Nothing Special   »   [go: up one dir, main page]

Muirhead

Download as pdf or txt
Download as pdf or txt
You are on page 1of 19

THE MUIRHEAD-RADO INEQUALITY, 2:

SYMMETRIC MEANS AND INEQUALITIES


arXiv:2201.01270v1 [math.CO] 4 Jan 2022

MELVYN B. NATHANSON

Abstract. Preliminary results from Nathanson [5] are used to prove the Muir-
head and Rado inequalities.

1. A simple inequality
The Hardy-Littlewood-Pólya proof of the Muirhead inequality is based on the
following simple inequality:
Theorem 1. The product of two real numbers is positive if and only if either both
numbers are positive or both numbers are negative.
Thus, for u, v ∈ R, we have uv > 0 if u > 0 and v > 0 or if u < 0 or v < 0.
Corollary 1. Let a and b be positive real numbers. Let x1 and x2 be distinct real
numbers. If x1 6= x2 , then
xa1 xb2 + xb1 xa2 < xa+b
1 + xa+b
2 .

If x1 = x2 , then
xa1 xb2 + xb1 xa2 = xa+b
1 + xa+b
2 .

Proof. If x1 > x2 , then xa1 − xa2 > 0 and xb1 − xb2 > 0. If x1 < x2 , then xa1 − xa2 < 0
and xb1 − xb2 < 0. Applying Theorem 1 with u = xa1 − xa2 and v = xb1 − xb2 gives
xa+b
1 + xa+b
2 − xa1 xb2 − xb1 xa2 = (xa1 − xa2 )(xb1 − xb2 ) > 0.
If x1 = x2 , then
2xa+b
1 = xa1 xb2 + xb1 xa2 = xa+b
1 + xa+b
2 .
This completes the proof. 

Corollary 2. Let
ρ>0 and |δ| < ∆.
If x1 and x2 are positive real numbers with x1 6= x2 , then
(1) xρ+δ
1 xρ−δ
2 + xρ−δ
1 xρ+δ
2 < xρ+∆
1 xρ−∆
2 + xρ−∆
1 xρ+∆
2 .

Date: January 5, 2022.


2010 Mathematics Subject Classification. 05E05, 11B83, 15B51, 26D05, 26D15, 52A20, 52A30,
52A40.
Key words and phrases. Muirhead inequality, Rado inequality, vector majorization, permuto-
hedron, doubly stochastic matrices, convexity.
Supported in part by a grant from the PSC-CUNY Research Award Program.
1
2 MELVYN B. NATHANSON

Proof. We have ∆ + δ > 0 and ∆ − δ > 0. Applying Corollary 1 with a = ∆ + δ


and b = ∆ − δ gives
x∆+δ
1 x∆−δ
2 + x∆−δ
1 x∆+δ
2 < x2∆ 2∆
1 + x2 .

Multiplying this inequality by (x1 x2 )−∆ gives


xδ1 x−δ −δ δ ∆ −∆
2 + x1 x2 < x1 x2 + x−∆ ∆
1 x2 .

Multiplying by (x1 x2 )ρ gives (1). This completes the proof. 


For example, letting ρ = 5, δ = 1, and ∆ = 2 in inequality (1) gives
(2) x61 x42 + x41 x62 < x71 x32 + x31 x72
if x1 x2 > 0 and x1 6= x2 . Note that the inequality fails if x1 x2 ≤ 0.
Theorem 2. Let a1 , a2 , b1 , b2 be nonnegative real numbers such that
a2 < b 2 ≤ b 1 < a1 and b 1 + b 2 = a1 + a2 .
If x1 and x2 are positive real numbers with x1 6= x2 , then
(3) xb11 xb22 + xb12 xb21 < xa1 1 xa2 2 + xa1 2 xa2 1 .
Proof. Let
a1 + a2 b1 + b2
ρ= =
2 2
and
b1 − b2 a1 − a2
δ= and ∆= .
2 2
We have
ρ>0 and 0 ≤ δ < ∆.
Applying inequality (1) with
ρ + δ = b1 and ρ − δ = b2
and
ρ + ∆ = a1 and ρ − ∆ = a2
gives (3). 
This is Muirhead’s inequality formonomials in two variables. Inequality (3) is
the special case ( aa12 ) = ( 73 ) and bb12 = ( 64 ).

Exercises.
(1) Prove that if x1 x2 > 0 and x1 6= x2 , then
2x51 x52 < x61 x42 + x41 x62 < x71 x32 + x31 x72
< x81 x22 + x21 x82 < x91 x2 + x1 x92 < x10 10
1 + x2 .

(2) Prove that if x1 x2 6= 0 and x1 6= ±x2 , then


x61 x42 + x41 x62 < x81 x22 + x21 x82 < x10 10
1 + x2 .

