Internal Combustion Engine
Internal Combustion Engine
Internal Combustion Engine
ii
1l
84
r
INTERNAL COMBUST¡ON ENGINES
| ^{mrrnr I
r. (c) z (d) & (¿) 4 (ó) ó (a) 6. (c) I
& (c) e. (ó) lO (c). 7. (a)
_
:nrronnucAr er.r'sTr;G-l
l. Name the two gen"r" r".r""
| Air Standard CYcles
z Discuss thererative adva¡taro "ffieylasicauy
d aris"¿r*t"g&-"ii"üi"JJ.b.ouoo
sp-
difrain principle ?
& baeic ty{s u_t"-¡ *Ju*["]?ñ#'z w,.t mginss. 3.1. Definition of a cycle.3.2. Air standard efrcienry. S'3' The Carnot rycle'3'4",Comtant
ill;H"Jlii:? "od"rt"-"Ioorrhuti-on
*," tuadamental cycle'
"". difiereacss volume or Otto cycle. 3.5. Constant Preasure or Diesel cycle' 3'6' Dual combustio¡
¿L What is the function á.i. bo*pu.o" Jf ot¡o, Diesel antt Dual combustion rycles_Efiiciency versus courpression
porte¡governor.ofa Eoven
- nor?Enumeratethetypeeofgovemorsanddiscusswiüaneatsketcht¡e
ratio--Fór the same compression ratio md the same heat input-For coDstant maximm
5. Dilfermtiate between a flywheel and a govemor. pressure and heat supplieil. 3.8. Atkinson cycle' 3.9. Ericsson cycle' 3'l0 Brayton-cycle'
6, (al the fuction of a carburettor i.fr-Sti"tlrg 3.12. Miller cycle. 3.13' lcnoir cvcle-Highlights-Objective lYpe Quegtiorp
_Jr¿rt€ in a petml engine. "y4". Examples.
(á) Describe a simple Theoretical QuestioeUnsolved
carburettor
with u o""t
Explain with neat sketches the construction "t"t¿r-LJio state its limitaüons.
and worling ofthe following :
(d) Fuel p'mp
& Exptain tie roitowing rerms as apptied 8.1. DEFINITION OF A CYCLE
r" I.c.
Bore, stroke, T.D,C., B.D.C., clearane ,h,*t"t #':: A cycle is defined as a repeated, series of operations occuring in a certain ord.er, lt may be
volume, mept volurne, cor perfect
9. Dxplain withsuit"¡i".r"áo tr" *""H"c;;;;:;;"*k" repeated 6y repeating the procJsses in the samó oriler. The cycle may be of imaginary
ffiffñ:":-*tioandpietonspeed_ In ideal
to. Discuss the difference between i uüo" o. átout errgii". lbe former is called ideal cycle and the latter actual cycle'
11. i.:Tff t"::i$fr h:[*:*,,m;Tlroii:"*:,1;m;* .yJtu att teat losses are prevented and the working substance is assurned to behave like
,,ffiTi ::fi#n:: cyc,e spark a perfect"."i¿"ntal
working substance.
tz Disruss t,'e difference between trreoreticar
l& a¡d actual valve timing diagrams
of a diesel engine ?
the developmmt of two
ü; 3.2. AIR STANDAND EFFICIENCY
ffiJ!"-""" "rote "rg;;;;'; are rhe two main t¡rpes of two sroke
it is ofparamount importancethat the effect ofthe
t4 To compare the effects ofdifferent cycles,
calorific value of the fuel is altogether eiiminated uttd thit can be achieved by considering air
15. iñ"T?:#1T:',r',i*:[:t]ffi::ffi:Tcvcresparkignition(sr)ensine.Howüsindicarorüagran
compare the relative advutages and disadvantages (which is assumed to behave as a f,erfect gas) as the working substance.in the engine cylinder. ?he
offour stroke and two stroke cycle
engines. efficiency of engine usíng aír as ti" workíng medium is kniwn os on "Air standard
efiiciency"'
This efliciency is oftenly called ideal efficiency.
of that cvcle
The actual efñciency of a cycle is always less than the ai¡-standard efficiency
under ideal conditions. This is trken into account by introducing a ne$' term "Relative
effi'
ciency" which is defined as :
Actual thermal efficiencY ...(3.1)
lrehtivc =
Air standard effrciency
The analysis ofall air standard cycles is based upon the following assutnptions:
Assumptions :
1. The gas in the engine cylinder is a perfect gas i.e., it obeys the gas laws and
has con-
stant specific heats.
2. The physical constants ofthe gas in the cylinder are the same as those ofair at
moder'
ate temperatures i.e., the molecular weight of cylinder gas is 29'
cp = 1.005 kJ/kg-K, cp = 0'718 kJ&g-K'
place without
3. The compression and Lxpansion pro."".", are adiabatic and they take
internal friction, i.e., these p¡ocesses are isentropic.
4. No chemical reaction takes place in the cylinder. Heat is supplied or rejected-by
bring-
or a body in contact with cylinder at appropriate points during the
ing a hot body cold
Drocess.
85
86 INTERNAL COMBUSTION ENC¡NES 87.
AIR STANDARD CYCLES
5. The cyclc is considert:d r:lr¡sed with the same'air' always remaining in the cylinder
to Stage (1). Line 1-2 fFig, 3.1 (c)l reprerente the ieotbermal expansion whic,b take¡ place at
repeat the cycle.
temperatuie ?, when source ofheat lf is applied to the end ofcylinder. Heat eupplied in this caee
It.S. THE CARNOT CYCLE is given by R?, log" r and where r ie tbe ratio of oxpansion.
Stage (2). Lino 2-3 represents the epplication of non-conducting cover to the end of the
This cyclc has the lrrgñcsf ¡ressible fficienq and consists of four simple operations namely, cylinder. This is followed by the adiabatic €apansion and the temperature falls from Trta T2,
(a) Isothe¡mal expansion Stage (3). Line 3-4 represents the isot¡ermal compression which takes place when sump
(ó) Adiabatic expansion ,S' is applied to the end ofcylinder. Heat is rejected during this operation whose vslue is given by
(c) Isothermal compression RTrlog" r where r is the ratio ofcompression.
(d) Adiabatic compression. Stage (4). Line 4-1 represents repeated appücation of non-conducting cover and adiabatic
The condition of the ca¡not cycre may be imagined to occur in the foilowing way : compression due to which temperature incceas€s fron ?, to ?t.
One kg of a air is enclosed in the cyliuder which (except at the end) is made of perfect non- It may be noted that ratio of €xpaDEion during isotherrnal 1-2 and r*tio of conpression
conducting material' A source of heat 'II' is supposed to provide unlimited quantity of during isothermal 3-4 must be equal to get a closed cycle.
heaü, non- Fig. 3.1 (b) represents the Carnot cücle on ?'s coordinates.
conducting cover 'C, and a sump 19 which is of infrnite capacity so that its ierrpeiature
remains Now according to law of conservatim of energy,
unchanged irrespective ofthe fact how much heat is supplied to it. The temperature
of source I/ is
?t and the same is of the working substance. Ttre working substance while rejecting heaü to sump Heat supplied = Work done + Heat rejected
',S'has the temperature Tri,e.,tLLe same as that of sump S. Work done = Ileat supplied - Heat rejected
Following are the fozr sú4ges ofthe Ca¡not cycle. Refer Fig. 8.1 (o). =R?r.log"r-RTrlog"r
Work done Rlog.r (T1-72)
Efñciency of cycle = ll*t""pp¡j*d=- n1-t*t
Tt-T,
--TL ...(B.z)
From this equation, it is quite obvious that iftenperature ?, decreasos, efficiency increases
and it if ?, becomes absolute zem which, ofcourae is impossible to attain. Further
becomes 100%
more iú is not possible ío prod.uce an enginc that should work on Cornot's qrcle o.8 it would.
necessitate the píston to tráuel uery sloui$r furing first portion of the forword. stmlrc (isothermal
erpansian) ond. to travel more quíchly duing the renainder of the strohe @d'iabatít ezpansiPn)
which however is not practízable.
Example 8,1. A carnot engine worhing between 400'c dnd, 40"c produces 130 hJ of work.
Determíne :
(í) The engine thermol efficiency.
(íi\ The heat ad.d.ed',
(iíi) The entropy changes during lual rejectinn proc¿ss'
Solution, Temperature, T1= Tr= ¿100 + 273 = 673 K
Temperature, Tr= Tr= 40 + 273 = 313 K
Work produced, lV = 130 hI.
(i) Engine thermel efñciency' q," :
n,^. =
gHg = 0.6:|6 or 68.ó7o.
(Ans)
(ii) Heaü added :
Workdone
rl¿. =
He¡t added
(c) Four stages of camot cycle (ó)T-s üagram
0.5s5 =
Fig.3.1 Healk;¡
.'. Heat added = # = 243 kr. r,lns)
INTERNAL COMBUSTTON ENG¡NES
AIR STANDARD CYCLES
(iii) Entropy change durlng the heeü rejection proccss,
(S, - S.) : (ii) The volume aú the end of isothermel expansion V,
Heat rejected = Heat added - Work done
:
Heat transferred during isothermal expansion
= 243 - 130 = 118 kJ
313 K
T-S diagram
p-V d¡agram
e =
[+)" L T
r,=#=#=ae3.2K=?s -
18 x 10o x 0'18
loe- (1.5) = 0.192 ¡¡¡6 $ns.)
10o x 683
= 11 (s2 - sl)
= 683 x 0'192 = 131.1 kI
/¡¡ \
Heat rejected, e,=pava." l.ü]
= Ta (Ss - Sa) becauee increase
in entropy during heat adilition
il eqiral ti d"".uu"" in entropy during heat rejection'
Q" = 333.2 x 0.192 = 63.97 kJ
.'. EfficiencY,
a"-a, .
