Trigonometric Identities
Trigonometric Identities
Trigonometric Identities
Relationships -
Reduction Formulae
Grade 11
and Identities CAPS
Mathematics
Series
Outcomes for this Topic
In this Topic session we will:
Review of Basic
Trigonometry Grade 11
CAPS
Mathematics
Series
Review: Definition of the Trigonometric Functions
r Y 90
y
O x
Sin All
y X 180
0
r O 360
P( x; y ) X
tan Cos
CAST Diagram
270
1. Signs of co-ordinates x and y changes with quadrants.
2. If OP moves anti-clockwise from pos. X -axis, then is positive.
3. If OP moves clockwise from pos. X -axis, then is negative.
4. Multiples of 360 added to give same trigonometric ratios.
Trigonometric Ratios for Standard (special) Angles
1 1
3 sin 30 sin 45
sin 60 2
2 2
3
1 cos 30 1
cos 60 2 cos 45
2 1 2
tan 30
tan 60 3 3 tan 45 1
Effect of Unit Circle on Trigonometric Ratios
cos90 0
• 0;1
sin 90 1
tan 90 (Undefined ) x; y;sin
• cos
1;0 • • 1;0
cos180 cos 0 1
sin180 sin 0 0
tan180 • 0; 1 tan 0 0
What about sin, cos and tan of 270?
Trigonometric Ratios - Completion of Triangle
hypotenuse
Use the diagram and determine the value of: 5 4 3
y
1. cos 5 P ( 5, 2)
3
3 2
2 1 5 x
2. sin 1 1
3 3 Complete the Triangle
2
2 4 1
3. 2 tan 2 ( ) 2 2 5 15
5
Trigonometric Ratios- Completion of Triangle
3 cos negative
Let cos( ) and 0 180. 2nd quadrant
5 y
Without a calculator, find the value of: 5
4
sin( ) cos( ) opposite 52 (3)2 4 x
3
tan( )
1. 2 tan 13cos 2
2
3 2
2 13
2 13 n
3 4 1 Given:
2
cos
13
and 0;180
Tutorial 1 Problem 2:
Standard Angles: Suggested Solution
cos 60
2. sin 2
(60)
(tan 45)
2
2
1 3 1 3 1
1
2
2 2 2 4n
4
Unit 2
Reduction
Formulae Grade 11
CAPS
Mathematics
Series
The (180 ) and (180 ) Identities
1. (a) x (2) ( 3) 1
2 2
1. (b) sin(180 )
3
sin
2
1. (d) cos (90 )
1. (c) tan(360 )
3
tan 3 sin( )
2
Tutorial 2 Problem 2: Simplification and reduction:
Suggested Solutions
sin(360 ) cos( )
tan sin(90 )
((sin( )) cos( )
tan cos( )
sin cos
sin cos
cos
cos
Unit 3
Basic Trigonometric
Identities Grade 11
CAPS
Mathematics
Series
Trigonometric Identities Involving Squares
Y
sin cos
2 2 P ( x, y )
2 2 r y
y x
r r
O
x X
y x
2 2
2
r
1
sin cos 1
2 2
Basic Identities: Example1
1. Simplify: sin θ
Know that: tan θ
tanθ sinθ cos θ
cosθ
sin
sin
cos
cos
sin
2
cos
2
tan
2
Basic Identities: Example 2
2. Simplify:
cosθ sinθ
tanθ sin(90 θ )
cos sin
sin
cos
cos
cos sin
sin
cos
Basic Identities: Example 3
1
3. Simplify: sin θ
2
cos θ 1
2
1
sin θ
2
sin 2
θ
1
Know that: sin θ cos θ 1
2 2
Hence:cos θ 1 sin θ
2 2
Tutorial 3 : Simple identities
PAUSE
Simplify: • Do Tutorial 3
• Then View Solutions
tanθ cos( θ )
1.
sin(90 θ )
1
2. (1 sin θ )(1 sin θ )
cos θ
2
Tutorial 3 Problem 1:
Basic Identities: Suggested Solution
tanθ cos( θ )
1.
sin(90 θ )
sin θ
cos θ
cos θ
cos θ
sin
= tan
cos
Tutorial 3 Problem 2:
Simple identities: Suggested Solution
1
2. (1 sin θ )(1 sin θ )
cos θ
2
1
cos θ
2
1 sin 2
θ
1
cos 2
cos
2
Solving Basic
Trigonometric Grade 11
CAPS
Equations Mathematics
Lesson Series
Solve sin( x ) b where b 0
by using the basic sine graph
Example 1 : Solve equation sin x 0,5 for 0 x 360
Method :
• Consider graph of y sin x for 0 x 360
• Estimate solutions from graph.
