Nothing Special   »   [go: up one dir, main page]

TLE5012B: 1 Features

Download as pdf or txt
Download as pdf or txt
You are on page 1of 51

TLE5012B

GMR-Based Angle Sensor

1 Overview

Features
• Giant Magneto Resistance (GMR)-based principle
• Integrated magnetic field sensing for angle measurement
• 360° angle measurement with revolution counter and angle speed
measurement
• Two separate highly accurate single bit SD-ADC
• 15 bit representation of absolute angle value on the output (resolution of 0.01°)
• 16 bit representation of sine / cosine values on the interface
• Max. 1.0° angle error over lifetime and temperature-range with activated auto-calibration
• Bi-directional SSC Interface up to 8 Mbit/s
• Supports Safety Integrity Level (SIL) with diagnostic functions and status information
• Interfaces: SSC, PWM, Incremental Interface (IIF), Hall Switch Mode (HSM), Short PWM Code (SPC, based on
SENT protocol defined in SAE J2716)
• Output pins can be configured (programmed or pre-configured) as push-pull or open-drain
• Bus mode operation of multiple sensors on one line is possible with SSC or SPC interface
• 0.25 µm CMOS technology
• Automotive qualified: -40°C to 150°C (junction temperature)
• ESD > 4 kV (HBM)
• RoHS compliant (Pb-free package)
• Halogen-free

PRO-SIL™ Features
• Test vectors switchable to ADC input (activated via SSC interface)
• Inversion or combination of filter input streams (activated via SSC interface)
• Data transmission check via 8-bit Cyclic Redundancy Check (CRC) for SSC communication and 4-bit CRC
nibble for SPC interface
• Built-in Self-test (BIST) routines for ISM, CORDIC, CCU, ADCs run at startup
• Two independent active interfaces possible
• Overvoltage and undervoltage detection

Data Sheet 1 Rev. 2.1


www.infineon.com 2018-06-20
TLE5012B
GMR-Based Angle Sensor
Overview

Potential applications
The TLE5012B GMR-based angle sensor is designed for angular position sensing in automotive applications
such as:
• Electrical commutated motor (e.g. used in Electric Power Steering (EPS))
• Rotary switches
• Steering angle measurements
• General angular sensing

Product validation
Qualified for automotive applications. Product validation according to AEC-Q100.

Description
The TLE5012B is a 360° angle sensor that detects the orientation of a magnetic field. This is achieved by
measuring sine and cosine angle components with monolithic integrated Giant Magneto Resistance (iGMR)
elements. These raw signals (sine and cosine) are digitally processed internally to calculate the angle
orientation of the magnetic field (magnet).
The TLE5012B is a pre-calibrated sensor. The calibration parameters are stored in laser fuses. At start-up the
values of the fuses are written into flip-flops, where these values can be changed by the application-specific
parameters. Further precision of the angle measurement over a wide temperature range and a long lifetime
can be improved by enabling an optional internal autocalibration algorithm.
Data communications are accomplished with a bi-directional Synchronous Serial Communication (SSC) that
is SPI-compatible. The sensor configuration is stored in registers, which are accessible by the SSC interface.
Additionally four other interfaces are available with the TLE5012B: Pulse-Width-Modulation (PWM) Protocol,
Short-PWM-Code (SPC) Protocol, Hall Switch Mode (HSM) and Incremental Interface (IIF). These interfaces can
be used in parallel with SSC or alone. Pre-configured sensor derivates with different interface settings are
available (see Table 1 and Chapter 5).
Online diagnostic functions are provided to ensure reliable operation.

Table 1 Derivate ordering codes


Product type Marking Ordering code Package
TLE5012B E1000 012B1000 SP001166960 PG-DSO-8
TLE5012B E3005 012B3005 SP001166964 PG-DSO-8
TLE5012B E5000 012B5000 SP001166968 PG-DSO-8
TLE5012B E5020 012B5020 SP001166972 PG-DSO-8
TLE5012B E9000 012B9000 SP001166998 PG-DSO-8

Note: See Chapter 5 for description of derivates.