,,=-A- Q,
63 97 ot 51.27o. (AnsJ
FiC.3.1 - 1- - 131.1
= 0.512 i
rI
I
I
92
¡NTERNAL COMBUST¡ON ENGINES
r AtR sTANDARD cYcLEs 93
(u) Power of the engine, p :
Power of the engine working on tbis Example 3.G. An id'eal engine operotes on the Carnot cacle usíng a pet'ects gos as the
cycle is given by
workíng flui.d. The ratio of the greatest to the leost uolume is fired atd ís r : 7, the lower tempera-
Examp, e s.4. A,_"::!,,;ü;;;;W:#i:i,,-*T# ,1!; ,#::,0
ture of the cycle is also fi.xed, but the uolurne compression ratio'r'of tln reuersible d.iabatic
compression is uariable. Thc ratio of the specific heats is ^¡.
X:I:;:T:;",:¡,'!t:";:o
is reduced' av zo"c,;;;-"tu';,; is doubrcd. Find, the teiperature
when the
'
of the Show thot if the worh dnne in the cycle ís a manimum tlen,
Solution. Let ?, = Temperature ofthe source (K),
,,
and (Y- 1) Ioe L *J--t=0.
rl-t
= Temperaüure of the sink (Il).
Firct case , Solution. Refer Fig. 3.1.
vs v1
\-Tz _-6! =xi vL=r
Tr vr
t.€., 6Tr- During isotherms, since compression ratio = e4¡ansion ratio
GTr= T,
or 5?, = 67" ot Tr = 1.272
vs
Second case : ...G) -Yz
Vr-vt
Tt-ÍTr_(70+27a)l | vt vl lx
TL _
-3 Also -vs
va-vt x;; =&x fr
Work done per kg ofthe gas
T1_T, +343 I
Tr -3 = Heat supplied Heat rejected = F?rlo;, t
3Tt- gTz +
- : -RTrlog,
LO2g = Tr
T"= = l?16 K or
But
0.4
[
.'',h. =- _\ü91k done _ 0.4 x 60 I
H;rG;;,lied = CttTrr) -t*;7- +(y-1)roa | =o
whi¿h is not feasibte as no e1i
ca." ;'::::;:::7,han that workins on carnot cycte. (t ÍL
Hence claims of the inventor
is not true. (Ans.) - 1) lo& -l=0. Proved.
94
INTERNAL COMBUSTION ENCTNES
AIR STANDARD CYCLES
9.4. CONSTA¡¡'T VOLUME OR OTNO CYCL,E
ul
This cycle is so namcd. as_it was conceived by 'otto'. on this
cycre, petrol, gas and maoy 'Let compression ratio, r r-.r-
types of oil engines work. rú b th¿ sbndord of comiarison U2
for internál engines.
"áiuurt¡oi
Fig' 3'5 (o) and (ü) shows the theoreticalp-V diagram and ?-s diagrans
of t¡is cycle respec- g
tively. expansion ratio, r" (= r) =
t)g
The point 1 represents that cylinder is full of ai¡ with volume (These úpo rotios ore sorne in this cycle)
temperature ?r.
Vr, pressure p, and absolute
ñ | \'f-f
Line 1-2 represents the adiabatic compression of air due to whichpr,
V, and T, respectively, v, and ?, change to pr, As '2 - l,r I
T, \,2)
Line 2-3 shon's the supply ofheat to the air at constant volume
p3 and ?, (V, beingthe san as Vr).
so thatp, and T, change to Then, T"=Tr' ftf -'
Line 3-4 represents the adiabatic expansion of the air. During expansion pr,
change_to a finalwalue of p,vror y, and f. respectivety. V, and ?, Ts 1,,)t-t
;-=l-l
t4 \us,/
I¡ne 4-1 shows the rejecüion ofheat by air at constant vorume t'l original
state (point 1) -r
reaches. T'= Tn ' Q)r
Consider 7 hg of air (rryorkiug subsüance) : Inserting the values of T" and' ?r in equation (i), we get
Heat supplied at con¡tant vol.-e c,(Tg_ T2), T, _7, .L- Ta-Tt
= flo
Heat rejected at constqñt volu-" - =i__ =
tin _ í¡. rr-\\-T,)
But'workdone ",
:;"ü;:?ji"j;i;:'-?,";"' = 1_ :-:;-
I
(r)' '
Efficiency = c, (Tt -Tl) - cu (T¿ -Tt)
=!e4!99- -
flear supptrecl This erpression is known as th'e o;ir stor.dard. efficiency of the Otto cycle'
cu (T3 _ T2)
It is clear from the above expression that effrciency increases with the increase in the value
Tt-Tt of ¡, which means we can have maximum effrciency by increasing r to a considerable extent, but
-'- T"-T"
-i
due to practicoJ d.fficulties its ualue is limited, to about 9.
The n¿ü worh dnne per.kg in the otto cycle can also be expressed in terms ofp, u. Ifp is
expressed in bar i.¿. 105 N/m2, then work done
y¡=(o"ur-poro_prur-lülx102kJ ...(s.4)
\ 1-I T-I )
Arso *=r= X
.. ¿q=U=r_
P2PLP
where r, stands for pressure ratio.
Total volume--J
*=*[,,,(ffi-')-",.(f ')]
*1,,.[#-')-,,,,t* ')]
(rr-1-1)-pr i.r-l- r)]
(b) #[o,
Fis.3.5
T-
I I
I
96
r
¡NTERNAL COMBUSTION ENGINES AIR STANDARD CYCLES
specnc work =
"".,.u11]-,{:";,",":lü _ r,, = c,r(rs_ ry _ g::-r!)
(1206.9 - a00)l = 847 kJ/kg. (Ans.)
= tílz\<zttlz.t_689.1) -
Thermal efficiency, n* = 1-
#:T
=1- = 0.5647 or 56.479o' (Ans)
-+-;
(8)"'-'
ExampleS.lo.Anairstand.ardottocyclehasauolumetriccornpressíonratíoof6,the
Iowest iiia ond. operotes betuteen temperature límits of 27"c and 1569"C'
qrcle presswe of 0.1
0) Cotculote the temperoture and pressure after
the isentropíc expansion (ratio of specific
¡¿s¡s = L4).
cycle operating condí-
(ü) Since it is obserued that vohns in (i) are well aboue the lowest
process w@s ollowed' to continue d'own to a pressure of 0'1 MPa' Which
tions, the expansion
-irá"J"í
Fig.3.7 i".equíred' ti
compt'ete the clcle ? Nome the cycle so obtaíned"
(íií) Determitu by whai percenage the cycle eff't'cicncy has been
improued" (GATE' 1994)
(i) Preseures and temperatures at all points :
Adiabatic Compression process 7-2 : MPa= l bar;?' =27 +273
Solution-ReferFig' u2 vg =r=6;pl =0'1
3'8'Given'.}=3
'i /' \'f-I
; I =l?l
\%/
=1"¡'-' =(8)La-L =2.2e7 K
= 300 K ; ?g = 1569 + 273 = !842 ; T=
1'4.
(i) Temperature and prcsrure after the lsentropic elpansion' T4r P4 :
.l \ Tz = 3OO x 2.297 = 689.1 K. Gns.) air:
Consider 7 hg of
AIso pp{ = pzuzl Ft the comPression Process 7-2:
* =,,.(tl
a
lz=lrtl'=(8)La pru1l = p¡u] + = 1x(6f =123 bar
=18.8?e
Pt \uz)
:. pz = 1 x 18.379 = 18.379 bar. (Ans.)
Constant uolume process 2-3 : t, =lyr')t-t =(o)r.r-r = z.o¿a
Heat added durin¡ the process,
Also Tt lrr)
cu(l¿- ?r) = 1500 Tr= 300 x 2.048 = 614.4 K
r
INTERNAL COMBUSTION ENGINES AIR STANDARD CYCLES
For the constant uolume process 2-J :
+=+
4 ¡B
+ pr=hri =12.sr1842
ri2 614¿ = 36.9 ba¡
Fig.8.8
Now,
A=tfr)" or ?u= 184,
" (#) =65?K
For the expansíon process 3-4:
li
r. rr. 1='1(9=57;3P']
amson -r - (1842-614.4) = 0.5929 or 89.299o.
p (ba4 T (K)
Fig.3.r0
Ivrl P2
t;it = -Pl
\vz J
¡-s - !.2 (v,)
Dt
l' h-') s(kj/kgK)
or --l¿.)i
r?'\* =#-: t tt
=
Hene compression ratio lr=r^l;:1,;l?rr.
Fig.3.ll
(ii) Temperature at the end
of comprcssion, T, : Initial temperature, ?r = 38 + 273 = SLLK
In case of ad,iabatíc compression I-2,
Maximum temperature, ?s = 1950 + 273 = 2223If..
T2 lv, )t-t (i) Conpression ratio, r :
= l.üJ = (3'e7)r'4r -' = 1'76 For adiabati¡ compression 7-2,
"'Tz 1.76 Tt PlVl = PrVrr
:: = = 1.76 x B4S = 609.? K or ggO.?.C
nence temperdture at the end of cornpressioz ggg.7g. (Ans.). (y'\' o"
\v") -
(lll) Ts¡ps¡¿lure at the end =
of heat addition, T, : nr
According to constant uolume heating
operation 2-S Po
oi = tu
Q=c,(?3-T)=4ob But "'(Given)
-\,
0.706 (?3 _ 603.?) 465
=
or \-608.7= # "'
(r)r = 15
(r)l'a = 15
[ "=#]
or ^ = 465 + 603.7 = 1262.3 K or 989.3.C 7
o,'e r= (15)il = (15)0.?11 - 6.9
Hence ternperature at the" end, of heat a.dditían 9E9j.C. (Ans.)