(3) Let a1 and a2 be integers such that a1 − a2 ≥ 4. Prove that if x1 x2 6= 0


and x1 6= ±x2 , then
x1a1 −2 x2a2 +2 + xa1 2 +2 xa2 1 −2 < xa1 1 xa2 2 + xa1 2 xa2 1 .
MUIRHEAD-RADO INEQUALITY 3

2. Symmetric means of functions of n variables


 
x1
 .. 
Let x =  .  ∈ Rn . The symmetric group Sn acts on Rn by
xn
   
x1 xσ−1 (1)
σx = σ  ...  =  ...  .
   

xn xσ−1 (n)
Equivalently, σ : Rn → Rn is the linear transformation defined by σei = eσ(i) ,
n
where E = {e1 , . . . , en } is the standard basis for R . The matrix of this linear
(σ)
transformation is the permutation matrix Pσ = pi,j , where
(
(σ) 1 if i = σ(j)
pi,j =
0 if i 6= σ(j) .
Let Ω be a subset of Rn that is closed under the action of Sn , that is, x ∈ Ω
implies σx ∈ Ω for all σ ∈ Sn . Let F (Ω) be the set of real-valued functions defined
on Ω.
For every function f ∈ F (Ω) and every permutation σ in the symmetric group
Sn , define the function σf ∈ F (Ω) by
(4) (σf )(x) = f (σ −1 x).
   
x1 xσ(1)
If x =  ... , then σ −1 x =  ...  and
   

xn xσ(n)

(σf )(x1 , . . . , xn ) = (σf )(x) = f (σ −1 x) = f xσ(1) , xσ(2), . . . , xσ(n) .




For all permutations σ, τ ∈ Sn we have


(τ (σf )) (x) = (σf ) τ −1 x = f σ −1 τ −1 x
 
 
−1
= f σ −1 τ −1 x = f (τ σ) x
 

= ((τ σ) f ) (x) .
Thus,
(τ σ) f = τ (σf )
and (4) defines an action of the group Sn on F (X).
Let G be a subgroup of Sn of order |G|. The G-symmetric mean of the function
f is the function [f ]G ∈ F (Ω) defined by
1 X
[f ]G = σf.
|G|
σ∈G

Because G = {σ −1 : σ ∈ G}, we have


1 X 1 X
[f ]G (x) = f (σ −1 x) = f (σx)
|G| |G|
σ∈G σ∈G
4 MELVYN B. NATHANSON

and
1 X 
[f ]G (x1 , x2 , . . . , xn ) = f xσ(1) , xσ(2), . . . , xσ(n) .
|G|
σ∈G

The symmetric mean of the function f is the Sn -symmetric mean.


Lemma 1. Let G be a subgroup of Sn and let τ in G. For all functions f ∈ F (Ω),
[τ f ]G = [f ]G
Proof. The group theoretic identity
Gτ = {στ : σ ∈ G} = G
implies that
1 X 1 X 1 X
[τ f ]G = σ(τ f ) = (στ )f = σf = [f ]G .
|G| |G| |G|
σ∈G σ∈G σ∈G

This completes the proof. 

Let R≥0 denote the set of nonnegative real numbers and let R>0 denote the set
of positive real numbers.
The nonnegative octant in Rn is
   
 a1 
 .. 
 
n n
R≥0 = a =  .  ∈ R : ai ≥ 0 for all i ∈ {1, . . . , n} .
 
an
 

A nonnegative vector is a vector a in Rn≥0 .


The positive octant in Rn is
   
 x1 
 .. 
 
n n
R>0 = x =  .  ∈ R : xi > 0 for all i ∈ {1, . . . , n} .
 
xn
 

A positive vector is a vector a in Rn>0 .


Both the nonnegative octant and the positive octant are closed under the action
of Sn .
a1 x1
! !
For every nonnegative vector a = .
.. and positive vector x = .
.. , we
an xn
define the monomial function xa ∈ F (Rn>0 ) by
xa = xa1 1 xa2 2 · · · xann .
Let G be a subgroup of Sn . The G-symmetric mean of the monomial xa is
1 X a1 a2
[xa ]G = xσ(1) xσ(2) · · · xaσ(n)
n
.
|G|
σ∈G

Let σ ∈ Sn , i ∈ {1, . . . , n}, and j = σ(i). Because


a a
xaσ(i) σ −1 (σ(i)) −1 (j)
i
= xσ(i) = xj σ
MUIRHEAD-RADO INEQUALITY 5

we also have
1 X aσ−1 (1) aσ−1 (2) a −1
[xa ]G = x1 x2 · · · xnσ (n)
|G|
σ∈G
1 X aσ(1) aσ(2) a
= x1 x2 · · · xnσ(n) .
|G|
σ∈G

Here are some examples. If the positive vector x is constant with all coordinates
equal to x0 , then
Pn
ai
(5) [xa ]G = x0 i=1
.
Let n = 2. If a = ( 73 ), a
then x = x71 x32 and the S2 -symmetric mean of xa is
1 7 3
[xa ]S2 = x1 x2 + x31 x72 .

2
If b = ( 63 ), then xb = x61 x42 and the S2 -symmetric mean of xb is
1 6 4
[xb ]S2 = x1 x2 + x41 x62 .

2
For all x = ( xx12 ) ∈ R2>0 with x1 6= x2 , we have
[xb ]S2 < [xa ]S2
by inequality
 6(2).

Let a = 5 . The S3 -symmetric mean of the monomial xa = x61 x52 x43 is
4

1 6 5 4
[xa ]S3 = x x x + x61 x53 x42 + x62 x53 x41 + x62 x51 x43 + x63 x51 x42 + x63 x52 x41

6 1 2 3
1 4 5 6
x x x + x41 x62 x53 + x51 x62 x43 + x51 x42 x63 + x61 x42 x53 + x61 x52 x43 .

=
6 1 2 3
For the subgroup G = {e, (1, 2, 3), (1, 3, 2)} of S3 , the G-symmetric mean of xa is
1 6 5 4  1 6 5 4
[xa ]G = x x x + x62 x53 x41 + x63 x51 x42 = x x x + x51 x42 x63 + x41 x62 x53 .