Data Sheet 2 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor

Table of Contents
1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Functional block description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.1 Internal power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Oscillator and PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.3 SD-ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.4 Digital Signal Processing Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.5 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.6 Safety features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Sensing principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Application circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1 IIF interface and SSC (IIF in push-pull configuration) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 HSM interface and SSC (HSM in push-pull configuration) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 HSM interface and SSC (HSM in open-drain configuration) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 PWM interface (push-pull configuration) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5 PWM interface (open-drain configuration) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.6 SPC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.7 SSC interface (push-pull configuration) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.8 SSC interface (open-drain configuration) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.9 Sensor supply in bus mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Operating range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3.1 Input/Output characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3.2 ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.3 GMR parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.4 Angle performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3.5 Autocalibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.6 Signal processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3.7 Clock supply (CLK timing definition) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4.1 Synchronous Serial Communication (SSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4.1.1 SSC timing definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4.1.2 SSC data transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4.2 Pulse Width Modulation (PWM) interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4.3 Short PWM Code (SPC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4.3.1 Unit time setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4.3.2 Master trigger pulse requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4.3.3 Checksum nibble details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4.4 Hall Switch Mode (HSM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4.5 Incremental Interface (IIF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Data Sheet 3 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor

4.5 Test mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42


4.5.1 ADC test vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.6 Supply monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.6.1 Internal supply voltage comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.6.2 VDD overvoltage detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.6.3 GND - Off comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.6.4 VDD - Off comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5 Pre-configured derivates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.1 IIF-type: E1000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 HSM-type: E3005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3 PWM-type: E5000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.4 PWM-type: E5020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.5 SPC-type: E9000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.1 Package parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2 Package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.3 Footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.4 Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.5 Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Data Sheet 4 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor
Functional description

2 Functional description

2.1 Block diagram

TLE5012B
VDD

VRG VRA VRD GND

X SD- Digital CSQ


GMR ADC Signal
Processing SSC Interface SCK
Unit
DATA
Y SD- ISM
GMR ADC CORDIC IFA
Incremental IF
CCU PWM
SD- IFB
Temp RAM HSM
ADC SPC
Fuses IFC

Osc PLL

Figure 1 TLE5012B block diagram

2.2 Functional block description

2.2.1 Internal power supply


The internal stages of the TLE5012B are supplied with several voltage regulators:
• GMR Voltage Regulator, VRG
• Analog Voltage Regulator, VRA
• Digital Voltage Regulator, VRD (derived from VRA)
These regulators are directly connected to the supply voltage VDD.

2.2.2 Oscillator and PLL


The digital clock of the TLE5012B is given by the Phase-Locked Loop (PLL), which is by default fed by an
internal oscillator. In order to synchronize the TLE5012B with other ICs in a system, the TLE5012B can be
configured via SSC interface to use an external clock signal supplied on the IFC pin as source for the PLL,
instead of the internal clock. External clock mode is only available in PWM or SPC interface configuration.

Data Sheet 5 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor
Functional description

2.2.3 SD-ADC
The Sigma-Delta Analog-Digital-Converters (SD-ADC) transform the analog GMR voltages and temperature
voltage into the digital domain.

2.2.4 Digital Signal Processing Unit


The Digital Signal Processing Unit (DSPU) contains the:
• Intelligent State Machine (ISM), which does error compensation of offset, offset temperature drift,
amplitude synchronicity and orthogonality of the raw signals from the GMR bridges, and performs
additional features such as auto-calibration, prediction and angle speed calculation
• COordinate Rotation DIgital Computer (CORDIC), which contains the trigonometric function for angle
calculation
• Capture Compare Unit (CCU), which is used to generate the PWM and SPC signals
• Random Access Memory (RAM), which contains the configuration registers
• Laser Fuses, which contain the calibration parameters for the error-compensation and the IC default
configuration, which is loaded into the RAM at startup

2.2.5 Interfaces
Bi-directional communication with the TLE5012B is enabled by a three-wire SSC interface. In parallel to the
SSC interface, one secondary interface can be selected, which is available on the IFA, IFB, IFC pins:
• PWM
• Incremental Interface
• Hall Switch Mode
• Short PWM Code
By using pre-configured derivates (see Chapter 5), the TLE5012B can also be operated with the secondary
interface only, without SSC communication.