Example 3'rz' In a constant uorume 'otto cycre',.=
Hence compression ratio = 6.9. (Ans.)
the pressure at the end of compression ís (ii) The¡mal efficiency :
at the start, t.he tempe-rature o¡ oir"iil'n,
!_l:y:: th.at
tnaxttnum tenaperature attained. ín the cycre
beginning of conpression is S8"C and 11
i 1s50"ó. Dete¡mine : Thermal effrciency, 4r¿ = 1- (rf:T = 1- (e9F4-1 = 0.538 or 53.87o. (Ans.)
I
I
r,
INTERNAL COMBUSTTON ENG¡NES
AIR STANDARD CYCLES
(ill) IVq¡k {q¡s .
?[ _(vrl"-,
=
14., =
r.r_l-
(rr, =(6.e)1.1_1=(6.e)0.1=2.16
i#;:x::::'::;i{S T,liri:;r::i":i::ii:l:;;':;;;.x';ff"T;7"#,if,-Y,i,!í:,
n¡lr
the pressure is 11 bor. zn Tz= Tt x 1.98 = 303 x 1.98 = 6fl) K. (Ans,)
niá,fx"',;;;í';";;;;;iT;,xkf,rÍ,i",il!,i?Wressi Applying gas laws to points 1 and 2, we have
(i) Pressures, temperdtures and. uolumes
at salíent points in the qcle, ptVt
(ii) Percentage cleara,nce. _ pzYz
(iiü Efficicncy. TL-Tz
+,X, u, = flffi€
t, (iu) Net work per c1rcle.
(u) Mean effectiue pressure. ,r= = o.oel ¡¡s. (Ans.)
1r
(ui) Ideal power dcveloped' by The heat supplied during the process 2-3 is given by
engine if the number or-working qrcles per minute
is 270.
:
.the
Assume the.qrcle is reuersible.
i
I
Q" = tn cu (Ts T2)-
I Solution. Refer Fig. B.12 I
ptVt 1x106x0.45
l Volume,{=0.45m9 1 where
^=ffi= ,8?-goa =o'517ke
Initial pressure, p1 = 1 6u"
210 = 0.517 x 0.71 (?, - 600)
Initial temperatr"",?, = B0 + 2?B = 303 K
Pressure at the end ofcompression stroke, p, 210
= 11 bar = o¡-iilT.z--f + 600 = u72 IL (Ans.)
Heat added at constant volüme 210 kJ " "¡
= For the cozsú¿nt volume process 2-3,
Number of working cycles/min.
=21O.
(i) Pressures, temperaúures
and volu¡¡es at salient points le=22
For adiabatic compression 1-2,
: /B t2
PlVl = prVrt Ta p, :áÉ
IL72
or= x 11 = 21.48 bar. (Ane.)
; n ' =
Vs = Vz = o.o81 m3. (Ans.)
i
-- =J+.*
TÍT_
For the adi.abatb (or isentropb) prress 34, (b) Determine the aír-standard. effíciency of the cycle when the cycle dzvelops n'Laxtmurrl
worh with the tetnperature limits of 310 K and 1220 K and, working fluid is oir. What wíll be the
PsVsr = PrYrr percentage change in efficiency if helium is used. as working fluid. instead of oir ? The cycle
operates betueen the same temperature lirnits for maxí¡nutn work dcuelopment.
P.=Psx (f)' ="' (i)' Consid.er that all conditions are id.eal.
Solution. Refer Fig. 3.13.
/r\L{
= Zr.a8 ' li\o.D,,f| = 1.97 bar. (Ans.)
= 21.95%. (AnsJ
(lii) Effieiency :
The heat rejected per cycle is given by
Qr= mco(Tt- Tt)
= 0.517 x 0.71 (591.8 - 303) = 106 kJ
Fig.3.1.3
The ai¡-standard efficiency of the cycle is given by
(o) The woik done per kg of fluid in the cycle is given by
210 - 106
=W
,l*, -Q.-zt1
- = 0^495 or 49.6%. (Ans.) W= Q- Q,= cu(Tr-7")-cu(Tl-T)
Altematively : I '=
Iotto = 1-
11
= 1- ('sf----.¡:r =
0.495 or 49.64o. {lnsJ
But
?= [fi (r)1-l
P^=
Tf (work done)
- Q"-Q,
w=",1r,-!.(r)1 '-#.n]
V"(swept volume) (Vr -Vz) This expression is a function of r when ?, and ?, are ñxed. The value of Wwill be maximum
..
\ =,!',T-,t99lltot=
(0.,15 - 0.081) x 10" = 2.818bar. (Ans.) dw
=0.
d'r
(u) Power developed, P l
Power developed, P = Worh done per second +dr =-7,.(^t-1) (r)Y-2 -?s(1 -T) (r)-1 =0
= Wort done per cycle x Nurnber of cycles per second ?, {r¡-r =Tr(7)t-2
OI
= (210 - 106) x (210/60) = 364 kW. (Ans.)
' Example 3.14. (o) Shout that tlv compression ratío for the marimum work to be d.one TB ¡,-\2(y-1)
per hg of aír in an Otto qtcle between upper and lower límits of absolute ternperatures T, and. T, ry = \')
is giuen by / m \U2(^r -r')
I l. I
r= Pr,ved'
--(bl'"'-"
'- l.4l l4l
I
, l0g
INTERNAL COMBUST¡ON ENGINES
lr' AIR STANDARD CYCLES
(ó) Change ln efñciency I
For aír .l L.4
= Tz=Tt= Jryr. Proved.
I /^\v2(L4-1, /--- \t/o.E (ó) Power developed, P :
.=l1.:l
'=lrr) _ [L22o\'
=|.sloj =tM 4=310K I
l The air-standa¡d efñciency is given by 4 = ra50Kl ....(Given)
m =o¿e kgJ
nouo = 1 #- = t - **r= = o.498 or 40.67o. (Ans.) Work done W = c, (?s - Tz) - (Tt- Tr)l
I
lf helium is used, then the values of
Tr= Tn = lEn = 1610 l45o = 6?0.1 K
cp = S22WikCiK and c, = g.1g ktkC K "
li W = o.vL K1450 - 670.4) - (670.4 - 310I
... c" 5.22
Y= =t'sz = 0.?1 (?79.6 - 360.4) =297.6kJtkr,
ii
ii
*=g,' Work done per second = 297,6 x (0.38/60) = 1.88 kJ/s
The compression ratio for ¡1o!-u6 work for the temperature limits ?, and ?, is given by Hence power developed, P = 1.88 kW. 6ns.)
- -', E¡qmple 3.16. For the same compression mtin, show that tlw fficiency of Otto cycle ís
,= (+)"' " ry1u',u,
1.4/ = ¡
[sroJ = 2.77 greater than that of Diesel qcle.
Soluüion. Refer Fig. 3.14.
The air-standard efficiency is given by
Ioto=l- =0.49d or
,h=t- ¿r9.59o.
w=
"1"
",1r"-n.,"n-, (rr'- --h.r,l |
/a
I Ir
\u2(t-r) I
F8.3.r4
r= lrl
l?r / We know that
Similarly, ,-=
vr vr'
v"=W='
¡oft_,ry"=#=Jrn v"' rr, then cut offratio, p= v"' r
ltrl J 14 J O
t= ü=;
INTERNAL COMBUSTION ENGINES
11t
Putting the value of p in 4u,*,, we get
l¿""¡ = I -
66263
Then
i=*=ó=('-i)-'='. -+-+-
,1213
Fig.3.15
volume increases from V, to V, and temperature Tztn ?3, conesponding to point 3. This point (3)
is called tbe poínt of cut off. The air then expands adiabatically to the conditions pn, Vn and Tn
fr.6 . r(r+1) 62 respectively corresponding to point 4. Finally, the air rejects the heat to the cold body at constant
... rrü""c,=l--'il#
.
J
Work done
n..
= Heat supplied - Heat rejected
= cp(Ts- Tr) - c"(To- Tt)
.= Work done
'drese¡ Heat supplied
The ratio inside the bracket is greater than 1 eince the co-efficients ofterms ü/r2 is greater
than 1 in the numerator. It means that.something more is subtracteil in case ofdiesel cycle than _ ci(Ta-Tz)-c,(Tt-T)
in Otto cycle. co(Ts -?12)
Hence, for sctme cornpressíon ratio 4o* > ü¡n¿.
-, (T4 -Tr) l.t :e=t¡
= '- rt4lD "'(;) lr'
3.5. CONSTANT PRESSI'RE OR DMSEL CYCLE L-ul
' This cycle was introduced by Dr. R. Diesel in 189?. It üffers frtm Otto cycle, in, that heat Volume at cut - off
Let compression ratio, r = 5 and cut offratio. o = !3- i.".
is supplied at constant pressure instead ofat constant volume. Fig. 3.15 (o and ó) shows the p-V u2 u2 Clea¡ance volume
and ?-s diaglarns of this cycle respecüvely. Now, during a.d.iabatic compression L-2,
This cycle comprises of the following opeltions:
Q) 7-2..... Ad.iobatic compression. ?7\= lo)t-'=(r)r-r or rr=rr.(")r-'
(¿i) 2-3.....Addition of heat at const@nt pressure. 1,, )
(iii) 3- 4..... Ad.iabatíc erpansion. During consúont pressure process 2-3,
' ^:
=p.rr=p. f,.