3 1 2 3 3 1 2 3
7
Consider the subgroup G = {e, (1, 2)} of S4 . For the exponent vector a = 32 ,
1
the G-symmetric mean of the monomial xa is
1 7 3 2  1
[xa ]G = x1 x2 x3 x4 + x72 x31 x23 x4 = x71 x32 + x31 x72 x23 x4 .
 
2 2
6
For the exponent vector b = 42 , the G-symmetric mean of the monomial xb is
1

1 6 4 2  1
[xb ]G = x1 x2 x3 x4 + x62 x41 x23 x4 = x61 x42 + x41 x62 x23 x4 .
 
2 2
It follows from (2) that
1
[xa ]G − [xb ]G = x71 x32 + x31 x72 − x61 x42 − x41 x62 x23 x4 > 0
 
2
 x1 
for all vectors x = xx23 ∈ R>0 with x1 6= x2 .
x4
6 MELVYN B. NATHANSON

1!
0
Here are two classical special cases. Associated to the vector e1 = .. ∈ Rn≥0
.
0
is the monomial function

xe1 = x11 x02 · · · x0n = x1 .

For every ordered pair of integers (i, j) with i, j ∈ {1, . . . , n}, there are (n − 1)!
permutations σ ∈ Sn with σ(i) = j. In particular, for all j ∈ {1, . . . , n}, there are
(n − 1)! permutations σ ∈ Sn with σ(1) = j. We obtain

1 X 1
[xe1 ]Sn = xσ(1) x0σ(2) · · · x0σ(n)
n!
σ∈Sn
n
1 X 1 X
= xσ(1) = (n − 1)!xj
n! n! j=1
σ∈Sn
n
1X
= xj .
n j=1

Thus, the symmetric mean of themonomial


 fe1 is the arithmetic mean.
1/n
 1/n 
Associated to the vector jn =  .  ∈ Rn≥0 is the monomial function
..
1/n

1/n 1/n
xjn = x1 x2 · · · x1/n
n = (x1 x2 · · · xn )1/n .

Because xσ(1) xσ(2) · · · xσ(n) = x1 x2 · · · xn for all σ ∈ Sn , we obtain the symmetric


mean
1 X 1/n
[xjn ]Sn = xσ(1) xσ(2) · · · xσ(n)
n!
σ∈Sn
1 X 1/n
= (x1 x2 · · · xn )
n!
σ∈Sn
1/n
= (x1 x2 · · · xn ) .

Thus, the symmetric mean of the monomial xjn is the geometric mean. The arith-
metic and geometric mean inequality states that

[xjn ]Sn < [xe1 ]Sn


x1 x1
! !
for all nonconstant vectors .. ∈ Rn>0 , that is, for all .. ∈ Rn>0 with xi 6= xj
. .
xn xn
for some i, j ∈ {1, . . . , n} with i 6= j.
We shall prove the remarkable theorem of Muirhead that determines the set of
all ordered pairs (b, a) of nonnegative vectors such that [xb ]Sn < [xa ]Sn for all
nonconstant vectors x ∈ Rn>0 .
MUIRHEAD-RADO INEQUALITY 7

3. Muirhead’s inequality
 ↓
a1 b1 a1
! !
Let a = .. and b = .. be vectors in R n
, and let a↓
=  ..  and
. . .
an bn a↓
  n
b↓
1

b↓ =  ..  be the corresponding decreasing vectors obtain by permutation of


.↓
bn
coordinates. The vector a majorizes the vector b, denoted b  a, if
k
X k
X
bi ≤ ai for all i ∈ {1, . . . , n − 1}
i=1 i=1

and
n
X n
X
bi = ai .
i=1 i=1
The vector a strictly majorizes b, denoted b ≺ a, if b  a and b 6= a.
a1
!
Lemma 2. Let a = .. be a vector in Rn≥0 . Let G be a subgroup of Sn . For
.
an
every permutation τ ∈ G,
[xa ]G = [xτ a ]G .
Proof. Recall that
 
aτ −1 (1)
a a
τ a =  ... 
−1 (1) −1 (n)
and xτ a = x1 τ · · · xnτ
 

aτ −1 (n)
Because G is a group, for all τ ∈ G we have Gτ = {στ : σ ∈ G} = G and so
1 X aτ −1 (1) aτ −1 (n)
[xτ a ]G = xσ(1) · · · xσ(n)
n!
σ∈G
1 X aτ −1 σ−1 (1) a −1 −1
= x1 · · · xnτ σ (n)
n!
σ∈G
1 X a(στ )−1 (1) a −1
= x1 · · · xn(στ ) (n)
n!
σ∈G
1 X aσ−1 (1) a −1
= x1 · · · xnσ (n)
n!
σ∈G
= [xa ]G .
This completes the proof. 
Lemma 3. Let G be a ! subgroup of Sn that contains the transposition τ = (j, k).
a1 x1
!
For all vectors a = .. ∈ Rn and x = .. ∈ Rn ,
. .
an xn
n
1 X  aj ak aj
 Y
[xa ]G = xσ(j) xσ(k) + xaσ(j)
k
xσ(k) xaσ(i)
i
.
2n! i=1
σ∈G
i6=j,k
8 MELVYN B. NATHANSON

Proof. The transposition ρ = (j, k) acts on the vector a as follows:


 a1   a1 
.. .
 .   .. 
 aj−1   aj−1 
 aj   ak 
 aj+1   aj+1 
   
ρa =  ...  .
 . 
a =  ..  and
 
a   ak−1 
 k−1  a 
 aak 

a j 
 k+1   k+1 
 .   . 
.. ..
an an

By Lemma 2,
2[xa ]G = [xa ]G + [xτ a ]G
1 X a1 aj
= xσ(1) · · · xσ(j) · · · xaσ(k)
k
· · · xaσ(n)
n

n!
σ∈G
1 X a1 aj
+ xσ(1) · · · xaσ(j)
k
· · · xσ(k) · · · xaσ(n)
n

n!
σ∈G
n
1 X  aj ak aj
 Y
= xσ(j) xσ(k) + xaσ(j)
k
xσ(k) xaσ(i)
i
.
n! i=1
σ∈G
i6=j,k

This completes the proof. 