2.2.6 Safety features


The TLE5012B offers a multiplicity of safety features to support the Safety Integrity Level (SIL) and
it is a PRO-SIL™ product.
Safety features are:
• Test vectors switchable to ADC input (activated via SSC interface)
• Inversion or combination of filter input streams (activated via SSC interface)
• Data transmission check via 8-bit Cyclic Redundancy Check (CRC) for SSC communication and 4-bit CRC
nibble for SPC interface
• Built-in Self-test (BIST) routines for ISM, CORDIC, CCU, ADCs run at startup
• Two independent active interfaces possible
• Overvoltage and undervoltage detection

Disclaimer
PRO-SIL™ is a Registered Trademark of Infineon Technologies AG.
The PRO-SIL™ Trademark designates Infineon products which contain SIL Supporting Features.
SIL Supporting Features are intended to support the overall System Design to reach the desired SIL (according
to IEC61508) or A-SIL (according to ISO26262) level for the Safety System with high efficiency.

Data Sheet 6 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor
Functional description

SIL respectively A-SIL certification for such a System has to be reached on system level by the System
Responsible at an accredited Certification Authority.
SIL stands for Safety Integrity Level (according to IEC 61508)
A-SIL stands for Automotive-Safety Integrity Level (according to ISO 26262)

2.3 Sensing principle


The Giant Magneto Resistance (GMR) sensor is implemented using vertical integration. This means that the
GMR-sensitive areas are integrated above the logic part of the TLE5012B device. These GMR elements change
their resistance depending on the direction of the magnetic field.
Four individual GMR elements are connected to one Wheatstone sensor bridge. These GMR elements sense
one of two components of the applied magnetic field:
• X component, Vx (cosine) or the
• Y component, Vy (sine)
With this full-bridge structure the maximum GMR signal is available and temperature effects cancel out each
other.

GMR Resistors

VX VY

S N

ADCX + ADCX - GND ADCY+ ADCY- VDD

90°

Figure 2 Sensitive bridges of the GMR sensor (not to scale)

Attention: Due to the rotational placement inaccuracy of the sensor IC in the package, the sensors 0° position
may deviate by up to 3° from the package edge direction indicated in Figure 2.

In Figure 2, the arrows in the resistors represent the magnetic direction which is fixed in the reference layer. If
the external magnetic field is parallel to the direction of the Reference Layer, the resistance is minimal. If they
are anti-parallel, resistance is maximal.
The output signal of each bridge is only unambiguous over 180° between two maxima. Therefore two bridges
are oriented orthogonally to each other to measure 360°.

Data Sheet 7 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor
Functional description

With the trigonometric function ARCTAN2, the true 360° angle value is calculated out of the raw X and Y signals
from the sensor bridges.

Y Component (SIN)

VY
X Component (COS)
VX
V

VX (COS)

0° 90° 180° 270° 360°


Angle α

VY (SIN)

Figure 3 Ideal output of the GMR sensor bridges

Data Sheet 8 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor
Functional description

2.4 Pin configuration

8 7 6 5 Center of Sensitive
Area

1 2 3 4

Figure 4 Pin configuration (top view)

2.5 Pin description

Table 2 Pin Description


Pin No. Symbol In/Out Function
1 IFC I/O Interface C:
(CLK / IIF_IDX / HS3) External Clock1) / IIF Index / Hall Switch Signal 3
2 SCK I SSC Clock
3 CSQ I SSC Chip Select
4 DATA I/O SSC Data
5 IFA I/O Interface A:
(IIF_A / HS1 / PWM / SPC) IIF Phase A / Hall Switch Signal 1 /
PWM / SPC output (input for SPC trigger only)
6 VDD - Supply Voltage
7 GND - Ground
8 IFB O Interface B:
(IIF_B / HS2) IIF Phase B / Hall Switch Signal 2
1) External clock feature is not available in IIF or HSM interface mode.

Data Sheet 9 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor
Application circuits

3 Application circuits
The application circuits in this chapter show the various communication possibilities of the TLE5012B. The pin
output mode configuration is device-specific and it can be either push-pull or open-drain. The bit IFAB_OD
(register IFAB, 0DH) indicates the output mode for the IFA, IFB and IFC pins. The SSC pins are by default push-
pull (bit SSC_OD, register MOD_3, 09H). Every application circuits below are using otherwise specified SSC
with push-pull configuration and the internal clock.

3.1 IIF interface and SSC (IIF in push-pull configuration)


Figure 5 shows a block diagram of a TLE5012B with Incremental Interface (IIF) and SSC interface. The derivate
TLE5012B - E1000 is by default configured with push-pull IFA (IIF_A), IFB (IIF_ B) and IFC (IIF_IDX) pins. When
the output pins are configurated as open-drain, three pull-up resistors should be added (e.g. 2K2Ω) between
the data lines and VDD.

