Nothing Special   »   [go: up one dir, main page]

Trigonometric Identities

Download as pdf or txt
Download as pdf or txt
You are on page 1of 49

Basic Trigonometric

Relationships -
Reduction Formulae
Grade 11
and Identities CAPS
Mathematics
Series
Outcomes for this Topic
In this Topic session we will:

• Review basic trigonometric relationships Unit 1

• Work with reduction formulae in respect of the


angles  θ , 180  θ , 90  θ and 360  θ. Unit 2

• Learn about and apply basic


trigonometric identities. Unit 3
• Solving Basic Trigonometric
Equations. Unit 4
Outcomes for this Lesson

In this lesson we will:


• Consolidate application of basic
reduction formulae. Topic 1
• Learn and Apply some basic
trigonometric identities. Topic 2
Unit 1

Review of Basic
Trigonometry Grade 11
CAPS
Mathematics
Series
Review: Definition of the Trigonometric Functions

Ratios of the sides of a right triangle Y Cartesian view


P ( x; y )
determines the value of trigonometric functions
Trigonometric function of  gives output value
r y
O x B
y x X
sin cos
r r

angle is the input value


y y x sin
tan P
x r r cos
hypotenuse opposite
Consider right triangle POB O B

where POB adjacent


Representing Angles on the Cartesian Plane
Y Signs of the trigonometric ratios in the four quadrants
P ( x; y )

r Y 90
y

O x
Sin All
y X 180
0
r O 360
P( x; y ) X
tan Cos
CAST Diagram
270
1. Signs of co-ordinates x and y changes with quadrants.
2. If OP moves anti-clockwise from pos. X -axis, then is positive.
3. If OP moves clockwise from pos. X -axis, then is negative.
4. Multiples of 360 added to give same trigonometric ratios.
Trigonometric Ratios for Standard (special) Angles

1 1
3 sin 30  sin 45 
sin 60  2
2 2
3
1 cos 30  1
cos 60  2 cos 45 
2 1 2
tan 30 
tan 60  3 3 tan 45  1
Effect of Unit Circle on Trigonometric Ratios
cos90  0
•  0;1
sin 90  1
tan 90 (Undefined  ) x; y;sin  
•  cos

 1;0  • • 1;0 
cos180  cos 0  1
sin180  sin 0  0
tan180  •  0; 1 tan 0  0
What about sin, cos and tan of 270?
Trigonometric Ratios - Completion of Triangle
hypotenuse
Use the diagram and determine the value of:  5 4  3
y
1. cos  5 P (  5, 2)
 3
3 2 

2 1  5 x
2. sin    1  1  
3 3 Complete the Triangle

2
 2  4 1
3. 2  tan 2 ( )  2     2  5 15
 5
Trigonometric Ratios- Completion of Triangle
3 cos negative
Let cos( )   and 0    180.  2nd quadrant
5 y
Without a calculator, find the value of: 5
4 
sin( )  cos( ) opposite  52  (3)2  4 x
3
tan( )

Complete the Triangle


4  3 
 
5  5   1  3  3
   

4 5  4  20
3
Tutorial 1 Problem 1:
Completion of Triangle: Suggested Solution

1. 2 tan   13cos 2

2
3  2 
 2   13   
2  13 n

 3  4  1 Given:
2
cos   
13
and    0;180 
Tutorial 1 Problem 2:
Standard Angles: Suggested Solution
cos 60
2.  sin 2
(60)
(tan 45)
2

2
1  3 1 3 1
  1  
2
   
2  2  2 4n
4
Unit 2

Reduction
Formulae Grade 11
CAPS
Mathematics
Series
The (180   ) and (180   ) Identities

sin 180     sin  sin 180      sin 


cos 180      cos  cos 180      cos 
tan 180      tan  tan 180     tan 
For an angle  , any trigonometric function of (180   ) or
(180   ) is numerically equal to the same function of  .
The sign may change according to the CAST diagram.
The (360   ) and (360   ) Identities
sin  360      sin  sin  360     sin 
cos  360     cos  cos  360     cos 
tan  360      tan  tan  360     tan 