Theorem 3.!Let G be a subgroup of Sn that contains the transposition τ = (j, k).


a1
Let a = .. be a nonnegative vector such that ak < aj . Let
.
an

aj + ak aj − ak
ρ= and ∆= .
2 2
Then
aj = ρ + ∆ and ak = ρ − ∆
and
0 < ∆ ≤ ρ.
Let
0 ≤ δ < ∆.
b1
!
Define the vector b = .. by
.
bn

bj = ρ + δ and bk = ρ − δ
and
b i = ai if i 6= j, k.
The vector b is!nonnegative.
x1
If x = .. ∈ Rn>0 is a nonconstant positive vector, then
.
xn

[xb ]G < [xa ]G .


MUIRHEAD-RADO INEQUALITY 9

Proof. Because bi = ai ≥ 0 for i 6= j, k, and


0 ≤ ak = ρ − ∆ < ρ − δ = b k ≤ b j = ρ + δ < ρ + ∆ = aj
the vector is b is nonnegative.
Applying inequality (1) with ρ = a0 , we obtain
(6) 0 < xaσ(1)
0 +∆ a0 −∆
xσ(2) + xaσ(1)
0 −∆ a0 +∆
xσ(2) − xaσ(1)
0 +δ a0 −δ
xσ(2) − xaσ(1)
0 −δ a0 +δ
xσ(2)
  
= (xσ(1) xσ(2) )a0 −∆ x∆+δ ∆+δ
σ(1) − xσ(2) x∆−δ ∆−δ
σ(1) − xσ(2) .

Applying Lemma 2, we have [xa ]G = [xρa ]G and so


[xa ]G = [xa ]G + [xρa ]G
n
1 X  aj ak ak aj
 Y
= xσ(j) xσ(k) + xσ(j) xσ(k) xaσ(i)
i

2n! i=1
σ∈G
i6=j,k
n
1 X  ρ+∆ ρ−∆  Y
= xσ(j) xσ(k) + xρ−∆
σ(j) xρ+∆
σ(k) xaσ(i)
i
.
2n! i=1
σ∈G
i6=j,k

Similarly,
n
1 X  bj bk bj
 Y
[xb ]G = xσ(j) xσ(k) + xbσ(j)
k
xσ(k) xbσ(i)
i

2n! i=1
σ∈G
i6=j,k
n
1 X  ρ+δ ρ−δ ρ−δ ρ+δ
 Y
= xσ(j) xσ(k) + xσ(j) xσ(k) xaσ(i)
i
.
2n! i=1
σ∈G
i6=j,k

Therefore,
[xa ]G − [xb ]G
n
1 X  ρ+∆ ρ−∆  Y
= xσ(j) xσ(k) + xρ−∆ xρ+∆
σ(j) σ(k) − xρ+δ ρ−δ
x
σ(j) σ(k) − xρ−δ ρ+δ
x
σ(j) σ(k) xaσ(i)
i

2n! i=1
σ∈G
i6=j,k

If xσ(j) = xσ(k) , then

xρ+∆ ρ−∆ ρ−∆ ρ+∆ ρ+δ ρ−δ ρ−δ ρ+δ


σ(j) xσ(k) + xσ(j) xσ(k) − xσ(j) xσ(k) − xσ(j) xσ(k) = 0.

If xσ(j) 6= xσ(k) , then

xρ+∆ ρ−∆ ρ−∆ ρ+∆ ρ+δ ρ−δ ρ−δ ρ+δ


σ(j) xσ(k) + xσ(j) xσ(k) − xσ(j) xσ(k) − xσ(j) xσ(k) > 0.

If xp 6= xq for some p, q ∈ {1, . . . , n}, then there are (n − 2)! permutations σ ∈ G


such that σ(j) = p and σ(k) = q. This completes the proof. 

Theorem 4 (Muirhead’s inequality). Let a and b be nonnegative vectors in Rn ,


and let x be a nonconstant positive vector in Rn . If b ≺ a, then [xb ]Sn < [xa ]Sn .
Note that that [xb ]Sn = [xa ]Sn for every constant vector x.
We give two proofs.
10 MELVYN B. NATHANSON

Proof. As proved in Nathanson [5], there is a strict majorization chain


b = cr ≺ cr−1 ≺ · · · ≺ c1 ≺ c0 = a
such that
dH (ci−1 , ci ) = 2 for all i ∈ {1, . . . , r}.
The symmetric group Sn contains all transpositions, and so, by Theorem 3,
[xci ]Sn < [xci−1 ]Sn
for all i ∈ {1, . . . , r}. Therefore,
[xb ]Sn = [xcr ]Sn < [xcr−1 ]Sn < · · · < [xc1 ]Sn < [xc0 ]Sn = [xa ]Sn .
This completes the proof. 
The second proof of Theorem 4 uses only the arithmetic and geometric mean
inequality.
Proof. Let (ci )ni=1 be a sequence of real numbers such that ci 6= 0 for some i and
n
X
ci = 0.
i=1