(iu) 4-l.....Rejection of heat at consto,nt volu¡ne. lc U.
or ?, (r)1-r
Point 1 represents that the rylinder is full ofair. Lct pr,V, and ?, be the corresponding t = t=p
pressure, volume and absolute temperature. The piston then compresses the air adiabatically (i.e. Dunng adinbatb expansion 3-4,
pVY = constant) till the values become pr, V, and, T, respectively (at the end of the stroke) at point ñ / \1-1
2. Heat is then added from a hot body at a constanü pressure. During this addition of heat let
ts lu¡ |
T4 l.rrj
INTERNAL. GQMBUSTJON f NSINES 113
/ \ltj1
lr I. (... n=o=st,.4='rl
\P,/, \ us ug u2 ug p)
...(3.9)
Fis'
''rG
-
Compression *tio,
l \
v-
' = rs
l= ¡fJ
lfor air = 1.4
=(:)'=r" '1 Air standard efficiency ofdiesel cycle is given hy
|L *=lr.')'
P, \uz) ", Pz=Pt'rrandS=r or uz-utr_,I
-
where p =
",rt-of.atio = f
] j-
prurrl -1 h(p - l) - rt -r (pr - 1) f^-v^=
ózloo V" (V" = stroke volume,
------- I
(1 - 1) ,(3.8)
I
¡
I
f
?'
,ri( _
AIR STANDARD CYCLES ll5
114 INTERNAL COMBUSTION ENGINES
rai*a=1
= 0.06 (Yr - Vr) = 0.06 (15
[,
Vz- V2)
*h[H]='
...
= 0.84 Vz or V, = 1.${
o=Y,=s=LYvz =r.r^
'Vzv2 When the fuel is cut-off at 87o.
= 1 - 0.248 x 1.563 = O.6L2
we have
"*n-'lq#]
or 61.2%
I
iló INTERNAL'CC'[¡ÉÜSiIdÑi IDNOTNE$ 1t7
ll_ 0.00e42
Hf(rAns.)
,'¡ ;I.; ¡ft; tnJ:,
",!t$i:g;!Jffi
_
= b3ó66tlB
1
;i;' t¡'i'}
,¡i.1.,. ) t ;;t;,..
^
-p¿-=!b-j
p;-=p¡-.=-44;81 bg..v i*r., :'
E cútfif iaiitJ
:t'¡: i' ,:,¡.r:i'1 r 'ft-.,{';:,¡ :rii:¡' .'
:',r,:r,
?t.,i 'iS: j.i. .. i\l-,-i ]i;l'¡a:!, {r|\n¡ii. .: í,ii1 } .:
8 :'r)r :''- :':
': Pl+-!
¿I- ir " : l
' 100;',15=1' i, ,
t:e. ,'t
.l]..''!i.'f,\'i;i.,:p:-5ry.6gi\¿¡r1=i.t¿
fltlilitit!l\i!
-'r.a
\',ij ,:tl i,,:ii1,.. r%: ó
'.i¡itiril.\':
ü :'z:rz* b.Oooetzs:'o.0oi4% ms.
11r:.,ir: i,!. q1i¡.11,1-1,r\: ..¡.ri.1,. .
(Ans.)
'
iEJ*% =fr x 0.00942 = 0.0101 m8. (Ans.) Tr = ?¡ t 0.457 = 1878.3 x O.457 = 858,38 IL (Ans.)
Mass ofthe air in the cylinder ca{r be calct¡lated
by usrng the gas qquation,
V¿=%=0.0101 m3. (Ans.)
(ii)'Ttreoretical air standaid efficiency :
PTV.=
^37,
-= ¿¡Vt=lxlou"o.010t T"¡ne, =' *hi#]=' o#-
= 1 - 0.2418-x-1.663 = 0.598 or 89,87o. (Ans.)
l#l
¡
I
I
I
lt8 INTERNAL COMBUSTION ENCINES AIR STANDARD CYCLES
(iii) Mean effective pressure, pñ : Me¡¡ effective p¡eaaure' pn :
Mean effective pressure ofDiesel cycle is given by Work done
_ _
P- =
by the cycle.
--3*6fioiñd-
Pl(r)l[fo-1)-rr-r(Pr -1)
^ - ----
'- (i_lx_lj-- Work done = Heat added - Heat rejected
x (15)u[r.4(2.12 (1s)1- L4 (2.1214 Heat added = mcp(Tt- ?¡), and
_ 1 - t) - - 1)]
(1.4-1X15-1) Heat rejected = mcu (Tt- T)
Now assume air as a perfect gas and mass of oil in the air-fuel mixture is negligible and is
_ aa.3rt1.56t:_0.9,,,,,,,,,,,,,,,.38 x t.8631 not taken into account,
= 7.424bar. (Ans.)
Prress 1-2 is an ad.iabati.c compression process, thus
(iu) Power of the engine, P :
- ¡,, r1-1
workdonepercycle
Work done per second
=p^v"===*ft*t =6.99kJ/cycle rt \Y2 J|
+=l+ o" rz= rt,
?¡ = 300 x (15.3P'a = 893.3 K
Iar (since 1 = 1,4)
=6.4e. (Ans.)
=
X=m
Cycle efficiencyr lla"a¡¿ 3
Work done
l"y¿" =
Heat supplied
or r-Irl,,,o.rnr'-1tl@foiazsrqmor
(S.I = y o:rrriz) | L". l ,. . - 14¡ xa2000'l :t\
or ia¿l^,.='"1[* l.ij-,-i "T'
, -,i ,,.Jnq.1:
.,, .)..!. , - 12., ,i -,. ,; ..,
i ri _a. p,
(u) í-L-Rejection of heat at constqnt, rolu^". , . ' "
,, = ;, = where pis knowl aa pnessune or erplocion raüo,
.,: ,o-!-!t'¡r,_
'2- a, ...(iii)
Dunng adiabatic epagsion p.roc*s (. ,
T1 lru'\t-t
;=l;l
1l \u4 /
, .tll
_ trl ...(iu)
'\p/
,f'' x lz lt lc l,
' \. 3'$t- +
Vt= +
tk u4= u2x u4= p''p being ratiol
--- -- ---'-/
-- cut-off
-----' the
During consúant prcEsure.heating proceis S-2,
u"='n ::
Ta Tt
.I
i,=7.\=oT^.
Fig.3.19 Putting the value of fn in tl. uq*tiolttirl, *; ,*
z rY- I
f=6)'-',' or t,= r r. [+.,l
INTERNAL COMBUST¡ON ENCINES
AIR STANDARD CYCLES 123
Putting the value of ?, in equation (ji), we get
Ts
¡¡anple 3.23. The swept volume of a dizset engitu worhing on dual eycle is 0.0053 m3 and.
clearance uolume is 0,00035 n3. Th¿ ma.timum pressure ís 65 bar. Fuel injection ends at 5 per
F -¡r¡r-r cent of th¿ stroke. The t¿mperature and pressure ot tlu start ofthe comptession are 80'C and' 0'9
Tr bar. Determin¿ the air stondard effteicncy of the qcle. Tahz l for air = 1.4,
= 4t
Solution. Refer Fig. 3.20.
p-'t¿r-t
Now inserting the values of "Z:1, T2, ?. and ?, in equation (i), we get
| (" 1)
-
rl¿u¡ = I - _,
-¡--I
Gt:rle'
tl
e.,
T(e - r)
l\1- p.,l+
L€., tlo*r=1-",! ...(3.10)
Work done is given by,
1¡r=pr(ua-ur)* ry
=psu3(p -r, *
@ova - pínz):!p2aa - pLrus)
_N
tl
p',rte -rxr -u. p,,, t^I
lr_ V. = 0.0053 m
e.,,, - -
_ [e f")- (1
#,') Vs = V. = V. - 0.00035 m-
7-l Fis.3.20
Also zE=[,.')'=fef and p, =("\\' =., Swept volume, V = 0.0053 m3
P4 \u¡,/ \r/ h lrz)
also, Clearance volume, V"=V"= Vz = 0.0O035 ms
Ps= P$ ut = us, u5 = ul Maximum Pressure, Ps = P1 = 65 ba¡
¿b[p5 (p. 1) (y - 1) + ps (p - prrr-1) - p2 (1 - rr-r)
w= Initial temperature, ?t = 80 + 273 = 353 K
(y-D Initial pressure, Pt= 0.9 bar
pPe[9(p -1)(T -1) F(p - pl¡l-]) - (t -r1-r)
+ fl¿o¡t - ?
- (Y_1) The efñciency of a dual combustion cycle is given by
_ a(rIqtfPr(p -r)+ (F - r) -rt-l,(Bpv- r) ó _-1- F,'Pt=-,t ,,.|
¡ _ .t 'f,.
.,rduar ...au
Y-1 (r[_1 ltF_rl* Ffp_l)J
(
- Aq/-rtFT(p-1)+(p-1)-rr-\pp1-1) ...(3.11) rario, ,=
o'o0x1if;0J03u
= re.rn
Mean efiective preasu¡e (p-) is g1ven by,
"t -1 compression
+"="#=
t,' Vz =V" = Clearance volumel
w w arur[rr-1gr(p-r)+(p-r)-rr-r (Fpr -r)
P^= lÁ=--1"4=-
",1;/ (t-t)*[+) Cut-offratio, p=
vs vs vc
V2=Vs =Vc)
pr(r)Y[9(p-r)+(9-r)-rr-r (ppr
o
¡E- (r_tXr_l)
-t)] ...(3.12)
0.05x0.0053+0.00035
= 1.757 say L.76
t
r"24
INTERNAL icoritBftlslfó¡¡4rt*Gtr{¡Es
AIR] STANPARD OTO¡.D8 J,/r If f !¡TI4 i
leonrprusp_Jffiqpeacr{gna bA:h.i,,r, :ririiro,:
l:.::"r:r.Y.i9**sit\g
r6r'c:!) ¿5ri' ''oI::si-ni l':u;v_rred¡[.Vrai r.ú...!,;:, si\
.tX,* síqrcexit
Initial pressure, ii a.¡iqFJ{b.! x É0ú ', 80.::.il x ,T = ui
I.i.ri', tr'r'.)'(lf\ 'r"o .r.,izz."(sri.--i 91ri.¿3,ri rn.,,,n,rr,,,, r(-i, r;1. ¿.,..rt(!í-).\)..1
:,¡n,::,¡,,\:i..rj¡r:.
or -'t = sl\!{,:Í¡lrie lil} ln:.r¡rr,,:rli i,.,;,,r)¡i,,,r.r..,lilt:,i,T ..i,.:t, y:\, r.., ,.
