Nothing Special   »   [go: up one dir, main page]

Y12 Quantum 5 Questions 2

Download as docx, pdf, or txt
Download as docx, pdf, or txt
You are on page 1of 13

Q1.

          (a)     When free electrons collide with atoms in their ground state, the atoms can be
excited or ionised.

(i)      State what is meant by ground state.

...............................................................................................................

...............................................................................................................

...............................................................................................................
(1)

(ii)     Explain the difference between excitation and ionisation.

...............................................................................................................

...............................................................................................................

...............................................................................................................

...............................................................................................................

...............................................................................................................

...............................................................................................................
(3)

(b)     An atom can also become excited by the absorption of photons. Explain why only
photons of certain frequencies cause excitation in a particular atom.

........................................................................................................................

........................................................................................................................

........................................................................................................................

........................................................................................................................

........................................................................................................................

........................................................................................................................

........................................................................................................................

........................................................................................................................
(4)

(c)     The ionisation energy of hydrogen is 13.6 eV. Calculate the minimum frequency
necessary for a photon to cause the ionisation of a hydrogen atom. Give your
answer to an appropriate number of significant figures.                          

                          

                          

                                                   answer ..........................................Hz
(4)
(Total 12 marks)

Page 1
Q2. The diagram below shows the lowest three energy levels of a hydrogen atom.

(a)     An electron is incident on a hydrogen atom. As a result an electron in the ground
state of the hydrogen atom is excited to the n = 2 energy level. The atom then emits
a photon of a characteristic frequency.

(i)      Explain why the electron in the ground state becomes excited to the n = 2
energy level.

...............................................................................................................

...............................................................................................................

...............................................................................................................

...............................................................................................................
(2)

(ii)     Calculate the frequency of the photon.

frequency = ......................................... Hz
(3)

(iii)    The initial kinetic energy of the incident electron is 1.70 × 10−18 J.

Calculate its kinetic energy after the collision.

kinetic energy = ............................................ J


(2)

Page 2
(iv)    Show that the incident electron cannot excite the electron in the ground state
to the n = 3 energy level.

 
(2)

(b)     When electrons in the ground state of hydrogen atoms are excited to the n = 3
energy level, photons of more than one frequency are subsequently released.

(i)      Explain why different frequencies are possible.

...............................................................................................................

...............................................................................................................
(1)

(ii)     State and explain how many possible frequencies could be produced.

...............................................................................................................

...............................................................................................................

...............................................................................................................

...............................................................................................................

...............................................................................................................
(2)
(Total 12 marks)

Q3.          (a)     Line spectra were observed before they could be explained by theory. We now
know that photons of characteristic frequency are emitted when the vapour of an
element is bombarded by energetic electrons. The spectrum of the light emitted
contains lines, each of a definite wavelength.

Explain how

•        the bombarding electrons cause the atoms of the vapour to emit photons

•        the existence of a spectrum consisting of lines of a definite frequency supports


the view that atoms have discrete energy levels.

The quality of your written communication will be assessed in this question.

......................................................................................................................

......................................................................................................................

......................................................................................................................

......................................................................................................................

Page 3
......................................................................................................................

......................................................................................................................

......................................................................................................................

......................................................................................................................

......................................................................................................................

......................................................................................................................

......................................................................................................................

......................................................................................................................

......................................................................................................................

......................................................................................................................

......................................................................................................................

......................................................................................................................

......................................................................................................................

......................................................................................................................
(6)

(b)     The ionisation energy of a hydrogen atom is 13.6eV.

(i)      State what is meant by the ionisation energy of hydrogen.

.............................................................................................................

.............................................................................................................
(2)

(ii)     Express the ionisation energy of hydrogen in joules, giving your answer to an
appropriate number of significant figures.

answer = ....................................... J
(3)
(Total 11 marks)

Page 4
Q4.          (a)     A fluorescent tube is filled with mercury vapour at low pressure. In order to emit
electromagnetic radiation the mercury atoms must first be excited.

(i)      What is meant by an excited atom?

.............................................................................................................

.............................................................................................................
(1)

(ii)     Describe the process by which mercury atoms become excited in a fluorescent
tube.

