Nothing Special   »   [go: up one dir, main page]

I Pu Model Test Paper 1

Download as pdf or txt
Download as pdf or txt
You are on page 1of 2

ST.

PHILOMENA PU COLLEGE
BYALAKERE, BENGALURU-560089
Sub: Mathematics
Subject Code:35
Time 1 Hour 30 minutes I PUC model paper 1 Max. Marks: 40 marks
PART A
One-mark questions carrying each 1*5=5
1. Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10 } , A = {1, 2, 5}, B = {6, 7} , then A  B is
(a) B (b) A
(c) A (d) B
2. If 𝐴 = {𝑎, 𝑏, 𝑐} , 𝐵 = {𝑏, 𝑐, 𝑑} 𝑎𝑛𝑑 𝐶 = {𝑎, 𝑐 , 𝑑 } then (𝐴 − 𝐵) × (𝐵 ∩ 𝐶) =
𝑎){(𝑎, 𝑏), (𝑐, 𝑑)} (𝑏) {(𝑎, 𝑐), (𝑎, 𝑑)}
(c){(a, c), (a, d), (b, d)} 𝑑) {(𝑐, 𝑎), (𝑑, 𝑎)}
1 − tan 2 15
3. The value of is
1 + tan 2 15
3
a) 1 b) 3 c) d) 2
2
sin ( −660 ) .tan (1050 ) .sec ( −420 )
4. =
cos ( 225 ) .cosec ( 315 ) .cos ( 510 )
3 3 2 4
a) b) c) d)
4 2 3 3
5. The conjugate of √3𝑖 − 1 =
a) √3𝑖 − 1 b) √3𝑖 + 1 c) − √3𝑖 − 1 d) −√3𝑖 + 1
Fill in the blanks by choosing the appropriate answer from those given in the bracket:
( 7 , 16, , 0)
6. If the set A has 4 elements then number of subsets of A is………………..
7. The value of 𝑖 9 + 𝑖 19 is……………………
8. If 𝐴 = {1,2,3} 𝑡ℎ𝑒𝑛 the number of non -empty subsets of A is ……………………..
answer all the following questions
9. Convert 540° into radian measure .
10. Write the following set in the set builder form {2,4,8,16,32}
Part B

Answer any THREE questions 𝟑×𝟐 =𝟔


11. If A={2,1} find 𝐴 × 𝐴 × 𝐴.
12. Let U ={1,2,3,4,5,6,7,8,9} ,A={1,2,3,4} , B={2,4,6,8} find (𝐴 ∪ 𝐵)′ =𝐴′ ∩ 𝐵′.
13. Find the radius of the circle in which a central angle of 60∘ intercepts an arc of length 37.4cm(use
22
𝜋= )
7
14. Find the value of 𝑠𝑖𝑛765°.
15. Find the multiplication inverse of 2 + 𝑖3
Part C
Answer any THREE questions 𝟑×𝟑=𝟗
2
16. Let f(x)= 𝑥 and g(x)=2x+1 be two real functions .find
(𝑓 + 𝑔)(𝑥), (𝑓 − 𝑔)(𝑥), (𝑓𝑔)(𝑥)
17. 𝐿𝑒𝑡 𝐴 = {1,2,3,4, … … … … … … . .14}. 𝑑𝑒𝑓𝑖𝑛𝑒 𝑎 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑅 𝑓𝑟𝑜𝑚 𝐴 𝑡𝑜 𝐴 𝑏𝑦 𝑅 = {(𝑥, 𝑦): 3𝑥 −
𝑦 = 0, 𝑤ℎ𝑒𝑟𝑒 𝑥, 𝑦 ∈ 𝐴}. Write down its domain ,codomain and range.
18. Prove that sin(3𝜃) = 3𝑠𝑖𝑛𝜃 − 4𝑠𝑖𝑛3 𝜃...
𝜋 𝜋 𝜋 1
19. Prove that 𝑠𝑖𝑛2 6 + 𝑐𝑜𝑠 2 3 − 𝑡𝑎𝑛2 4 = − 2.
𝑎+𝑖𝑏
20. 𝐼𝑓 𝑥 + 𝑖𝑦 = 𝑎−𝑖𝑏 prove that 𝑥 2 + 𝑦 2 = 1
Part D
Answer any THREE questions . 3× 𝟓 = 𝟏𝟓
21. Define modulus function. Write its domain and range . also draw the graph .
22. Define identity function . Write its domain and range . also draw the graph .
23. Prove that geometrically that cos(x + y) = cos x . cos y − sin x . sin y
sin 5𝑥−2 sin 3𝑥 +sin 𝑥
24. Prove that = tan 𝑥
cos 5𝑥−cos 𝑥
4 tan 𝑥(1−tan2 𝑥)
25. Prove that tan 4𝑥 =
1−6 tan2 𝑥+tan4 𝑥

********************************************************************************************

You might also like