*=t
,t}tr¡b:R¡1'linr:,',t";;i1;"i=
u. 1"*i"*1 '," .,,
Initial temperature, f, = 30 + 273 = 303 K -?-1i ?.?r:')"q :rnsut¡r;
Maximumpressure,
Cut-ofr .
pg=p.=5¿¡"t'
voluDe .s-l=é
tsr¡t¿¡'..1r) er.Í") '!i)';l
or = 4% of shoke 3,{ sq
Number of working cycledsec'g 3.
'i :r ü.tSi' = r.,. T. -_ i¡
B= !c= 95= = f.¿Z
Pressureorexplosionratio, 1{ úS0S = =;;
(bar) I r-r.l: '.t
puningthevalue | .l-q
ofr, p anit p h:il"f":'dr, ;;r
r,
*-ó.+-'i.l
i
¡¡
¡c.fj util l- 1
- t" g
Ít.I = q ru $U,U = ';-
IE
;
.¿'itt¡1q lliJi;¿lYIq :i 11 ¡) ! a i!r'-r
j..,.¡ii¡,'i¡.,; ;¡ .¡l-1
Tg!".f!,
Soh¡tion. P=
' ..-.:' l
Refer Fig. 8.21.
Cylinder diameter, D = 250 mm = Q.!g ¡¡
--:,'i'1;'.
Compression ratio; r -..¡ ;;g I , I r'r'' :' :.
Stroke length, . ¿ = 300 mm = 0.3 i,r¡ '
I
t
I
121
AIR STANDARD CYCLES .
126 INTBRNAL COMBUSTION ENGINES
cExample3.26.InanengíneworkingonDuoleycle,thetemperatureand,pressureatthe
Tz= Ttr
2.408 = 303 x 2.408 = 729.6K compression r'atí9-í::',The maximum
beeinning of the clcle are 90'C ood I bo' respectiuely'.Theper ig of air is 1750 kJ' Determine :
For the cozsúont uolume ptzr,es 2.9, i"Í""rií7 i i¿Á¡id. to ea a*-""¿1otit n"Lt
"uppu"a
Ts (t) Pressure and temperotures at oll salient points
=T" (ii) Air standard efficiency
hh
60 (iii) Mean effective Pressure'
To=T". ¿l
pz =?29.6, ñF =20zox Solution. Refer Fig' 3'22'
p-l 1
Also,
¡J=lgO or 0'04
p-1
9-l =0.(X c e=1.32
For the consf¿nt pressure prws 34,
a=fyrI-'=ls)'-'
Tt lvsl \"/
r¡=rtx(:l'=2666.4i (T)'' ' =rz37r
Also PlVl = P"Vtr
FE.3.Z2
/v. Y I'Y lm2\'n
ps=pt.lüJ =*'l.oj =60'[.9J =4.08bar itial pressure, pr=1bar
Heat supplied, In\al lemperature' ?, = 90 + 273 = 363 K
Q = co(?¡ - Tr) + cr(To- Tt)
Compression ratio, r=9
= O.It (Wn - 729.6) + 1.0 (2666.4 - 2O2O) = 1562.58 kJ/t<s
Maximum Pressure' Ps = Pa = 68 bar
Heat rejected, Q,= co(T¡- T) = 1750 kJ/kg
Total heat suPPlied
= O.7r (1287 - 303) = 663.14 kJ&g
(i) Pressures and üemperaüures at salienü points :
AIso
+=t-+=#,"+=; d,ifferent from the th¿oretical ualue.
Tahc y for aír = 1.4.
PqvaT = povur
(u.P.s.c. 1997)
Again, !L l&y-'-lp)t-l
11= (vu) -t;/ =l./r.15\11-r
,j =o'4ge
t T, = T. x 0.4Ítg = 8166 x O.nr,
(ii) Air standard efñciency
:
= ,rrr., K. (Ans.)
Heat rejected during constant
volume process 5-1,
= ,, = 0.71(l38e.8 _ s6B)
.'. "f:ru,_ -Tr) = 72s kJtkg
nair.¡ra¡dod ==gl$ga = a" -e"
a,
T#,"-.?X"',
(rii) Mean effective
= -l?5t- = 0'68i14 or 68'$47o. (Ans.)
o..o.
M".' .;;",i";;;;"1l,ffi;"ü'
p- = %IF d-on" P"t cy.l"
st¡oke volume
1." %=(r-r)%
=(t¡)ta-1 = 2.gs4
130 INTERNAL COMBUST¡ON ENCINES
AIR STANDARD CYCLES I31
. T2 = 3fi) x 2.954 = 886.2 K
3. Effect ofvariable specific heat, heat loss through clinder walls, inlet and exhaust vejoci-
et ties of airlgas etc. have noú been taken into account.
pr -[qf -,rr¡n =+ p2= 44.3 pr
\u2 ,, o<rExample 3.28. A Diesel engine worhing on a dual combustion cycle has a stroke uolume
Constant pressure process 2-3 : of 0.0O85 m3 and. a cotnpression ratio 15 : 7. The fitel has a calorific ualue of 43890 hJlhg. At the
end of suction, the air is at 1 bar ond, 100"C. Th¿ ma*í¡num pressure in the qcle is 65 bar
lz=b and ai.ir fúet ratio i.s 21 : 1. Find for ideal cycle th¿ thermal efficiency. Assume cp = 1.0 hJ / hg K and
T2 Ts
c" = 0.71 kJ lkg K.
Solution. Refer Fig. 3.24.
Ts= Tzx '4a = aeo z
pz ' ' +!
44.3p1 = 14oo K
p (bar)
Also, Heat added at :onstant volume = Heat added at constant pressure ...(Given)
or cu(Tt- T) = cp(T+- Ts)
or Ts- T2= 1(T. - ?r)
ro=r^* Y
"T = 14oo +
tlrtfrg = u6? rc
Constant uolume process 34 :
:+
fr=t t=+=ffi =,,u
Also, = 1'26 or u¿ = o'084 ur
f = dt
Also, us = ul
Ad,íobatic etponsion process 4-5 :
^ / \r-l¡1.4-l I -f- 1(1oo"c)
Ts lur / =l-+-l
+=lYLl ( 0.08au1 =2.6e
./
I
To
" = 2.69=1767
T. 656.9 K V" = 0.0085 m3
L69 =
Work done Heat supplied - Heat rejected Fig.3.24
'rair'shndard - Heat supplied Heat supplied ?1= 100 +273=373}{
=
. Heat rejected
Pr=1bar
'- Heat s"ppliud
Fis.3.30
Consider 1 kg of air
Compression ratio =2 =o
I
140
INTERNAL COMBUSTION ENGINES ATR STANDARD CYCLE,S
L=rt =y p (bar)
Trull ...(iii)
(o=oxuB=%x%=g)
Dwng adiabatic expansian 4-1, \ur U9 Ut lt ur r)
/ \1-l
A=l3ll -\"
Tr lr.J -r-rr-r
r,= *-
(rr' - ...(iu)
Putting the value of ?, in equation (iii),
{i we get
T,= Tt-r' a
I G)f ,
ll
tl
=ú,
Substituting the value of ?, ir, (di), we get
"q,riloo v(mt)
"s=411s¡r-r=lS)'.
t Fig.3.31
Finally putting rhe varues r,, rfl"a * ,, Te=Tz* 1.284=800 x1.284= gB5.2K or!12.2.C
"r "l,llu"" ,r'r, *, ,o For constant uolume process J-4,
Pq _Pa
T4 T3
16x3852
- PtTz -
, t=;= =1540.8Kor1267.8'C
4
Hene.e, air stand,ard, effi.ciency For adiabatic expansion process
=1 - t. l+a+') - 4_1,
)rn , ,y-l L22_L
s.st. A pe,fect ,", ,^**""\l'r"7" r6).F
,"u", Ír*]#!"ri Tt \p'J '
2=ta)
of the fottowíngr-:::: =f = r.ena
"uco¿sisrs
(a) Heat rejection at
\r/
constant pressure.
(b) Ad.iabatíc compressíon
I
_ To = 1540.8
Tt=T.648 934.9 K or 661.9.C.
from bar and 27.C to 4 brlr. 1"648 =
(c) Heat addition at t (i) Work done per kg of gas, W :
to a finat pressure of 16 bar.
(d) Ad.iabatic
:::ume Heat supplied = cu (To- T")
Calculate : (í) ""r";;::::'
Work donelkg of gas.
(ií) Efficíency of the qrcle. = 0.75 (1540.8 - 385.2) = 866,? kJ/tte
Heat rejected c, (Ty-
= ?2) = 0.92(934.9 -
300) = 584.1 kJ¿rC
?!" ' "o Refer kJlke K, c, = o.7s kJl ks K.
Solution.
= 0.92 Worh done / kg of gas, W = Heat supplied - I{eat rejected
Fig. 8.81.
Pressure,
=Pt = [¿¡
-
= 866.? 584.1 = 282.6 kJ/hg = 282600 N-m,4<g. (Ans.)
Temperature,
P2 1 (ll) E¡¡¡.'.n"" of the cycle :
Tz=27+2?3=300X
Pressure after adiabatic compression, pz= 4bar Effícíency, n' = J:*!"1:= =r=3! (Ans.)