3.0 – 5.5V
TLE5012B

VDD
100nF

CSQ Rs1

SCK Rs1 SSC

DATA Rs2

(IIF_A)
IFA
(IIF_B)
IFB IIF
(IIF_IDX)
IFC

GND

Rs1 recommended, e.g. 100Ω


Rs2 recommended, e.g. 470Ω

Figure 5 Application circuit for TLE5012B with IIF interface and SSC

Data Sheet 10 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor
Application circuits

3.2 HSM interface and SSC (HSM in push-pull configuration)


Figure 6 shows a block diagram of the TLE5012B with Hall Switch Mode (HSM) and SSC interface. The derivate
TLE5012B - E3005 is by default configurated with push-pull IFA (HS1), IFB (HS2) and IFC (HS3) pins.

3.0 – 5.5V
TLE5012B

VDD
100nF

CSQ Rs1

SCK Rs1 SSC

DATA Rs2

(HS1)
IFA
(HS2)
IFB HSM
(HS3)
IFC

GND

Rs1 recommended, e.g. 100Ω


Rs2 recommended, e.g. 470Ω

Figure 6 Application circuit for TLE5012B with HSM interface (push-pull configuration) and SSC

3.3 HSM interface and SSC (HSM in open-drain configuration)


As shown in Figure 7 when IFA, IFB and IFC are configurated via the SSC interface as open drain pins, three pull-
up resistors (Rpu) should be added on the output lines.

3.0 – 5.5V
TLE5012B

VDD
100nF
Rpu
Rpu
Rpu

CSQ Rs1

SCK Rs1 SSC

DATA Rs2

(HS1)
IFA
(HS2)
IFB HSM
(HS3)
IFC

GND

Rs1 recommended, e.g. 100Ω


Rs2 recommended, e.g. 470Ω Rpu required, e.g. 2K2Ω

Figure 7 Application circuit for TLE5012B with HSM interface (open-drain configuration) and SSC

Data Sheet 11 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor
Application circuits

3.4 PWM interface (push-pull configuration)


The TLE5012B can be configured with PWM only (Figure 8). The derivate TLE5012B - E5000 is by default
configurated with push-pull configuration for IFA (PWM) pin. Internal pull-up resistors are always available for
DATA and CSQ pins (see Table 7). It is recommended to connect CSQ pin to VDD to provide a high level and
avoid unintentional activation of the SSC interface. DATA pin should be left open. The figure below shows a
typical implementation of the TLE5012B - E5000.

3.0 – 5.5V
TLE5012B

VDD
100nF

CSQ

SCK

DATA

(PWM)
IFA PWM

IFB

IFC

GND

Figure 8 Application circuit for TLE5012B with PWM (push-pull configuration) interface

3.5 PWM interface (open-drain configuration)


The TLE5012B - E5020 is also a PWM derivate but with open drain for IFA (PWM) pin. A pull-up resistor
(e.g. 2.2 kΩ) should be added between the IFA line and VDD, as shown in Figure 9.
Internal pull-up resistors are always available for DATA and CSQ pins (see Table 7). It is recommended to
connect CSQ pin to VDD to provide a strong level and avoid unintentional activation of the SSC interface. DATA
pin should be left open. The figure below shows a typical implementation of the TLE5012B - E5020.

3.0 – 5.5V
TLE5012B

VDD
100nF
Rpu

CSQ

SCK

DATA

(PWM)
IFA PWM

IFB

IFC

GND

Rpu required, e.g. 2K2Ω

Figure 9 Application circuit for TLE5012B with PWM (open-drain configuration) interface

Data Sheet 12 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor
Application circuits

3.6 SPC interface


The TLE5012B can be configured with SPC only (Figure 10). This is only possible with the TLE5012B - E9000
derivate, which is by default configurated with an open-drain IFA (SPC) pin.
In Figure 10 the IFC (S_NR[1]) and SCK (S_NR[0]) pins are set to ground to generate the slave number (S_NR)
0D (or 00B). In case of SCK (S_NR[0]) needs to be set to VDD to generate another slave address, CSQ pin should
be set to ground instead. Internal pull-up resistors are always available for DATA and CSQ pins (see Table 7).
DATA pin should be left open. Since SCK and CSQ pins should have opposite level, it is not recommended to
use the SSC interface in parallel.