For an angle  , any trigonometric function of (360   ) or


(360   ) is numerically equal to the same function of  .
The sign may change according to the CAST diagram.
What about the ( ) Identities?
sin      sin 
cos     cos 
tan      tan 

For an angle  , any trigonometric function of ( )


is numerically equal to the same function of  .
The sign may change according to the CAST diagram.
Simplification using Trigonometric Identities
Determine the value of the Reference Angle
following without a calculator:

sin  570 tan  135


  sin  360  210    tan135
  sin 210   tan(180  45)
  sin 180  30      tan 45 
    sin 30 
1
1
 sin30 
2
More Simplification using Trigonometric Identities
If cos(35)  a, determine the following i.t.o. a :
Start by drawing the right triangle
y
1. tan  35 1
1  a2
35
1 a 2 x
 a
a
2. cos(215)
 cos 180  35  a
Given: cos(35) 
  cos35 1
 a
The (90   ) Co-function Identities
sin and cos are co-functions of one another

cos  90     sin  cos  90      sin 

sin  90     cos  sin  90     cos 

For an angle  , any trigonometric function of (90   ) is


numerically equal to the co-function of  . The sign may
change according to the CAST diagram.
Applications of the Co-Function Identities
sin 65  sin(90  25)
 cos 25

cos118  cos(90  28)


  sin 28

sin146  sin(90  56)


 cos56
More examples of Trigonometric Simplification
Calculate without a calculator:
3cos(150) cos(180) Reference Angles
tan(315)  cos(240)
3( cos30)(1)

 tan(45)  ( cos 60)
 3
 3     1
 2  3 3  2
=       3 3
1 2  1
1 
2
More examples of Trigonometric Simplification
Simplify the following expressions:
cos( )sin(180   ) tan   180 
tan(  180)sin(  90)  tan  180   
cos     sin     tan 180   

tan   cos   tan 
cos     sin  

sin 
 cos 
cos 
  cos
Tutorial 2 : Simplification and Reduction

1. Consider the figure and determine:


2 
• x; 3 
(a) x (b) sin(180   )
(c) tan(360   ) (d) cos(90   )

2. Calculate without a calculator:


(a) sin(570)
PAUSE
(b) cos( 210)
• Do Tutorial 2
(c) tan(315)
• Then View Solutions
3. Simplify
sin(  360) cos(360   )
tan(180   )sin(  90)
Tutorial 2 Problem 1: Simplification and Reduction:
Suggested Solutions

1. (a) x  (2)  ( 3)  1
2 2

1. (b) sin(180   )
3
 sin  
2
1. (d) cos (90   )
1. (c) tan(360   )
3
  tan     3   sin( )  
2
Tutorial 2 Problem 2: Simplification and reduction:
Suggested Solutions

2. (a) sin(570)  sin(360  210)  sin(210)


But sin  210   sin 180  30 
  sin 30  0,5
2. (b) cos  210 
 cos 210 3
 cos 180  30   cos 30   2

2. (c) tan  315 


 tan  360  45    tan 45  1
Tutorial 2 Problem 3: Reduction and Simplification:
Suggested Solution

sin(  360) cos(360   )


3.
tan(180   ) sin(  90)


 sin(360   )  cos( )
  tan    sin(90   ) 

 ((sin( ))  cos( )
  tan    cos( ) 
sin  cos 

sin   cos
 cos 
cos 
Unit 3

Basic Trigonometric
Identities Grade 11
CAPS
Mathematics
Series
Trigonometric Identities Involving Squares
Y

sin   cos 
2 2 P ( x, y )

2 2 r y
 y  x
    
r r
O
x X

y x
2 2
 2
r
1
 sin   cos   1
2 2
Basic Identities: Example1
1. Simplify: sin θ
Know that: tan θ 
tanθ  sinθ cos θ
cosθ
sin 
 sin 
 cos 
cos 
sin 
2

cos 
2

 tan 
2
Basic Identities: Example 2
2. Simplify:
cosθ  sinθ
tanθ  sin(90  θ )
cos   sin 

sin 
 cos 
cos 
cos   sin 

sin 
 cos
Basic Identities: Example 3

 1 
3. Simplify: sin θ  
2

 cos θ  1 
2

 1 
 sin θ  
2

  sin 2
θ 
 1
Know that: sin θ  cos θ  1
2 2

Hence:cos θ  1   sin θ
2 2
Tutorial 3 : Simple identities

PAUSE
Simplify: • Do Tutorial 3
• Then View Solutions
tanθ  cos(  θ )
1.
sin(90  θ )