Heat srrpplied 866.2 =0.326o1 82.67o.
-
Final pressure after heat addition,
For adíabatic compression 2-3,
ii = fe U".
3.9. ERICSSON CYCLE
It is so named as it was invented byEricsson. Fig. B.32 shows p-vdiagram of this cycle.
INTERNAL COMBUSTION ENGINES ATR STANDARD CYCLES I43
It comprises ofthe following operations : The variouE operations are as follows : ,
(i) l-%-Rejection of heat at consto,nt pnessure Operation 1-2.Ihe air is conpressed isentropically from the lower pressure p1 to the
(ii) 2-3-I s ot her mal c o mp r e s sion upper pressure p2, the temperature rising from ?t to Tr. No heat flow occurs.
(ii¿) !-4-Additíon of heat at constant pressure O¡reration 2.9. Heat flows into the aysten increasing the volume from Vz¡n Vs and tem-
(iu) 4 - L-Isot her mal exp an sion. per'ature fuom, Trto ?, whilst the pressure renains constant at pr. Heat received = mcr(T"- Tr).
Operaüion 8.4. the air is expanded isentropically from p, to p' the temperature falling
from 4 to ?.. No heat flow occurs.
Operetion 4-1. Heat is rejected from the system a8 the volume decreases from V{to Vl and
the temperature from To to ?, whiht the pressure rernai¡sconstantatpr.Heatrejectcd=mco
(T1-T).
do,o"
r¡¡.¡t¿rd¡r¿ = ,
=.*ltkrecelveo
rleeE
_ Heat ¡eceiveücycle - Heat ¡ejecteiVcycle
Heat receiveücycle
mco (Ts -Tl) - nrc, (Tt -T) _, _ Tt -Tt
_ =,_84
Fis.3.32
Consider 1 kg ofair.
Volumeratio, ,=h=\
ug u4
BRAITON CYCLE
t
S.10.
Brayüon cycle is a constant pressure cycle for a perfect gas. It is also called Joule cycle,
The heat transfers are achieved in reversible constant pressure heat exchangers. An ideal gas
Fig. 3.33. Brayto¡ c,ycle : (o) Basic omponeats of a gas turbine power plmt
turbine plant would perform the processes that make up a Brayton cycle. The cycle is shown in the
Fig. 3.33 (a) aod it is represented on p-u and ?-s diagrams as shown in Fig. 3.33 (ó, c). (ó)p-V diag¡a¡n (c) ?-S diagram, t:i:
jir
.ril
!tl
nli
ifl
ii;
INTERNAL COMBUSTTON
ENGINES
Now, from isentropic expansion AIR STÁNdARD CYCLES 145
TI h p*lofj given turbine the minimum temperature ?, and übe maximum temperature ?,
a,=(a\ f p.rTcribed'
ar.e. being the temperatu¡e of the ahosphere irnd ?, the rraximum temperature
rr la/ -Tt
which the metals ofturbine would with¡tand. Consider the specific héat at constant pressure co to
be conetant' Then'
II ,-l
Tr= T1 b) r , where ro = h.essu¡e ratio. n ñ
Since, t=rrr' ='ñ
Similarly a=l¿)f ot
rl )
rr laj Ts=T¿bbr'l
Using the consta¡t 2'=
+,
.'. 1- T" -T' we have, work outpuUcycle
naü*ta¡da¡d =
---ti------E -' - ---T:T 1
| ( ,\
rat) r -T{rolr G)T ...(3.16)
I
L T *T;)
w = K lrsl t - l-t, (rn" - L)l
J
Differentiating with respect to
1
," =+
1
rp =(T{\)ub i.e. ro = (Ts¡)zl-r) ...(3.17)
Thus, the pressure ratio for manimum work is o functíon of the limiting tenperature
Fíg. 8.84. Eflect of preszure ratio
on the efficiency of Brayton
cycle. Work Ratio
The eqn. (3.16) shows that
!!1T::Z "t,ih"
,*"t ¡:yt, qrcle inoeoses wíth the pressure worh ratía is defined as tl¡e rcüdo of net worh output to tlt¿ itorh dnw by the turbíne.
i¡^ii¡ü-i,tí"ra,ure o*he
ii,?,,íii;i;:'::i::::,"1;:;:;,r.;';iir
process atone, no
turtherieltipg
X:*::! ? 'i:
loii";";;::r;::n;;:#:;rr"r::X{S;:;":;
.'. Work ratio =
W'.;%
wT
sÁ
'::;;':"':,::í::;';,-#:*::::"t*"t"; b"r;;;;;';;,n a*)on,,ft;,*í; excess work fwhere \f¡ = Work obtained ñom this turbine,l
f'.
furction of the limítíng
Work output during the cycle
I
= Heat receiveücycle _ Heat rejecteücycle
= mco(Tr- T") _ mco e1_ T) =r- ;l_b+-rl=,_fto,,? ...(3.18)
= mco (Ts - Tr) _ nco ez _ T)
's¡t--f¡- |
cu = 0.7662 kJ&g IL
l'uT
t- cD -
'=b= -
0?662 =r.so
(i) Temperaüure-enüropy diagtan :
Temperature-entropy diagram represenüng the processes of the simple gas turbine system
is sbown in Fig. 3.36.
p2=5bar
Fig.3.35
g=(a\i-rnl#
Y-l
-(il Tuüno
(u) Temperaüure of air leaving the turbine; Tn :
Fot e*pansíon (isentropb) pruess 3-1, we have
11 (n/ = 1.486
ñ IJ r¡r-1
:. Ts = 2&5 x 1.486
= {SSj X. (AE.) r =(8.5) 11 = 1.¿a \
Power developedn p : á=Or,
p = rhocr(Is_T)
t = *=Ir* = 610.5 K. (Ans.)
= 0.1 x 1.0 G?3.6_2u5)
- - [Check : Heat rejected ai¡ cooler at constant preseure during the process 4-l can also
in. the
= tS.8E l¡W. (Anr) Fis.3.37
_
be calculated as : Heat rejected = mx cp(T1-T)
= 1 x 1.00b x (610.b: ZSS) = 819.1 kJ/kgl
Er¡nPle 836. Conaid¿¡ ur ai¡ éwwtt
*tt n t^*t o"n :- _-., ! , ttu_ür
Á,^r^ ,o.-?!i"l Exanple 3.36. Air enters thc compressor of a gas turbine plant operating on Brayton cycle
1.0-y" 'q zec, nn-i*i*
and, áeC. Ttn preasure ff mr,?:k:-y!bl tlu-air enhn tle ompresnr
enten the ompresnr at at 7 bar,27'C. The pressure ratb itt ttu eXcle is 6. If Wr= 2.5 Wc, rh"r" Wrand.W" are the
ttb amnressor ¡¡ J.6 toi'ü-ütrp",wuo
turbin¿
curbúu ialet h 6UfC.
inJet is b*#JSHp
6oec. b"¿r ;;ü;;r:
"f ot turbine and compressor worh.rcsputively, calculote thá marimuk tumperatire andíhe c.vcle
A Etrzcienel of tlu qcl.e, (ü Hat supplbd, to air, efficienóy. (GATE, 1ó96)
(ü)Worh evailúle at tlu.W,
(iv) Heat rqjected
(v) Tempe¡atutz in the wbr, qd, Soluüion. Giuen:pr=1bar; Tt=27 +2?B=gg9 X; ? =6;W,=21.5yy"
of otr talüg tle turbin¿. PI
lolair t= L4 and, cp= 1.06 hJlhg K Maximum temperature, T, :
Solutlon. Refer Fig. g,gS.
m / .1-t L{-r
Pressure' of
air enteriag the ompreaaor, pr Now, f = l¿.l t =(6)T=(6)ü
o.{
=1.668
= 1.0 ba¡ tp|/
Temperature at the inlet of
rn K t
"r*of ;;ñ;m:';'#J""rtt
hessuto = t. Tz = 300 x 1.668 = 500.4 K
Temperature air at tuñinc idet, i iOo + Zzg = AZg X ^ /
Pzl'
.1-t o.a
(r) Etflcteacy of tüe cycle q*. : ", Arso, $
t4 =l\pr,, = (G)il = 1.668
1- I ( ?3 = 1.668 4
l"v¡" = -E
,
= 1- -+-, = o.3b or g0%.
(An¡J
l" o=ff-#=*J Now, compressor work
("r) (g5)-r¡- W" = mc, (Tz- Tr),
0¡) Eeat cuppüed to ¡ir: and turbine work,
Ft compreesbn prcess I-Nwe bave W, = mco (Ts - T)
ñ f r1-l - L¡l-l Since wf = 2.5 Wc ......(Given)
t,-l'") =(;
frltfJ'=(Tl-='* :. mco(Tr- T) = 2.5 x men(Tr- T1)
Tz= Tt x lry\
a¡r. e1= Co(T, ;;;;;il
29Í x 1.48 = 1.43
= 293 lrs - :*l
Fis.3.38
,.
i* orr¡K= 16s.27 t¡,nrs. (Ans.)
¿¡EáL Eqppue(¡ ¡o 419 = 2.5 (500.a - 300)
\ r-bbó/
, Work
0¿) #:l'"T$1': il;""1i.f,Í.:
¡vail¡ble atihe ch¡ü W :
r.fu- I
" \ 1.668/)=sor
We know that,
n_,.=Hi##
.. Te = 1251 K. (Ans.)
g.39
= -I- or W = 0.3 x 456,27
= 136.88 hr¿rg Cycle efficiency, Tlayq¡¿ :
-A
-T
Fv¡nFle 8.38. In a gas turbine plant working on Brayton cXcle, the ab at inlzt is ZZ"C, 0.1
_
f*t-l*'l-('001-soo)
r L668' MP.. TItc pnessure ratíp is 6.25 and. the ma¿imum tem¡rcrature is 9MC, Tl¿e turbínc and, com-
(u5r_500.4) prcssor effu:iznci¿s are each &ub. F¡n¿ compressor work, turbine worh, hcat supptíed, qrcle effi-
=
tHPn o.r0 or 1o%. 6$)
ciengt an'd' turbine exhpust temperature. Mass of oir may be considered, as 7 hg, Draw T-s d.ia-
gratn.