3.0 – 5.5V
TLE5012B

VDD
100nF

Rpu
CSQ

SCK

DATA

(SPC)
IFA SPC

IFB

IFC

GND

Rpu required, e.g. 2K2Ω

Figure 10 Application circuit for TLE5012B with SPC interface

3.7 SSC interface (push-pull configuration)


In Figure 5, Figure 6 and Figure 7 the SSC interface has the default push-pull configuration (see details in
Figure 11). A series resistor on the DATA line is recommended to limit the current in erroneous cases (e.g. the
sensor pushes high and the microcontroller pulls low at the same time or vice versa). Resistors on SCK and
CSQ lines are recommended in case of disturbances or noise.

(SSC Slave) TLE 5012B µC (SSC Master)

DATA MTSR
Shift Reg. Rs2 Shift Reg.
EN
EN
MRST

SCK SCK
Rs1 Clock Gen.

CSQ CSQ
Rs1
Rs1 recommended, e.g. 100Ω
Rs2 recommended, e.g. 470Ω

Figure 11 SSC interface with push-pull configuration (high-speed application)

Data Sheet 13 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor
Application circuits

3.8 SSC interface (open-drain configuration)


It is possible to use an open-drain configuration for the DATA line. This setup can be used to communicate with
a microcontroller in a bus system, together with other SSC slaves (e.g. two TLE5012B devices for redundancy
reasons). This mode can be activated using the bit SSC_OD.
Even though, push-pull configuration in a bus system is also possible since the addressing of the sensor is
performed with CSQ pin.
The open-drain configuration can be seen in Figure 12. Series resistors on the DATA line are recommended to
limit the current in erroneous cases. Resistors on SCK and CSQ lines are recommended in case of disturbances
or noise A pull-up resistor of typ. 1 kΩ is required on the DATA line.

(SSC Slave) TLE 5012B µC (SSC Master)

Rpu
DATA MTSR
Shift Reg. Rs1 Rs1 Shift Reg.
EN
EN
MRST

SCK SCK
Rs1 Clock Gen.

CSQ CSQ
Rs1
Rs1 recommended, e.g. 100Ω
Rpu required, e.g. 1kΩ

Figure 12 SSC interface with open-drain configuration (bus systems)

3.9 Sensor supply in bus mode


When using two or more devices in a bus configuration (SSC or SPC interface). It is recommended to use the
same supply for every sensors connected to the bus. In case of a power loss the unpowered device is sinking
current through the OUT pin. Depending on the external circuitry the additional current flow might disturb the
bus behavior.
The figure below (Figure 13) shows a typical implementation of a bus mode using SPC interface. External
components such as EMC filter or additional series resistors are not represented for clarity purpose. Only the
pull-up resistor Rpu is shown.

Data Sheet 14 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor
Application circuits

VDD VDD VDD


Sensor 1 MCU
VDD VDD GND

Rpu
OUT CCU

GND

VDD
Sensor x

VDD

OUT

GND

Figure 13 Sensors’ supply in bus mode

Data Sheet 15 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor
Specification

4 Specification

4.1 Absolute maximum ratings

Table 3 Absolute maximum ratings


Parameter Symbol Values Unit Note or Test Condition
Min. Typ. Max.
Voltage on VDD pin with respect VDD -0.5 6.5 V Max 40 h/Lifetime
to ground (VSS)
Voltage on any pin with respect VIN -0.5 6.5 V
to ground (VSS) VDD + 0.5 V
Junction temperature TJ -40 150 °C
150 °C For 1000 h, not additive
Magnetic field induction B 200 mT Max. 5 min @ TA = 25°C
150 mT Max. 5 h @ TA = 25°C
Storage temperature TST -40 150 °C Without magnetic field

Attention: Stresses above the max. values listed here may cause permanent damage to the device. Exposure
to absolute maximum rating conditions for extended periods may affect device reliability. Maximum
ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to
the device.

4.2 Operating range


The following operating conditions must not be exceeded in order to ensure correct operation of the
TLE5012B. All parameters specified in the following sections refer to these operating conditions, unless
otherwise noted. Table 4 is valid for -40°C < TJ < 150°C unless otherwise noted.

