MEL ZG621 VLSI DESIGN (Lect 5)
MEL ZG621 VLSI DESIGN (Lect 5)
MEL ZG621 VLSI DESIGN (Lect 5)
MEL ZG621
Lecture-5
26-08-2023
Dr. Vilas H Gaidhane
vhgaidhane@dubai.bits-pilani.ac.in
BITS Pilani
Dubai Campus
Lecture 5
Module 1 Module 2
2. CMOS Inverter
Vout = VDD − I R RL
For Vin VTO Transistor will be
in cut-off region
ID = IR = 0
Vout = VDD = VOH
26-Aug-2023 MEL ZG621 VLSI Design 5
Resistive Load MOS Inverter
For Vin = VOH = VDD >VDS Transistor will be in linear region
k n RL is a design parameter
which can be adjusted by the
circuit designer to achieve the
certain design goals.
Sample layout of resistive-load inverter circuits with (a) diffused resistor and (b)
undoped polysilicon resistor.
26-Aug-2023 MEL ZG621 VLSI Design 36
Resistive Load n-MOS Inverter
➢Power Consumption of Resistive load nMOS inverter
VDD − VOL
ID = IR =
RL
➢Assuming input voltage is low during 50% of operation time and high
during another 50% of time. The average DC Power
26-Aug-2023
7-Jan-18 MEL ZG621 VLSI Design 14
Depletion Load nMOS Inverter
In saturation mod e
kn ,load
0 − VT ,load (Vout )
2
I D ,load =
2
kn ,load
VT ,load (Vout )
2
=
2
In Linear mod e
kn ,load
2 VT ,load (Vout ) (VDD − Vout ) − (VDD − Vout )
2
I D ,load =
2
7-Jan-18
26-Aug-2023 MEL ZG621 VLSI Design 16
Depletion Load nMOS Inverter
➢Calculation of VOL
To calculate the output low voltage VOL we assume that the input voltage
of the inverter is equal to VOH = VDD.
The driver transistor operates in the linear region while the depletion-
type load is in saturation.
kdriver k
2 (VOH − VTO )VOL − V 2 = load −VT ,load (VOL )
2
2 OL 2
This second-order equation in VOL can be solved
kload
(VOH − VTO ) VT ,load (VOL )
2 2
VOL = VOH − VTO − −
kdriver
26-Aug-2023 MEL ZG621 VLSI Design 17
Depletion Load nMOS Inverter
➢Calculation of VIL dV0
By definition, the slope of the VTC is equal to (-1),.
= −1
dVin
The driver transistor operates in saturation while the load transistor
operates in the linear region.
kdriver
(Vin − VTO ) 2
2
kload 2
= 2 VT ,load (Vout ) (VDD − Vout ) − (VDD − Vout )
2
dVT ,load
Assume that the term is negligible with respect to the others.
dVin
dVout
Substitute Vin = VIL and = −1 we can obtain the
dVin
kload
VIL = VTO + Vout − VDD + VT ,load (Vout )
kdriver
26-Aug-2023
MEL ZG621 VLSI Design 19
Depletion Load nMOS Inverter
➢Calculation of VIH : At this input the slope is -1. The driver
transistor is in the linear region and load transistor is in saturation
kdriver kload
2 (Vin − VTO )Vout − Vout −VT ,load (Vout )
2 2
=
2 2
Differentiate both side with respect to Vin
dVout dVout
kdriver Vout + (Vin − VTO ) − Vout
dVin dVin
dVT ,load dVout
= kload −VT ,load (Vout )
dVout dVin
kload dVT ,load
VIH = VTO + 2Vout + . −VT ,load (Vout ) .
driver
k dV out
26-Aug-2023 MEL ZG621 VLSI Design 20
CMOS Inverter
➢Complementary MOS (CMOS) is consist of PMOS and NMOS connected
to a common input signal and operating in a complementary mode
hence called as complementary MOS.
➢Circuit topology is push-pull in
the sense that for high input, the
nMOS transistor drives (pulls
down) the output node
➢For low input the pMOS
transistor drives (pulls up) the
output node
➢both devices contribute equally
to the circuit operation
characteristics
VGS ,n = Vin
VDS ,n = Vout
and
VGS , p = − (VDD − Vin )
VDS , p = − (VDD − Vout )
(
Case 2: When Vin voltage exceeds VDD + VTO , p )
pMOS is cut-off and nMOS is
on operating in the linear region.
I D ,n = I D , p = 0
Vout = VOL = 0
I D ,n = I D , p
( )
kp
( )
kn 2
2 VGS , p − VTO , p VDS , p − VDS
VGS ,n − VTO ,n = 2
2
, p
2
( )
kp
( )
kn 2
2 Vin − VDD − VTO , p (Vout − VDD ) − (Vout − VDD )
2
Vin − VTO ,n =
2 2
Now differentiate the equation with respect to Vin
( ) ( )
kn VIL − VTO ,n = k p VIL − VDD − VTO , p ( −1) + (Vout − VDD ) − (Vout − VDD )( −1)
kn (VIL − VTO ,n ) = k p ( 2Vout − VIL + VTO , p − VDD )
2Vout + VTO , p − VDD + k RVTO ,n
VIL =
1 + kR
kn
where k R =
kp
26-Aug-2023 MEL ZG621 VLSI Design 28
CMOS Inverter
➢Calculation of VIH
When input is VIH , nMOS operates in linear region and pMOS operates saturation
(VGS , p − VTO , p )
kp
( )
kn 2
2 VGS ,n − VTO ,n VDS ,n − VDS
2 =
2
,n
2
W W
n Cox n
kn L n L n
= =
kp W W
p Cox p
L p L p
W
L
n p 230cm / V s
2
=
W n 580cm2 / V s
L
p
W W
L 2. 5 L
p n
26-Aug-2023 MEL ZG621 VLSI Design 30
Design of CMOS Inverter
For symmetric inverter
1
(
VIL = 3VDD + 2VTO ,n
8
) and
1
(
VIH = 5VDD − 2VTO ,n
8
)
and
VIL + VIH = VDD
Noise margin
NM L = VIL − VOL = VIL
NM H = VOH − VVIH = VDD − VVIH