτ + i (t0 )
L t0
1 t
p (t ) = v (t ) ⋅ i (t ) = v (t ) ⋅ ∫ v (τ ) d τ + i (t 0 )
L t0
dw dw(t )
= p⇒∫ dt = ∫ p (t ) dt = ∫ v(t ) ⋅ i (t ) dt
dt dt
dw(t ) di
∫ dt dt = ∫ L dt ⋅ i(t ) dt
∫ dw = ∫ Li di
i (t )
w(t ) − w(t0 ) = ∫i (t ) Li di
0
i (t )
w(t ) = L ∫i (t ) i di + w(t0 )
0
2 i (t )
i
w(t ) = L + w(t0 )
2 i ( t0 )
w(t ) =
2
[
L 2
]
i (t ) − i 2 (t0 ) + w(t0 )
L 2
if w(t0 ) = 0 and i (t0 ) = 0, then w(t ) = i (t ).
2
Example
for t≤0
i=0
i = A sin wt for 0 ≤ wt ≤ 2π
i=0 for wt ≥ 2π
+
i L v
−
2 w ∫0
w= ⋅ ⋅ sin τ dτ 2
2
2 wt wt
=−
LA 2
cos τ =
LA 2
(1 − cos 2 wt ) π /2 π 3π / 2 2π
4 0
4
Capacitor
A capacitor is an energy storage element that stores the energy in the electric field. The electric
field results from the separation of charges (voltage).
i in amps
+ v −
dv
C in farads i =C
v in volts dt
t in seconds
i
C
Capacitors in Picture
Electrical Relationship for Capacitor
p (t ) = v(t ) ⋅ i (t )
dv(t ) 1 t
i (t ) = C p (t ) = ∫ i (τ ) dτ + v(t0 ) ⋅ i (t )
dt C t0
i (t) dt = C dv
v ( t1 ) 1 t1 dw(t ) dv(t )
∫v (t0 ) C ∫t0 i(t ) dt
dv = p(t) =
dt
= v(t ) ⋅ C
dt
1 t1 dw(t ) dv(t )
v(t1 ) − v(t0 ) = ∫ i (t ) dt dt = Cv(t ) dt
C t0 dt dt
1 t
v(t ) = ∫ i (τ ) dτ + v(t0 ) ∫ dw = ∫ Cv dv
C t0
Cv 2 (t )
w(t ) =
2
Example
i=0 t=0 dv
i =C
dt
i = Bt 0 ≤ t ≤ 10
i dt = C dv
i=0 t ≥ 10 1
dv = i dt
C
+ v(t ) 1 t
i C v
∫v(0) C ∫0 i dτ
dv =
− 1 t
v(t) = ∫ i dτ + v(0)
C0
v(0) = 0
1 t
v(t) = ∫ Bτ dτ
Find v(t), p(t), w(t). C0
1 Bt2
v(t) =
C 2
10B
i(t )
i (t ) = Bt
5 10 t
1 B100
C 2 1 Bt 2
v(t ) v(t ) =
C 2
5 10 t
1 Bt 2
1 B 21000 p (t ) = v(t ) ⋅ i (t ) = ⋅ Bt
C 2
C 2
p(t ) 1 B 2t 3
=
C 2
5 10 t
dw
= p (t ) ⇒ dw = p (t ) dt
1 B 210,000 dt
C 8 t
1 B 2τ 3
t
w(t ) w(t ) = ∫ p (τ ) dτ = ∫ dτ
0
C 0
2
5 10 t =
B2 t 4 1
= Cv(t ) 2
C 8 2
Series and Parallel Combinations
Inductors in series/parallel combine in manners analogous to resistors.
for inductors in series i i2 in
1
Leq = L1 + L2 + Κ + Ln
i (t ) = i1 (t ) = i2 (t ) = Κ = in (t ) L1 L2 Ln