For every pair of integers (i, j) with i, j ∈ {1, . . . , n}, there are (n−1)! permutations
σ ∈ Sn with σ(i) = j and so there are (n− 1)! permutations σ such that xcσ(i) i
= xcj i .
Therefore,
Y n
Y Y n Y
Y
xcσ(1)
1
xcσ(2)
2
· · · xcσ(n)
n
= xcσ(i)
i
= xcσ(i)
i

σ∈Sn σ∈Sn i=1 i=1 σ∈Sn


n Yn n Yn
(n−1)!ci (n−1)!ci
Y Y
= xj = xj
i=1 j=1 j=1 i=1
n Pn
(n−1)! i=1 ci
Y
= xj = 1.
j=1

Applying the arithmetic and geometric mean inequality to the nonconstant pos-
itive vector x gives
!1/n!
Y
c1 c2 cn 1 X c1 c2
1= xσ(1) xσ(2) · · · xσ(n) < xσ(1) xσ(2) · · · xcσ(n)
n

n!
σ∈Sn σ∈Sn

and so X
n! < xcσ(1)
1
xcσ(2)
2
· · · xcσ(n)
n
.
σ∈Sn
Equivalently,
X  
(7) 0< xcσ(1)
1
xcσ(2)
2
· · · xcσ(n)
n
−1 .
σ∈Sn
a1 b1
! !
Let a = .. and b = .. . For i ∈ {1, . . . , n}, let
. .
an bn

ci = ai − b i .
MUIRHEAD-RADO INEQUALITY 11

The strict majorization relation b ≺ a implies that ci 6= 0 for some i and


n
X n
X n
X n
X
ci = (ai − bi ) = ai − bi = 0.
i=1 i=1 i=1 i=1

We have
n
X Y n
X Y n
X Y n
Y
xaσ(i)
i
= xbσ(i)
i +ci
= xbσ(i)
i
xcσ(i)
i
.
σ∈Sn i=1 σ∈Sn i=1 σ∈Sn i=1 i=1

Inequality (7) implies


n
X Y n
X Y
[xa ]Sn − [xb ]Sn = xaσ(i)
i
− xbσ(i)
i

σ∈Sn i=1 σ∈Sn i=1


X Y n Yn X Y n
= xbσ(i)
i
xcσ(i)
i
− xbσ(i)
i

σ∈Sn i=1 i=1 σ∈Sn i=1


n n
!
X Y Y
= xbσ(i)
i
xcσ(i)
i
−1
σ∈Sn i=1 i=1
> 0.
This completes the proof. 

Theorem 5. Let a and b be distinct nonnegative vectors in Rn . If [xb ]Sn ≤ [xa ]Sn
x1
!
for every positive vector .. ∈ Rn , then b ≺ a.
.
xn

a1 b1
! !
Proof. Rearranging the coordinates of the vectors a = .. and b = .. , we
. .
an bn
can assume that a and b are decreasing, that is,
a1 ≥ · · · ≥ an ≥ 0 and b1 ≥ · · · ≥ bn ≥ 0.
w
For every w > 0, the constant vector w = ... is positive and
w
1 X b1 b2 1 X b1 +b2 +···+bn Pn
w w · · · wbn = = w i=1 bi .
 b
w S = w
n n! n!
σ∈Sn σ∈Sn

Similarly, Pn
ai
[wa ]Sn = w i=1 .
If [xb ]Sn ≤ [xa ]Sn for every positive vector x ∈ Rn , then
Pn Pn
w i=1 bi = wb Sn ≤ [wa ]Sn = w i=1 ai .
 

Pn Pn Pn
Choosing
Pn w > 1 givesPn i=1 bi P ≤ i=1 ai . Choosing 0 < w < 1 gives i=1 bi ≥
n
i=1 ai . Therefore, i=1 bi = i=1 ai .
Let w > 1. For k ∈ {1, . . . , n − 1}, we define the scalars
(
w if i ∈ {1, . . . , k}
wi =
1 if i ∈ {k + 1, . . . , n}
12 MELVYN B. NATHANSON

and the positive vector


 w1
 w
.. .
 .   .. 
 wk   w 
w =  wk+1  =  1  .
 .  .
.. ..
wn 1
The positive number
1 X a1 an
[wa ]Sn = wσ(1) · · · wσ(n)
n!
σ∈Sn
is P
a sum of powers of w. Because the vector a is decreasing, the highest power is
k
w i=1 ai . Similarly, the positive number
 b 1 X b1 bn
w S = wσ(1) · · · wσ(n)
n n!
σ∈Sn
Pk
is a sum of powers of w, and the highest power is w i=1 bi . The inequality wb Sn ≤
 
Pk Pk
[wa ]Sn implies that i=1 bi ≤ i=1 ai , and so b  a. We have b ≺ a because
a 6= b. This completes the proof. 
Theorem 6. If (ui )ni=1 and (vi )ni=1 are decreasing sequences of positive numbers
such that ui0 6= vi0 for some i0 ∈ {1, . . . , n} and
j
Y j
Y
(8) vi ≤ ui for all j ∈ {1, . . . , n}
i=1 i=1
then
n
X n
X
(9) vi < ui .
i=1 i=1