76(16 = (AllfIE Summen 20fi))
Erample 8.37. A cro*d qcre idar gu pbnt operates betwen temperaturc timits Solution Refer Fig. 3.40.
of 9p-'c and 30'c and prd,uces a puEr lm-turbüu
tw.'iru ptantrs dcsigned, euch tr,,t trere is ta
ú
need, for d' regen¿rator. A fwl of cala¡iftc asm
n t t *g is uod. calc¿ai" tn" iÁ
through the plant and tzte of'f"el rxlÁuniá";- " - rto, mte of ,,i.r
tAssume cp = I kJlhg K ard = Ll.
.l
. (GAIE, 19e8)
Solution. Given : Tr= 3O + II3 = fl)3 K; ?. g00 + nA 1073I(; C
_
cp = 1 lcllks K; T = t.¿ ; W;- = = = 45000 kZkg ;
W* = róOÉW.
th¡r rir¡ :
since no regenerator is used we c¡- assr¡me the tur. bine
a way that ühe exhaust gas temp€rature a,o tüe Spands the gases upto ?. in such
tu¡bine is equal L tn" t"-ñ*r-t."J"rair coming
out of the comp¡essor Le., T"= T.
_1 . ,l
Pz Ps p,
pt - pl , p¡=[&_)rt
l\) ""0 =[+j'-' f T-s dlagram
&-=r" =&.
'. Tr T1 T2 Giuen :
Fis.3.4O
T, = 27 + 273 = 900 K ; pr = 0.1 lttPo ; r, = 6.%, Ts= 800 + 275 = LO73 K
("' Tt=7, """assumed) Tlo-p.=lturuirr=0'8'
Tz2 = TtTs ot Tr= lffi For the cornpressíon praesa I-2, we have
i-:!
t{-l
?r= SGffi =6?0.2K =(625) 1' = 1.688
Now, W*r*"=
+=e)+=r',,?
Wru*r"- rz¡ x Cx¡ (f Tz= 3OO x 1'688 = 506'4 K
loo= m¡ x45(xx)'
-- ---vv ^
' ft-3:]il
L 4-"¡l
Arso, r.o.p.=
ffi or 0.8=
Tf,|# Iil
roo
=,itrx4**tt-ffi:il Fis.3.39
?r, = !9%; + Boo = 868 K li:
r. =
or
(rh"+ 0.00479 x 502.8 -267.2 tiz" = l0O #=# = 635.66 K líJ
602.8 t4 +2.383-267.2
or *
= 1O0
235.6 ñd = 97.61?
Also, rlt-bi,"= ffi or 0.8=
#-#; tü{
-l
ür
ti
I
,'t 152
TNTERNAL COMBUSTTON STANqARD CYCLES
ENctNEs
or T¡, = l0?8 _ 0.8 (1OZg _ 6q5.66)
153
=6t7.E7hfAg. t¡ns.l
cvcle
rurbine
efñcienc5r, n*, = F=# = o.I?ttit or
t?ai|%. (An¡.) "=W)'4#=[ff.'),.u%1
T:yi:*TT*tFig. S,i0.
lhe ?;s diagram is ehown in = 72s.rs Kor 450.1sc. (Ans.) 42000(+.)* r'oo(rrt=¿se¿z)
= l*.'l = ?se.?8
f,¡¡npre g.gg. r¿nd thc
required oir-fire. ratb-in a gas \',? )
pressor efficíencies are turbinc wru*
a¿ co*, ,""p""a""t1. M*i^;; ;;"ííii"orrr" turbüe and, com-
1 = 65'77 say 56
and'
-85%
working flui.d m" u:..!:.*.:"."i
%: l;í;;4 k,
27'C, The nressurS rutia is 4.
.r
is 875.c. The
= t.¿iii¿:;;;;;, il" compressor at 1 bar
+=#t-
fu f*, l.
*'*{ri?#:"ii:,:
't" - €t i
**'lla,f"íi^0",.
^ituu "otori¡" valuc of d2000Iurths'
,m;,i#ü 8.11. SITRIJNG CYCI,E
A/F ratio = 66 : (An¡J
800 K; =l.i [j;":irh-bi.e l*o'".n =,20% : Tr= 278 + 875 = 1trf8I! Tt 27 + 278
:
kcE¡-1'#(iltriH,';il1'h=ri"'ftra;
_=
"" jff,f *;i."ilLuir¿rló'=alódn*i
= EiC. 3,42 shows a stirling cycle (182?) on p-u and T-s
and two constant volume ptocesses.
diagrams. It coosbts of ilrlo isotherms
For isentroprh rrlmpresrlbn T_2 : P¡¡ocess 1'2 is the i&thcmal ampression with heat rqiection
temperatue fr. Q, to the tiilroundings at
P¡¡ocese 8'1 is the inthennat expansion wirh hcat addition
ture ?* e¡¡ from a Bou¡ce at tempera-
Fig. .4t
, .l-1
?
+=l?l
¿1 \A/ =r,,tii=r.¿se
\É,/ -
?¿ = 300 x 1.486 = 445.8 K
_
rfmposq = n-n (c)p-u diagram
(ó) ?-s diagram
ffi Fig. 3.42. StirliDgcycle.
08=## Process 2.8 ¡nd 1-l a¡e constant aolum¿ heat transfer pr@esses.
For t
.
hg of idea.l gas,
Ul
Q7-2(Heat rejected) = Wt.z= - RTLI¡ (mmpression)
u2
¡NTERNAL COMBUSTION ENCINES
AIR STANDARD CYCLES I55
Qzt= cu(TH-TLt; W¡¡ = 0 (since u = const.) = 287 x 310 ln (5.33) = 148828 J/kg = 1a8.88 kJ&C
Procese 2-B : Qz_s= W,-s = 0 (since volume is constant)
Qs.a (Heat supplied) = Ws,t= RTE6 ? = RTx ln | (Expansion)
-¿b"u2 Process 3-4 : Heat supplied, Qs-t= Wt-t = R?a ln(r)
(.' pa
= u¡ and u¿ = r¿) = 28? x 930 ln (5.33) = 146634 J/kg or 446.63 ktkg
Qa-1=-cu(T"-T*) or c,(T, -T"l; W¿-r = 0 (since u = const.) Process 4-1 : Q+r = - c, (T¡- Tr) or c,(7, - Tr)
The efticiency ofthe Stirling cycle is lecs '\¡n that ofthe Carnot cycle due to heat tmnsfers Heat supplied during the process 2-3 = Heat rejected during the process 4-1.
at constant uolume prxesses. However, if a regeneratíve arrangeme¿t is used euch that
Qqt= i.e. area under 1-4 is equal to area under 2-3, then the cycle efficiency becomes
.'. Work done = Neü heat exchange during the isotherms
Qz-s
= 446.63 - 148.88 = 297.?1kJtkr
nqrnS-n4rn5
" v2 t)2 work done 2917F.
rl' = -.- =Tr:7, ...(g.19) ... Thermal ef;ñcien<
J,r,¡¡= HffiÑ = = 0.6676 or 86.7to.
RT¡1ln\ TH ñr*
Since Stirling cycleis completely reversible, its efficiency is also given as,
which means the regeneratiue Stirlíng grcle has sarne effrcieney as the Carnot c7rcle.
Tu -T, 930-310
The following points are worth noting : n=-
2b: = t* = o'667 ór 66'79o' (Ane')
As far as the impractibility of actomplishing isothermal compression and expansion
processes with a gas is concerned, the Stirling cycle suffers frorn the lirnitdtinn of the
S.12. MILLER SYCLE
Carnot cycle. But, it does n¿ú suffer from oüher drawbacks of the Carnoü cycle, uiz, very
low m.e.p., the narrow p-u diagran a¡¡d great susceptibility to tbe internal efficiencies The Miller cycle (named after R. H. Miller) is a modern modification of the Atkinson cycle
of the conpressor and the expander. and has an erpansian ra'tio grcater than the compression rafüo, which is accomplished, however,
The mean effective pressu¡e (m.e.p.) of the Stirling cycle is much greater ühan that of in much a different way, whereas a complicated, mechanical linkage system of some kínd, is
the Carnot cycle. required for an engine designed, to opero,te on the Atkinson clcle, d Miller qrcle engine uses
a A reversed Stirling cycle with regeneration can sinilarly attain Camot C.O.P. uníque ualue tining to obtain the same desired results.
a The Stirling cycle can suitably replace Otto cycle (haüng two constant volume proc-
esses) in reciprocating I.C. engines.
Example 8.40. A¿ aír stondard Stírling clcle is equipped with a 100 percent fficient
regenera,tor syátem. The isothenna.I compresbn drmtwnces ftom I bar and, 310 K and. eubse.
quent keat od.dition ot constant uolu¡ne rai.ss tlre preseure dnd, temperaturc to 16 bar 930 K The
cycle íe ft,nally completed. through an isotlt¿trtrlrl
"-pansian and. constdnt uolume h¿o,t rejection.
Arnlyse e@h of the four processes for worh er.d lnot trdnsfer and d.etermine the engine ¿fficíén;ct.
Solution. Refer Fig.3.42.
Give'n: p, = l bar; T1=T"= 310 I{;p, = 16 bar iTs=Tx = 930 It The closing rycles for :
', =
#=u:*# = o'88e7 m'/rrg
Heat rejected,
T.D.C B.D,C.