.............................................................................................................

.............................................................................................................

.............................................................................................................

.............................................................................................................

.............................................................................................................

.............................................................................................................
(3)

(iii)     What is the purpose of the coating on the inside surface of the glass in a
fluorescent tube?

.............................................................................................................

.............................................................................................................

.............................................................................................................

.............................................................................................................

.............................................................................................................

.............................................................................................................
(3)

Page 5
(b)     The lowest energy levels of a mercury atom are shown in the diagram below. The
diagram is not to scale.

energy / J × 10–18

                                                 .................................................      0
                              n = 4  ________________________    –0.26

                                       n = 3  ________________________    –0.59


                              n = 2  ________________________    –0.88

                  ground state n = 1  ________________________    –2.18

(i)      Calculate the frequency of an emitted photon due to the transition level n = 4
to level n = 3.

answer = ........................................ Hz
(3)

(ii)     Draw an arrow on the diagram above to show a transition which emits a
photon of a longer wavelength than that emitted in the transition from level n =
4 to level n = 3.
(2)
(Total 12 marks)

Page 6
          The diagram below shows part of an energy level diagram for a hydrogen atom.

          n = 4 _________________ –0.85 eV
n = 3 _________________ –1.50 eV
n = 2 _________________ –3.40 eV

          n = 1 _________________ –13.60 eV

(a)     The level, n = 1, is the ground state of the atom.


State the ionisation energy of the atom in eV.

answer = ................................... eV
(1)

(b)     When an electron of energy 12.1 eV collides with the atom, photons of three
different energies are emitted.

(i)      On the diagram above show with arrows the transitions responsible for these
photons.
(3)

(ii)     Calculate the wavelength of the photon with the smallest energy. Give your
answer to an appropriate number of significant figures.

answer =.............................. m
(5)
(Total 9 marks)

Page 7
 

M1.         (a)      (i)     when electrons/atoms are in their lowest/minimum energy (state) or


most stable (state) they (are in their ground state)  
1

(ii)     in either case an electron receives (exactly the right amount of) energy  

excitation promotes an (orbital) electron to a higher energy/up a level  

ionisation occurs (when an electron receives enough energy) to leave


the atom  
3

(b)     electrons occupy discrete energy levels  

and need to absorb an exact amount of/enough energy to move to a higher level  

photons need to have certain frequency to provide this energy or e = hf  

energy required is the same for a particular atom or have different energy levels  

all energy of photon absorbed  

in 1 to 1 interaction or clear a/the photon and an/the electrons  


4

(c)     energy = 13.6 × 1.60 × 10 = 2.176 × 10 (J)  


−19 −18

hf = 2.176 × 10  −18

f = 2.176 × 10 ÷ 6.63 × 10 = 3.28 × 10 Hz  


−18 −34 15
3 sfs  
4
[12]

M2.(a)     (i)      absorbs enough energy (from the incident) electron( by collision) OR incident
electron loses energy (to orbital electron)  
exact energy / 10.1((eV) needed to make the transition / move up to level 2 
For second mark must imply exact energy
2

Page 8
(ii)     (use of E –E ) = hf
2 1

−3.41 − − 13.6 = 10.19 


energy of photon = 10.19 × 1.6 × 10 = 1.63 × 10 (J)  
−19 −18

6.63 × 10 × f = 1.63 × 10
−34 −18

f = 2.46 × 10 (Hz) 
15

(accept 2.5 but not 2.4)


CE from energy difference but not from energy conversion
3

(iii)    Ek = 1.7 × 10 − 1.63 × 10  


−18 −18
= 7.0 × 10 J  −20

(iv)    energy required is 12.09 eV / 1.9 × 10   −18

energy of incident electron is only 10.63 eV / energy of electron less than this
(1.7 × 10 J) 
−18

State and explain must have consistent units i.e. eV or J


2

(b)     (i)      Electrons return to lower levels by different routes / cascade / not straight to
ground state 
1

(ii)     3 
n=3 to n=1 or n=3 to n=2 and n=2 to n=1 
no CE from first mark
2
[12]

M3.          (a)     The candidate’s writing should be legible and the spelling,
punctuation and grammar should be sufficiently accurate
for the meaning to be clear.