• Solutions are x 30 and x 150 in 1st and 2nd quadrants.
y 0,5
y 0, 75
Use reference angle to solve cos( x ) 0,75
Example 3 : Solve equation cos x 0,75 for 360 x 360
y 0, 75
Two methods to solve tan( x ) b where b 0
Example 5 : Solve equation tan x 1,5 for 0 x 360
Method 1 :
• Consider graphs of y tan x for 0 x 360 and y 1, 5
II
Method 2 : tan( x) 0
• Find reference angle where tan x 1,5 and IV
use CAST diagram and general solution. tan x 0
ref 56,3
x 180 ref 180k or x 360 ref 180k ; k
x 123, 7;303, 7
x 123,7 180k or x 303,7 180k ; k
x 120 x 330
y 1,5
Trigonometric Equations: Example 6
Example 6 : sin x 0,85
Solve for x if sin x 0,85 0 for 360 x 360
CHECK :
Suggested Solution :
ref sin 1
0,85 58,2
x 180 ref 360k or x 360 ref 360k ; k
x 238, 2 360k or x 301,8 360k ; k
x 238, 2 121,8 301,8 58, 2
When k 0 k 1 k 0 k 1
x 121,8; 58, 2; 238, 2; 301,8
Trigonometric Equations: Example 7
Example 7 :
Solve for x if 3,5cos x 2,85 0 for 360 x 540
CHECK :
2,85 2,85
Suggested Solution : cos x ref cos 1 35,5
3,5 3,5
x 180 35,5 360k or x 180 35,5 360k ; k
x 144, 5 360k or x 215, 5 360k ; k
144, 5 k 0 ; 504, 5 k 1 ; 215, 5 k 1
x
215, 5 k 0 ; 144, 5 k 1
x 215, 5; 144, 5;144, 5; 215, 5; 504, 5
Trigonometric Equations: Example 8
Example 8 :
Solve for x if 4, 5 tan x 8, 25 0 for 360 x 360
Suggested Solution : 8, 25 8, 25
tan x ref tan 1 61, 4
4,5 4,5
x R 180k or x 180 R 180k ; k
Note : x 180 ref 180k ; k is
embedded within x ref 180k when k 1
General Solution x ref 180k ; k will suffice
General Solution is given by: Specific Solution is given by:
x x : x 61, 4 180k ; k 61, 4 k 0 ; 241, 4 k 1 ;
x
118, 6 k 1 ; 298, 6 k 2
CHECK!!
Tutorial 4: Finding Solutions over Given Interval
PAUSE Lesson
• Do Tutorial 4
• Then View Solutions
Tutorial 4 Problem 1:
Suggested Solution
Problem 1: Solve 3,2 sin( x) 2,05 0; x 360;360
2, 05 1 2, 05
sin( x) reference angle sin 39,8
3, 2 3, 2
General Solutions :
x 180 39,8 360k 219,8 360k ; k
or x 360 39,8 360k 320, 2 360k ; k
Specific Solutions :
219,8 k 0 ; 140, 2 k 1
x
320, 2 k 0 ; 39, 8 k 1
Tutorial 4 Problem 2:
Suggested Solution
Problem 2 : sin (x ) cos(305,5 ); x 0;360
o
1
reference angle sin (cos305,5) 35,5
General Solutions :
x 35,5 360k ;k
or x 180 35,5 360k 144,5 360k ; k
Specific Solutions :
x 35,5;144,5
Tutorial 4 Problem 3:
Suggested Solution
Problem 3 : 0,75cos( x ) 0, 45 0; x 360;360
0, 45 1 0, 45
cos( x ) reference angle cos 53,1
0,75 0,75
General Solutions :
x 180 53,1 360k 126,9 360k ; k
or x 180 53,1 360k 233,1 360k ; k
Specific Solution :
126, 9 k 0 ; 233,1 k 1
x
233,1 k 0 ; 126, 9 k 1
End of the Topic Slides on
Basic Trigonometric Relationships
REMEMBER!
• Consult text-books and past exam papers and
memos for additional examples.
• Attempt as many as possible other similar examples
on your own.
• Compare your methods with those that were
discussed in these Topics slides.
• Repeat this procedure until you are confident.