Fig. 3.43. Air-standard Müer cycleformth¡ottled a naturallyaspirateelfour-stmke rycle S.I. engine.
156
NTERNAL COMBUSTION ENGINES AIR STANDARD CYCLBS
In a Miller cvcle air i¡Jake is zn thr-ottled.lhe quantity
of air ingested into each cylinder
bv ctosing the intdhe valve a,t i;-;;op", time, is
'i7 ;:;:;:t" tong'bero" ¡.o.c. (poinr ? in ----t-\
.-t
I
INTERNAL COMBUSTION ENGINBS
AIR STANDARD CYCLES
ilfi
EICHLIGHTS Z The air standard efficiency of Otto cycle ie given by
7. Dualcycleefficiency, rm -- t I
=r
ro.ot -rl I
(c) thermal elñcieacy of Otto cycle is eame as that
for Diesel rycle
(d) ther¡nal efñciency ofOtto cycle caaaot be predicted.
{lH
(",t:il(p-:ilE6:tj 6 In air stmdard Diesel cycle, at fixed compression ratio mcr fixed value :ilfi
of ailiabatic index (p
(o) thermal eftcien.}r inceases with increase in
Mean efective pressure, ., _ - _
Arrlp(p- r)+(p-l)-.r-1 (ppr -t)l (ó) thermal efficiency decreases with increase in
heat atrdition cut offratio
'(,ru (r_lXr_l) heat addition mt offratio
(c) themal efñciency remains sarne with
increase ia heat aalarition cut ofiratio
(r - cr) (d) none of tlle above.
& Atkinson cycle eñcieocy, tl¡rm= 1-7.
/ _at
where o = compression ratio, r = erpaasion ratio.
fANñERs I
9. Braytoncycle, larwton =r - whei€ rp = p¡essute ratio. (ó) z (b) 3. (d) 4 (d) n(a) c (b).
-''!',
(rr\ r
THEORETICAL QUESTIONS
Ts -Tt
1(). Stirlingcycle, t*w='E-. rt
1L Millercycle engrnes areuuallysuperchargedorturbocüargedwitlrpeak intake manifoltlpressm of 150 l. What is a cycle ? What is the differe¡ce between an ideal and
actual cvcle ?
-20OkPa. ?- What is a¡ air-sta¡da¡d efiicieucy ?
3. What is relative efficiency ?
It Leloircycle; (tr);* Q4 - T¿+JS6 - rü
= L - + Derive expressiom ofefrciency ia the following cases :
fd) Canot cyde (ii) Diou¡.t"ru (iii) Dual combwtion cycle.
UNSOLVED UAMPI,ES *
fffffifrñmt*:""::*1l.*:::X11"^?10 -y, ."g a cylinrter rlia:neter or 165 mm. nre crearance
A carnot eagine working betweea 3z?"c and B?.c producas
120 kJ of work. Detemine : ;Sffi "hHf .'""atr,"n"ire,t"""t"rli'ü1fiAñffi?1ff
l;ü,T",T"ffi$,T.:Xr"ffi;;
(i) Theheataddedi¡hl. (üi) The entropy change durirgheat 16. lte followiag:::,rrh";;si";;;",,;;;ñT"ff
H."li:_"f data belong to a Diesel lAne.6l.
d
,i:1.3"""".H:l:*:i:.::_
jr j\
^L
^ ^_ j_ -
rejection prccess. cycle :
rAna.(i)z2s.5kr;(joo.ssshr/K (¿¡;Daz.snl *a"a
^
Find the thermal efficiency ofa carnot engine whoee hot
and 15'Creapectively.
aad.cold.bsdies have tem¡reratures of r54.c
;ffiffi:il"f,:;ii"'=t;rY;:t
Dete¡:rrine:
= z5¿6 ¿¡¡"; Lowesr pressure in tre
rycre = I bu ; Lowest
n-r..^ an tAns.B2.55%lj
& Derive ^_expres"¡oo ¡q¡ ch"'ge-i-¡r-efficienry for a üange incom.pressiou ratio. Ifthe compression rautn
(i) thernal efrciency oftñe
cycle. (ii) Mean efi'€ctive pressure.
The efficiency of an Otto ¿ycle i|*
ttre¡e.r1n1_as_l rnilease in effi ciency
4, ;.':T:::"^T:i.1:111 is 60% and.lis 1.6. What is the cornpression 16, rhe rT,g:-:,,T31l-Dual
ratio ? ffi;; co_mpreseion rario
G An engine worting on otto cycle,has a volume of-0.5 mr, pressure l¡nited to?0 bu' rhe presu. re and temperature
crcte is t2:ld.rhe. maxi.ffi,:,1"1t"ÍJ',3:Hl"1l
1 bar and tenpuature 2z.C at the áf cycre ai tl" r"gioning orompression proce's are r
comencement of compression stroke. At the e¡d of comireesion
-- prÁirre¡
stroke, the ----'# t0
bar and 800 K Cat".t.t , (i) Th"*"i"ft1"ü i"iii"""l,"r"ctiye prersure.
added duringthe coutantvolme proceds i8 200 k I. Detenoiue ^" bar.
"-' Heat Ass'.ie; ry¡¡¿"'bore
(i ) Percontage clearance
: = 260mm, st-ke t""sor:;00;,;"= iñ;;=;;18 andy= 1.4.
(ii) Air
(iii) M""o p¡assuro ",-Ur"U "ffi
cimcy
u'ltecompYilr"1tT:H*r*":lj*:::ryg:-q*ry:*ffilí"1ffi IAn*(i)67.92% i(jj) 9.84? ba¡l
"O"*oe
;:HÍ;:lj:
u,"rrnall-dlñffiffi:k-. .;;1;üff,ln:trffif ;,#;,J
(du) Idu¿ **"t ueveloped by the engine if the engine runs at 4gonp.m. bo thsüüere $e 200 complete
cyclesprminutes. tA¡re,(i)2g.76%iiii)4i.zq;iülinár (iu)32lkw
;ñ,#;""f
675 fftre*1i*T,rxy_",'}.:;;i#ffi
#.ftFin¿
h/kg of air.
A¡airsta¡dardDualcyclehasacomo""r": . tAD'.og.bzol
IA¡s,59.5Vo1
6 1he conFreesiou ratio in a¡ air..sland.ar-d Olto cyclá ia g.
At .lre beginning ofco,¡p¡essi6¡
18,
.ri"'a;;
.üli';?ffi
*ji"
zo r,". ,¡q1T1f::::li "l16, "-r.
and compreaeion begi¡s ai I ba¡, 60"C.
process, the iszó¡a,.r¡"rrü;;ffiffi
mumrun D¡eaam i.
,l?ffi The
pressueis lbaratrdthe temperatureie 300Ii rt¡e heat'h"*r*t"-tli"
Jip"""y"¡it"-rsirj0k Ifuofair. friffiSJffi
volume. Determine: ffi f ffi ij,',j"T;igl;fi :
(i) Themalefficiency (ii) The mean effective pressure.
(i) The cycle efrcie¡cy. (ij) flr" _"*
*"ctive pressure of the cycle.
Take : c, = 1.005 kJ/kg-I! c, O.?18
= lüykC_K
z An ensine 200 m rg' computl t'e
ora B-ra¡on cycle operaringbe**"
bm mtr 300 mm stroke works on ono cycle. rrre
n*** and temperarure are l bar an¿r 60rc. ftñu ","j*l.t::A-Jf ;:;¿#;iHi pressure of12"i" "t""a"J"maenry
bar. Ta.kel= 1.4. "
f"i,1?"Ti?;:'*:t"t Hi
HÍlt -"*i-,- ñ";;;;;;ed ro 24 bar, tA¡a.50.g%l
(i) lhe ainstqndard efliciency ofthe
rycle (ii) The nea¡ effective pressure for the rycle.
Assume ideal cond¡tions.
& calculate rhe air standard erriciency of a four srroke ouo
o*'
Piston diarneter (bore) = IBZ mm ; Length ofstroke
cycle engin" .jf"T3rfr::i|t;'Lt"lt'
Clearance volume = 0.0002g mr,
= IBO mm ;
Express clearance as a percentage ofswept volume.
0' lAns,56.LVoll4.6Vd
In a¡ ideal Diosel cycle, the temperatw^s at the beginning
of compression, at the eod of compression and
at the end of the heat addition are g?"C, ?89.C má f
$9:C. finá ,he th;;;
"ffi;;";"f
lo' An air-standard Diesel cycle hts a mmpression ratio lAns.69.67ol
of 18, aad the heat transfeneal to the working fluid
per cvcle is 1800 kJlg. Atthe beginning ofthe
compilsio".trot"rll*;r;.irJi"-r'¡r" u.a ¡r.
temperature is 300 K Calculate : (i) Themal efficien.i, (¡¡)
tfr" ,rr"* .ffud;"-pr;;;".
t1. r)<g orair isiaken th:ough
lpiesd cv_cle. rnitiany the air is ar 15.. ,
jf;d3"t#;:tlr::'::rH
15 aad the hear added is 1850 kJ. ód"olate , í¿ r¡"r¿"J"v"1. "".
pTessu¡e. "r#ü,i;;; d;|Hm effecriv¿
12' what will be loss in the ideal erriciency of a Diesel engine
delayedftom$votog%? -- with
"-"¡ comn*r".f;Íl:?;ií.,'rÍ'l,ll"Hl
vv¡¡'F^voe u""'
¡
l& The pressures on the compression cune of a üesel
".r.r*l
engine are at th stroke 1.4 bar aad at
14 bar' Estimate the compression ratio. calculate
f f th stroke
the air standa¡d efñciehcy ofthe engine ifthe ot ofi
occurs at ft of the stroke.
[Ans. 18.54;63.79ú]