Proof. Let
 Qn 
i=1 vi
vn+1 = min(vn , un ) and un+1 = min(vn , un ) Qn .
i=1 ui
n+1
We have 0 < vn+1 ≤ vn and so the sequence Qn(vi )i=1 Qis positive and decreasing.
n
From inequality (8) with j = n, we see that i=1 ui ≥ i=1 vi > 0 and so
 Qn 
vi
0 < un+1 = min(vn , un ) Qni=1 . ≤ min(vn , un ) ≤ un
i=1 ui

Thus, the sequence (ui )n+1


i=1 is also positive and decreasing. Moreover,
n+1 n  Qn  n
Y Y
i=1 vi Y
ui = un+1 ui = min(vn , un ) Qn ui
i=1 i=1 i=1 ui i=1
n
Y n+1
Y
= vn+1 vi = vi .
i=1 i=1

Let λ > 0. For all j ∈ {1, . . . , n}, we have


j
Y j
Y j
Y j
Y
λvi ≤ λui if and only if vi ≤ ui
i=1 i=1 i=1 i=1
MUIRHEAD-RADO INEQUALITY 13

and
j
X j
X j
X j
X
λvi ≤ λui if and only if vi ≤ ui .
i=1 i=1 i=1 i=1
Also,
min(λun , λvn ) = λ min(vn , un ).
Choosing λ sufficiently large, we can assume that vi > 1 and ui > 1 for all i ∈
{1, . . . , n, n + 1}, and so
bi = log vi > 0 and ai = log ui > 0.
The sequences (bi )n+1
and
i=1 (ai )n+1
i=1 are decreasing sequences of positive numbers
such that bi0 6= ai0 and
j
X j
X j
Y j
Y j
X j
X
bi = log vi = log vi ≤ log ui = log ui = ai
i=1 i=1 i=1 i=1 i=1 i=1

for all j ∈ {1, . . . , n}, and


n+1
X n+1
X n+1
Y n+1
Y n+1
X n+1
X
bi = log vi = log vi = log ui = log ui = ai .
i=1 i=1 i=1 i=1 i=1 i=1
This gives the vector majorization
   
b1 a1
 ..   .. 
b =  .  ≺  .  = a.
   
 b n   an 
bn+1 an+1
x1
!
By Muirhead’s inequality (Theorem 4), for every positive vector x = .. , we
.
xn
have
n+1 X n+1 X n+1 n+1
xlog vi
xlog ui
X Y Y Y X Y
σ(i) = xbσ(i)
i
< xaσ(i)
i
= σ(i) .
σ∈Sn+1 i=1 σ∈Sn+1 i=1 σ∈Sn+1 i=1 σ∈Sn+1 i=1

Let x1 = e and xi = 1 for i ∈ {2, . . . , n + 1}. If σ ∈ Sn+1 and σ(j) = 1, then


n+1 n+1
xlog vi
Y Y
xbσ(i)
i
= σ(i) = e
log vj
= vj .
i=1 i=1

There are n! permutations σ ∈ Sn+1 such that σ(j) = 1, and so


n+1
X n+1
X X n+1
X X n+1
Y
n! vj = vj = xbσ(i)
i

j=1 j=1 σ∈Sn+1 j=1 σ∈Sn+1 i=1


σ(j)=1 σ(j)=1

X n+1
Y X n+1
Y
= xbσ(i)
i
< xaσ(i)
i

σ∈Sn+1 i=1 σ∈Sn+1 i=1


n+1
X X n+1
Y n+1
X
= xaσ(i)
i
= n! uj .
i=1 σ∈Sn+1 i=1 j=1
σ(j)=1
14 MELVYN B. NATHANSON

We have Qn
vi
un+1 = min(vn , un ) Qni=1 ≤ min(vn , un ) = vn+1
i=1 ui
and so
n
X n+1
X n+1
X n
X
vi = vi − vn+1 < ui − un+1 = ui .
i=1 i=1 i=1 i=1
This completes the proof. 
Exercises.
(1) (a) Prove that the symmetric mean of the function
f (x1 , x2 ) = x1
is
[f ](x1 , x2 ) = x1 + x2 .
(b) Prove that the symmetric mean of the function
f (x1 , x2 , x3 ) = x1
is
[f ](x1 , x2 , x3 ) = 2x1 + 2x2 + 2x3 .
(2) Compute the symmetric means of the following functions;
(a)
f (x1 , x2 , x3 , x4 , x5 ) = x4 .
(b)
f (x1 , x2 ) = x51 x72 .
(c)
f (x1 , x2 , x3 ) = x51 x72 .
(d)
f (x1 , x2 , x3 , x4 ) = x51 x72 .
(3) Here are two proofs that if 0 ≤ x < y, then
x3 y 2 + x2 y 3 < x5 + y 5 .
(a) Deduce this from Muirhead’s inequality.
(b) Use the arithmetic and geometric mean inequality to show that
p 3x5 + 2y 5
x3 y 2 = 5 x15 y 10 ≤
5
and
p 2x5 + 3y 5
x2 y 3 = 5 x10 y 15 ≤ .
5
Add these
p inequalities.p p p
Hint: 5 x15 y 10 = 5 x5 x5 x5 y 5 y 5 and 5 x10 y 15 = 5 x5 x5 y 5 y 5 y 5
(4) Let 0 ≤ x < y. Apply Muirhead’s inequality to prove
x3 y 2 + x2 y 3 < x4 y + xy 4 .
(5) Let 0 ≤ x < y.
(a) Use the arithmetic and geometric mean to prove that
p
3
p
x2 y + 3 xy 2 < x + y.
MUIRHEAD-RADO INEQUALITY 15