The candidate’s answer will be assessed holistically. The


answer will be assigned to one of three levels according to the
following criteria.

Page 9
High Level (Good to excellent): 5 or 6 marks

The information conveyed by the answer is clearly organised,


logical and coherent, using appropriate specialist vocabulary
correctly. The form and style of writing is appropriate to answer
the question.

The candidate provides a comprehensive and coherent


description which includes a clear explanation of constant
energy level differences and how electrons can be excited
by electron collisions. The link between the energy of a photon
and its frequency should be clear. The description should
include a clear explanation of the reason atoms of a given
element emit photons of a characteristic frequency or there
is a clear link between constant energy differences and photon
frequency/wavelength (eg E=hf).
The candidate should relate the energy difference between
levels to the energy of emitted photons and state the energy
difference is fixed/constant.

Intermediate Level (Modest to adequate): 3 or 4 marks

The information conveyed by the answer may be less well


organised and not fully coherent. There is less use of specialist
vocabulary, or specialist vocabulary may be used incorrectly.
The form and style of writing is less appropriate.

The candidate provides an explanation of energy levels and


how excitation takes place by electron collision with
atomic/orbital electrons. The candidate explains how an
orbital/atomic electron loses energy by emitting a photon.

Low Level (Poor to limited): 1 or 2 marks

The information conveyed by the answer is poorly organised


and may not be relevant or coherent. There is little correct
use of specialist vocabulary.

The form and style of writing may be only partly appropriate.


Some mention of energy levels and the idea of excitation of
electron. Talk about excitation of atom instead of electron limits
the mark to 1.

Incorrect, inappropriate of no response: 0 marks

No answer or answer refers to unrelated, incorrect or inappropriate physics.

Page 10
The explanation expected in a competent answer should include a
coherent account of the significance of discrete energy levels
and how the bombardment of atoms by electrons can lead to
excitation and the subsequent emission of photons of a characteristic
frequency.

electrons bombard atoms of vapour and give energy to electrons in atom

electrons move to a higher energy level

electrons are excited

excited electrons move down to lower energy levels losing energy by


emitting photons

photons have energy hf

photons of characteristic frequencies emitted from atoms of a


particular element

this is because atoms have discrete energy levels which are


associated with particular energy values
max 6

(b)     (i)      energy required to (completely) remove an electron


from atom/hydrogen

ground state/lowest energy level


2

(ii)     13.6 × 1.6 × 10 –19


 = 2.18 × 10 (J)
–18
 3 sfs
3
[11]

M4.          (a)     (i)      an electron/atom is at a higher level than the ground state (1)

or electron jumped/moved up to another/higher level


1

(ii)     electrons (or electric current) flow through the tube (1)

and collide with orbiting/atomic electrons or mercury atoms (1)

raising the electrons to a higher level (in the mercury atoms) (1)
3

Page 11
(iii)     photons emitted from mercury atoms are in the ultra
violet (spectrum) or high energy photons (1)

these photons are absorbed by the powder or powder changes


frequency/wavelength (1)

and the powder emits photons in the visible spectrum (1)

incident photons have a variety of different wavelengths (1)


max 3

(b)     (i)      (use of E = hf)

–0.26 × 10 – 0.59 × 10 (1) = 6.63 × 10 × f (1)


–18 –18 –34

f = 0.33 × 10 /(6.63 × 10 ) = 5.0 × 10 (Hz) (1)


–18 –34 14

(ii)     one arrow between n = 3 and n = 2 (1) in correct direction (1)


2
[12]

M5.          (a)     ionisation energy = 13.6eV (1)


1

(b)     (i)

(ii)     energy in Joules = 1.90 (1) × 1.6 × 10 = 3.04 × 10 (J) (1)


–19 –19

(use of E = hc/λ)

3.04 × 10 = 6.63 × 10 × 3 × 10 /λ (1)


–19 –34 8

Page 12
(working/equation must be shown)

λ = 6.54 × 10 m (1)(1) (2 or 3 sf for second mark)


–7

(accept 0.65 which gives an answer of λ = 1.91 × 10 m)


–6

8
[9]

Page 13

You might also like