1
2.  (1  sin θ )(1  sin θ ) 
cos θ
2
Tutorial 3 Problem 1:
Basic Identities: Suggested Solution
tanθ  cos(  θ )
1.
sin(90  θ )

sin θ
 cos θ
 cos θ
cos θ
sin
=  tan 
cos
Tutorial 3 Problem 2:
Simple identities: Suggested Solution
1
2. (1  sin θ )(1  sin θ ) 
cos θ
2


1
cos θ
2
 1  sin 2
θ 
1
  cos 2

cos 
2

1 Know: sin   cos   1


2 2
Unit 4

Solving Basic
Trigonometric Grade 11
CAPS
Equations Mathematics
Lesson Series
Solve sin( x )  b where b  0
by using the basic sine graph
Example 1 : Solve equation sin  x   0,5 for 0  x  360
Method :
• Consider graph of y  sin  x  for 0  x  360
• Estimate solutions from graph.
• Solutions are x  30 and x  150 in 1st and 2nd quadrants.

y  0,5

Approximate Solutions if Read from Graph


Use reference angle to solve sin x  0,5
Can use a scientific calculator or standard angle ratios to
find the reference angle R (Angle in first quadrant):

sin  x   0,5  ref   sin 1  0,5   30


II I
Use CAST-diagram to determine solutions
sin  x   0 sin  x   0
within the first four quadrants :
Formulate the General Solutions:
From solution in 1st quadrant and periodicity: From solution in 2nd quadrant and periodicity:
x  ref   360k  30  360k ; k  x  180  ref   360k  150  360k ; k 

Indentify by means of inspection the Specific Solutions:


Specific Solutions restricted to interval 0;360

Substitute k  0 into general solutions.


 x  30;150
Solve cos( x )  b where b  0
by means of the basic cosine graph
Example 3 : Solve equation cos  x   0,75 for  360  x  360
Method :
• Consider intersection between graphs of
y  cos  x  for  360  x  360 and y  0,75.
• Estimate solutions from graph.
• Approximate Solutions are  315; 45; 45 or 315.

y  0, 75
Use reference angle to solve cos( x )  0,75
Example 3 : Solve equation cos  x   0,75 for  360  x  360

cos  x   0,75  ref   cos 1


 0,75 41, 4
I
Use CAST-diagram and periodicity to
determine general solutions: cos  x   0

General Solution from 1st quadrant observation:


IV

x  ref   360k 41, 4  360k ; k  cos  x   0


General Solution from 4th quadrant observation:
x  360  ref   360k 318,6  360k ; k 
Substitute k  0 and k  1 into general solutions  Why only these two values? :
Estimated Specific Solutions
 x  41, 4; 318,6;318,6; 41, 4 from graph:  315; 45; 45 or 315
Two methods to solve cos( x )  b where b  0
Example 4 : Solve equation cos  x    0,75 for 0  x  360
Method 1 :  x 135 or x 225
• Consider graphs of y  cos  x  for 0  x  360 and y  0, 75 II
Method 2 : cos  x   0

• Find reference angle where cos  x   0, 75 and III


cos  x   0
use CAST  diagram and general solutions.
ref  41, 4
 x  180  R   360k or x  180  R   360k ; k 
x 138, 6  360k or x 221, 4  360k ; k 
Specific Solution is given by x 138, 6; 221, 4

y  0, 75
Two methods to solve tan( x )  b where b  0
Example 5 : Solve equation tan  x    1,5 for 0  x  360
Method 1 :
• Consider graphs of y  tan  x  for 0  x  360 and y  1, 5
II
Method 2 : tan( x)  0
• Find reference angle where tan  x   1,5 and IV
use CAST  diagram and general solution. tan  x   0
ref   56,3
 x  180  ref    180k or x   360  ref    180k ; k
 x  123, 7;303, 7
 x  123,7  180k or x  303,7  180k ; k 