(b) Prove the inequality


x2 y + xy 2 < x3 + y 3
and then multiply by xy to obtain another proof of Exercise 4.
(6) Let r ≥ 0 and s ≥ 0. Prove that for all x, y, z > 0,
xr+s (y s + z s ) + y r+s (xs + z s ) + z r+s (xs + y s ) ≤ x2r+s + y 2r+s + z 2r+s .
a1 x1
! !
(7) Let a = .
.. n
∈ R≥0 . Prove that if .
.. ∈ Rn>0 and xi = x for all
an xn
i ∈ {1, . . . , n}, then
Pn
bi
[a] = x i=1 .
(8) Functions f = f (x1 , . . . , xn ) and g = g(x1 , . . . , xn ) are comparable if
a1
!
f (a1 , . . . , an ) ≤ g(a1 , . . . , an ) for all .. ∈ R≥0 .
.
an

Prove that if f = I rI xI and g = J sJPxJ are homogeneous


P P
P polynomials
such that k = deg(I) 6= deg(J) = ℓ and I rI 6= J sJ , then f and g are
not comparable.
(9) Prove directly that if
0 < β1 ≤ α1 and 0 < β1 β2 ≤ α1 α2
then
β1 + β2 ≤ α1 + α2 .
(10) Let x ≥ y ≥ z ≥ 0 and r > 0. Prove Schur’s inequality:
xr (x − y)(x − z) + y r (y − x)(y − z) + z r (z − x)(z − y) ≥ 0.
Hint: Prove that
xr (x − z) ≥ y r (y − z) and z r (z − x)(z − y) ≥ 0.

4. Rado’s inequality
Let V be an n-dimensional vector space with basis B = {e1 , . . . , en }. For every
permutation σ ∈ Sn , let Pσ : V → V be the linear transformation defined by
Pσ (ej ) = eσ(j) .
The (i, j)th coordinate of the matrix of Pσ with respect to the basis B is
(Pσ )i,j = δi,σ(j) .
For all σ, τ ∈ Sn and for all j ∈ {1, . . . , n} we have
Pσ Pτ (ej ) = Pσ (eτ (j) ) = eσ(τ (j))
= e(στ )(j)) = Pστ (ej )
and so
Pσ Pτ = Pστ .
16 MELVYN B. NATHANSON

Pn
For every permutation σ ∈ Sn and vector x = j=1 xj ej in V , we define
 
Xn n
X
σx = Pσ (x) = Pσ  xj ej  = xj Pσ (ej )
j=1 j=1
n
X n
X
= xj eσ(j) = xσ−1 (j) ej .
j=1 j=1
Pn
Thus, if x = j=1 xj ej ∈ Rn , then
 
xσ−1 (1)
(10) σx =  ...  .
 

xσ−1 (n)
For example, if σ = (1, 2, 3) ∈ S3 , then σ −1 = (1, 3, 2) and
      
xσ−1 (1) x3 0 0 1 x1
σx = xσ−1 (2)  = x1  = 1 0 0 x2  = Pσ (x).
xσ−1 (3) x2 0 1 0 x3
The permutohedron generated by the vector x ∈ Rn , denoted KSn (x), is the
convex hull of the finite set {σx : σ ∈ Sn }.
   
x1 y1
 ..   .. 
n
Theorem 7. Let x =  .  ∈ R≥0 and y =  .  ∈ Rn≥0 . Then y  x if and
xn yn
only if y ∈ KSn (x).
Proof. By the Hardy-Littlewood-Pólya theorem, we have y  x if and only if there
is a doubly stochastic matrix S such that y = Sx. By the Birkhoff-von Neumann
theorem, the matrix S is a convex combination of permutation matrices, and so
there is a set of nonnegative real numbers {tσ : σ ∈ Sn } such that
X
tσ = 1
σ∈Sn

and X
tσ Pσ = S.
σ∈Sn
Therefore,
X X
y = S(x) = tσ Pσ (x) = tσ σx ∈ conv{σx : σ ∈ Sn } = KSn (x).
σ∈Sn σ∈Sn

Conversely, if y ∈ KSn (x), then there is a set of nonnegative real numbers {tσ :
σ ∈ Sn } such that
X
tσ = 1
σ∈Sn
and X X
y= tσ σx = tσ Pσ (x) = S(x)
σ∈Sn σ∈Sn
P
where the matrix S = σ∈Sn tσ Pσ is doubly stochastic. This completes the proof.

MUIRHEAD-RADO INEQUALITY 17

Let G ! be a subgroup of the symmetric group!Sn . For every nonnegative vector


a1 x1
a= .. ∈ R n
and positive vector x = .. ∈ Rn>0 , we define the monomial
. ≥0 .
an xn

xa = xa1 1 xa2 2 · · · xann

and the G-symmetric mean


1 X a1 a2
[xa ]G = xσ(1) xσ(2) · · · xaσ(n)
n

|G|
σ∈G
1 X aσ−1 (1) aσ−1 (2) a −1
= x1 x2 · · · xnσ (n)
|G|
σ∈G
1 X aσ(1) aσ(2) a
= x1 x2 · · · xnσ(n) .
|G|
σ∈G

For every vector a ∈ Rn , let KG (a) be the convex hull of the finite set of
vectors {γa : γ ∈ G}. If the vector a is constant, then γa = a for all γ ∈ G and
KG (a) = conv{γa : γ ∈ G} = {a}. Thus, if a ∈ Rn and if b ∈ KG (a) for some
b 6= a, then a is not a constant vector.