Table 4 Operating range and parameters


Parameter Symbol Values Unit Note or Test Condition
Min. Typ. Max.
1)
Supply voltage VDD 3.0 5.0 5.5 V
Supply current IDD 14 16 mA
Magnetic induction at BXY 30 50 mT -40°C < TJ < 150°C
TJ = 25°C2)3) 30 60 mT -40°C < TJ < 100°C
30 70 mT -40°C < TJ < 85°C
Extended magnetic induction BXY 25 30 mT Additional angle error of 0.1°
range at TJ = 25°C2)3)
Angle range Ang 0 360 °
POR level VPOR 2.0 2.9 V Power-on reset
POR hysteresis VPORhy 30 mV

Data Sheet 16 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor
Specification

Table 4 Operating range and parameters (cont’d)


Parameter Symbol Values Unit Note or Test Condition
Min. Typ. Max.
4)
Power-on time tPon 5 7 ms VDD > VDDmin;
Fast Reset time5) tRfast 0.5 ms Fast reset is triggered by
disabling startup BIST
(S_BIST = 0), then enabling
chip reset (AS_RST = 1)
1) Directly blocked with 100-nF ceramic capacitor.
2) Values refer to a homogeneous magnetic field (BXY) without vertical magnetic induction (BZ = 0 mT).
3) See Figure 14.
4) During “Power-on time,” write access is not permitted (except for the switch to External Clock which requires a
readout as a confirmation that external clock is selected).
5) Not subject to production test - verified by design/characterization.

The field strength of a magnet can be selected within the colored area of Figure 14. By limitation of the
junction temperature, a higher magnetic field can be applied. In case of a maximum temperature TJ = 100°C,
a magnet with up to 60 mT at TJ = 25°C is allowed.
It is also possible to widen the magnetic field range for higher temperatures. In that case, additional angle
errors have to be considered.

Figure 14 Allowed magnetic field range as function of junction temperature.

Data Sheet 17 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor
Specification

4.3 Characteristics

4.3.1 Input/Output characteristics


The indicated parameters apply to the full operating range, unless otherwise specified. The typical values
correspond to a supply voltage VDD = 5.0 V and 25°C, unless individually specified. All other values correspond
to -40 °C < TJ < 150°C.
Within the register MOD_3, the driver strength and the slope for push-pull communication can be varied
depending on the sensor output. The driver strength is specified in Table 5 and the slope fall and rise time in
Table 6.

Table 5 Input voltage and output currents


Parameter Symbol Values Unit Note or Test Condition
Min. Typ. Max.
Input voltage VIN -0.3 5.5 V
VDD+ 0.3 V
Output current (DATA-Pad) IQ -25 mA PAD_DRV =’0x’, sink current1)2)
-5 mA PAD_DRV =’10’, sink current1)2)
-0.4 mA PAD_DRV =’11’, sink current1)2)
Output current (IFA / IFB / IFC - IQ -15 mA PAD_DRV =’0x’, sink current1)2)
Pad) -5 mA PAD_DRV =’1x’, sink current1)2)
1) Max. current to GND over open-drain output.
2) At VDD = 5 V.

Table 6 Driver strength characteristic


Parameter Symbol Values Unit Note or Test Condition
Min. Typ. Max.
Output rise/fall time tfall, trise 8 ns DATA, 50 pF,
PAD_DRV=’00’1)2)
28 ns DATA, 50 pF,
PAD_DRV=’01’1)2)
45 ns DATA, 50 pF,
PAD_DRV=’10’1)2)
130 ns DATA, 50 pF,
PAD_DRV=’11’1)2)
15 ns IFA/IFB, 20 pF,
PAD_DRV=’0x’1)2)
30 ns IFA/IFB, 20 pF,
PAD_DRV=’1x’1)2)
1) Valid for push-pull output
2) Not subject to production test - verified by design/characterization

Data Sheet 18 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor
Specification

Table 7 Electrical parameters for 4.5 V < VDD < 5.5 V


Parameter Symbol Values Unit Note or Test Condition
Min. Typ. Max.
Input signal low-level VL5 0.3 VDD V
Input signal high level VH5 0.7 VDD V
Output signal low-level VOL5 1 V DATA;
IQ = -25 mA (PAD_DRV=’0x’),
IQ = -5 mA (PAD_DRV=’10’),
IQ = -0.4 mA (PAD_DRV=’11’)
1 V IFA,B,C;
IQ = -15 mA (PAD_DRV=’0x’),
IQ = -5 mA (PAD_DRV=’1x’)
Pull-up current1) IPU -10 -225 µA CSQ
-10 -150 µA DATA
2)
Pull-down current IPD 10 225 µA SCK
10 150 µA IFA, IFB, IFC
1) Internal pull-ups on CSQ and DATA pin are always enabled.
2) Internal pull-downs on IFA, IFB and IFC are enabled during startup and in open-drain mode, internal pull-down on
SCK is always enabled.