 x 120  x 330

y  1,5
Trigonometric Equations: Example 6
Example 6 :  sin x  0,85
Solve for x if sin  x   0,85  0 for  360  x  360
CHECK :
Suggested Solution :
ref   sin 1
 0,85  58,2
 x  180  ref    360k or x   360  ref    360k ; k 
 x  238, 2  360k or x  301,8  360k ; k 
x 238, 2 121,8 301,8 58, 2
When k 0 k  1 k 0 k  1
 x  121,8;  58, 2; 238, 2; 301,8
Trigonometric Equations: Example 7
Example 7 :
Solve for x if 3,5cos  x   2,85  0 for  360  x  540

CHECK :

2,85  2,85 
Suggested Solution : cos  x     ref   cos 1    35,5
3,5  3,5 
 x  180  35,5   360k or x  180  35,5   360k ; k 
 x  144, 5  360k or x  215, 5  360k ; k 
144, 5  k  0  ; 504, 5  k  1 ; 215, 5  k  1 
 
x 

 215, 5  k  0  ; 144, 5   k   1 

 x  215, 5; 144, 5;144, 5; 215, 5; 504, 5
Trigonometric Equations: Example 8
Example 8 :
Solve for x if 4, 5 tan  x   8, 25  0 for  360  x  360
Suggested Solution : 8, 25  8, 25 
tan  x    ref   tan 1    61, 4
4,5  4,5 
 x  R  180k or x  180  R   180k ; k 
Note : x  180  ref    180k ; k  is
embedded within x  ref   180k when k  1
 General Solution x  ref   180k ; k  will suffice
 General Solution is given by:  Specific Solution is given by:
x   x : x  61, 4  180k ; k   61, 4  k  0  ; 241, 4  k  1 ; 
x 
118, 6  k  1 ; 298, 6  k  2  

CHECK!!
Tutorial 4: Finding Solutions over Given Interval

Solve the following equations for given domains :


1. 3, 2sin( x)  2, 05  0 if  360  x  360
2. sin( x)  cos(305,5) if x  0;360
3.  0, 75cos( x)  0, 45  0 if  360  x  360

PAUSE Lesson
• Do Tutorial 4
• Then View Solutions
Tutorial 4 Problem 1:
Suggested Solution
Problem 1: Solve 3,2 sin( x)  2,05  0; x   360;360

2, 05 1  2, 05 
 sin( x)    reference angle  sin    39,8
3, 2  3, 2 
General Solutions :
 x  180  39,8   360k  219,8  360k ; k 
or x   360  39,8   360k  320, 2  360k ; k 
Specific Solutions :
 219,8  k  0  ; 140, 2  k  1 
 
 x 
320, 2  k  0  ; 39, 8  k  1 
 
Tutorial 4 Problem 2:
Suggested Solution
Problem 2 : sin (x )  cos(305,5 ); x  0;360
o

1
 reference angle  sin (cos305,5)  35,5
General Solutions :
x  35,5  360k ;k 
or x  180  35,5   360k  144,5  360k ; k 
Specific Solutions :
x  35,5;144,5
Tutorial 4 Problem 3:
Suggested Solution
Problem 3 :  0,75cos( x )  0, 45  0; x   360;360
0, 45 1  0, 45 
 cos( x )    reference angle  cos    53,1
0,75  0,75 
General Solutions :
 x  180  53,1   360k  126,9  360k ; k 
or x  180  53,1   360k  233,1  360k ; k 

Specific Solution :
126, 9  k  0  ; 233,1  k  1 
 
x 
 233,1  k  0  ; 126, 9  k  1 
 
End of the Topic Slides on
Basic Trigonometric Relationships

REMEMBER!
• Consult text-books and past exam papers and
memos for additional examples.
• Attempt as many as possible other similar examples
on your own.
• Compare your methods with those that were
discussed in these Topics slides.
• Repeat this procedure until you are confident.

• Do not forget: Practice makes perfect!

You might also like