Theorem 8 (Rado). Let G be a subgroup of the symmetric group Sn . Let a be


a nonnegative vector in Rn and let KG (a) be the convex hull of the finite set of
vectors {γa : γ ∈ G}. If
b ∈ KG (a)
then
xb ≤ [xa ]G
 
G

for all positive vectors x ∈ Rn .


a1 b1
! !
Proof. Let a = .
.. and b = .. . If b ∈ KG (a), then for every permutation
.
an bn
γ ∈ G there exists tγ ∈ [0, 1] such that
X X
tγ = 1 and b= tγ γa.
γ∈G γ∈G

Thus, by (10), the ith component of the vector b is


X X
bi = tγ (γa)i = tγ aγ −1 (i) .
γ∈G γ∈G

x1
!
Let x = .. be a positive vector. For every permutation σ ∈ G, the arithmetic
.
xn
and geometric mean inequality gives
n
!tγ n
!
Y Y aγ −1 (i) X Y aγ −1 (i)
xσ(i) ≤ tγ xσ(i) .
γ∈G i=1 γ∈G i=1
18 MELVYN B. NATHANSON

We have
n n P
γ∈G tγ aγ −1 (i)
XY XY
xbσ(i)
 b
x G= i
= xσ(i)
σ∈G i=1 σ∈G i=1
n Y n
!tγ
XY tγ aγ −1 (i) X Y Y aγ −1 (i)
= xσ(i) = xσ(i)
σ∈G i=1 γ∈G σ∈G γ∈G i=1
n n
! !
XX Y aγ −1 (i) X X Y aγ −1 (i)
≤ tγ xσ(i) = tγ xσ(i)
σ∈G γ∈G i=1 γ∈G σ∈G i=1
   
n n
a a
X X Y X X Y
j j
= tγ  xσγ(j) = tγ  xσ(j) 
γ∈G σ∈G j=1 γ∈G σ∈G j=1
   
n n
a a
X Y X X Y
j j
=  xσ(j)  tγ =  xσ(j) 
σ∈G j=1 γ∈G σ∈G j=1
a
= [x ]G .
This completes the proof. 
Theorem 9 (Rado). Let G be a subgroup of the symmetric group Sn . If a and b
are nonnegative vectors in Rn such that
 b
x G ≤ [xa ]G
for all positive vectors x ∈ Rn , then
b ∈ KG (a).
a1 b1
! !
Proof. Let a = .. and b = .. . We shall prove that if b ∈
/ KG (a), then
. .
an bn
there is a positive vector x ∈ Rn such that xb G > [xa ]G .
 

The compact convex polytope KG (a) is generated by the finite set of vectors
{γa : γ ∈ G}. If b ∈ / KG (a), then the set KG (a) and the vector b are strictly
separated by a hyperplane H. This means that there is a nonzero linear functional
Xn
H(x) = ui xi
i=1
and scalars c and δ with δ > 0 such that
H(x) ≤ c for all x ∈ KG (a)
and
H(b) ≥ c + δ.
For all γ ∈ G we have 
aγ(1)
γ −1 a =  ...  ∈ KG (a)
 

aγ(n)
and so
n
X n
X
ui aγ −1 (i) = H(γa) ≤ c ≤ H(b) − δ = ui bi − δ.
i=1 i=1
MUIRHEAD-RADO INEQUALITY 19

Let
M > |G|1/δ and xi = M ui
x1
!
for i ∈ {1, . . . , n}. The vector x = .. is positive. The subgroup G contains the
.
xn
identity permutation, and so
Pn X Pn n
XY
ui bi ui bγ(i)
M i=1 ≤ M i=1 = M ui bγ(i)
γ∈G γ∈G i=1
n
XY b
xi γ(i) = |G| xb
 
= G
.
γ∈G i=1

It follows that
n n
1 X Y aγ −1 (i) 1 X Y ui aγ −1 (i)
[xa ]G = xi = M
|G| i=1
|G| i=1
γ∈G γ∈G
1 X Pni=1 ui aγ −1 (i) 1 X H(γa)
= M = M
|G| |G|
γ∈G γ∈G
1 X H(b)−δ Pn
≤ M = M i=1 ui bi −δ
|G|
γ∈G
1 Pn |G|  
= δ
M i=1 ui bi ≤ δ xb G
M  M
< xb G .
This completes the proof. 

References
[1] G. H. Hardy, J. E. Littlewood, and G. Pólya, Some simple inequalities satisfied by convex
functions, Messenger of Math. 58 (1929), 145–152.
[2] , Inequalities, Cambridge Mathematical Library, Cambridge University Press, Cam-
bridge, 1988, reprint of the 1952 edition.
[3] A. W. Marshall, I. Olkin, and B. C. Arnold, Inequalities: Theory of Majorization and its
Applications, Springer Series in Statistics, Springer, New York, 2011.
[4] R. F. Muirhead, Some methods applicable to identities and inequalities of symmetric algebraic
functions of n letters, Proc. Edinburgh Math. Soc. 21 (1903), 144–157.
[5] M. B. Nathanson, The Muirhead-Rado inequality, 1: Vector majorization and the permuto-
hedron, arXiv:2109.01746
[6] R. Rado, An inequality, J. London Math. Soc. 27 (1952), 1–6.

Department of Mathematics, Lehman College (CUNY), Bronx, NY 10468


Email address: melvyn.nathanson@lehman.cuny.edu

You might also like