Table 8 Electrical parameters for 3.0 V < VDD < 3.6 V


Parameter Symbol Values Unit Note or Test Condition
Min. Typ. Max.
Input signal low-level VL3 0.3 VDD V
Input signal high level VH3 0.7 VDD V
Output signal low-level VOL3 0.9 V DATA;
IQ = -15 mA (PAD_DRV=’0x’),
IQ = -3 mA (PAD_DRV=’10’),
IQ = -0.24 mA (PAD_DRV=’11’)
0.9 V IFA,IFB;
IQ = - 10 mA (PAD_DRV=’0x’),
IQ = -3 mA (PAD_DRV=’1x’)
Pull-up current1) IPU -3 -225 µA CSQ
-3 -150 µA DATA
2)
Pull-down current IPD 3 225 µA SCK
3 150 µA IFA, IFB, IFC
1) Internal pull-ups on CSQ and DATA pin are always enabled.
2) Internal pull-downs on IFA, IFB and IFC are enabled during startup and in open-drain mode, internal pull-down on
SCK is always enabled.

Data Sheet 19 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor
Specification

4.3.2 ESD protection

Table 9 ESD protection


Parameter Symbol Values Unit Note or Test Condition
Min. Typ. Max.
ESD voltage VHBM ±4.0 kV Human Body Model1)
VSDM ±0.5 kV Socketed Device Model2)
1) Human Body Model (HBM) according to: AEC-Q100-002.
2) Socketed Device Model (SDM) according to: ESDA/ANSI/ESD SP5.3.2-2008.

4.3.3 GMR parameters


All parameters apply over BXY = 30 mT and TA = 25°C, unless otherwise specified.

Table 10 Basic GMR parameters


Parameter Symbol Values Unit Note or Test Condition
Min. Typ. Max.
X, Y output range RGADC ±23230 digits Operating range1)
X, Y amplitude2) AX, AY 6000 9500 15781 digits At ambient temperature
3922 20620 digits Operating range
3)
X, Y synchronicity k 87.5 100 112.49 %
X, Y offset4) OX , OY -2048 0 +2047 digits
X, Y orthogonality error j -11.25 0 +11.24 °
X, Y amplitude without magnet X0, Y0 +4096 digits Operating range1)
1) Not subject to production test - verified by design/characterization.
2) See Figure 15.
3) k = 100 * (AX/AY)
4) OY = (YMAX + YMIN) / 2; OX = (XMAX + XMIN) / 2

VY

+A

Offset
0
0° 90° 180° 270° 360°
Angle
-A

Figure 15 Offset and amplitude definition

Data Sheet 20 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor
Specification

4.3.4 Angle performance


After internal calculation, the sensor has a remaining error, as shown in Table 11. The error value refers to
BZ = 0 mT and the operating conditions given in Table 4.
The overall angle error represents the relative angle error. This error describes the deviation from the
reference line after zero-angle definition. It is valid for a static magnetic field.
If the magnetic field is rotating during the measurement, an additional propagation error is caused by the
angle delay time (see Table 12), which the sensor needs to calculate the angle from the raw sine and cosine
values from the MR bridges. In fast-turning applications, prediction can be enabled to reduce this propagation
error.

Table 11 Angle performance


Parameter Symbol Values Unit Note or Test Condition
Min. Typ. Max.
Overall angle error (with auto- αErr 0.61) 1.0 ° Including lifetime and
calibration) temperature drift2)3)4).
Note: in case of
temperature changes
above 5 Kelvin within
1.5 revolutions refer to
Figure 16 for additional
angle error.
Overall angle error (without αErr 0.61) 1.3 ° Including temperature
auto- calibration) drift2)3)5)
1.9 ° Including lifetime and
temperature drift2)3)4)
1) At 25°C, B = 30 mT.
2) Including hysteresis error, caused by revolution direction change.
3) Relative error after zero angle definition.
4) Not subject to production test - verified by design/characterization.
5) 0 h.

If autocalibration (see Chapter 4.3.5) is enabled and the temperature changes by more than 5 Kelvin during 1.5
revolutions an additional error has to be added to the specified angle error in Table 11. This error depends on
the temperature change (Delta Temperature) as well as from the initial temperature (Tstart) as shown in
Figure 16. Once the temperature stabilizes and the application completes 1.5 revolutions, then the angle error
is as specified in Table 11.
For negative Delta Temperature changes (from higher to lower temperatures) the additional angle error will
be smaller than the corresponding positive Delta Temperature changes (from lower to higher temperatures)
shown in Figure 16. The Figure 16 applies to the worst case.

Data Sheet 21 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor
Specification

3.5

3
Additional angle error (°)

2.5

2
Tstart -40°C
1.5 Tstart 25°C
Tstart 85°C
1 Tstart 105°C
Tstart 125°C
0.5 Tstart 135°C
Tstart >135°C
0
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190
Delta Temperature (Kelvin) within 1.5 revolutions
Figure 16 Additional angle error for temperature changes above 5 Kelvin within 1.5 revolutions

4.3.5 Autocalibration
The autocalibration enables online parameter calculation and therefore reduces the angle error due to
temperature and lifetime drifts.
The TLE5012B is a pre-calibrated sensor, so autocalibration is only enabled in some devices by default. The
update mode can be chosen with the AUTOCAL setting in the MOD_2 register. The TLE5012B needs
1.5 revolutions to generate new autocalibration parameters. These parameters are continuously updated.
The parameters are updated in a smooth way (one Least-Significant Bit within the chosen range or time) to
avoid an angle jump on the output.
AUTOCAL Modes:
• 00: No autocalibration.
• 01: Autocalibration Mode 1. One LSB to final values within the update time tupd (depending on FIR_MD
setting).
• 10: Autocalibration Mode 2. Only one LSB update over one full parameter generation (1.5 revolutions).
After update of one LSB, the autocalibration will calculate the parameters again.
• 11: Autocalibration Mode 3. One LSB to final values within an angle range of 11.25°.

Data Sheet 22 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor
Specification

4.3.6 Signal processing

TLE5012B Microcontroller

X SD-
Filter
GMR ADC

Angle
IF
Calculation

Y SD-
Filter
GMR ADC

t adelSSC t delIF
t adelIIF

Figure 17 Signal path

The signal path of the TLE5012B is depicted in Figure 17. It consists of the GMR-bridge, ADC, filter and angle
calculation. The delay time between a physical change in the GMR elements and a signal on the output
depends on the filter and interface configurations. In fast turning applications, this delay causes an additional
rotation speed dependent angle error.
The TLE5012B has an optional prediction feature, which serves to reduce the speed dependent angle error in
applications where the rotation speed does not change abruptly. Prediction uses the difference between
current and last two angle values to approximate the angle value which will be present after the delay time
(see Figure 18). The output value is calculated by adding this difference to the measured value, according to
Equation (4.1).

α (t + 1) = α (t ) + α (t − 1) − α (t − 2) (4.1)

Sensor output
Angle
With Without
Magnetic field Prediction Prediction
direction

tadel t upd time

Figure 18 Delay of sensor output

Data Sheet 23 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor
Specification

Table 12 Signal processing


Parameter Symbol Values Unit Note or Test Condition
Min. Typ. Max.
Filter update period tupd 42.7 µs FIR_MD = 11)
85.3 µs FIR_MD = 21)
170.6 µs FIR_MD = 31)
Angle delay time without tadelSSC 85 95 µs FIR_MD = 11)
prediction2) 150 165 µs FIR_MD = 21)
275 300 µs FIR_MD = 31)
tadelIIF 120 135 µs FIR_MD = 11)
180 200 µs FIR_MD = 21)
305 330 µs FIR_MD = 31)
Angle delay time with tadelSSC 45 50 µs FIR_MD = 1; PREDICT = 11)
prediction2) 65 70 µs FIR_MD = 2; PREDICT = 11)
105 115 µs FIR_MD = 3; PREDICT = 1 1)
tadelIIF 75 90 µs FIR_MD = 1; PREDICT = 11)
95 110 µs FIR_MD = 2; PREDICT = 11)
135 150 µs FIR_MD = 3; PREDICT = 1 1)
Angle noise (RMS) NAngle 0.08 ° FIR_MD = 11)
0.05 ° FIR_MD = 21)(default)
0.04 ° FIR_MD = 31)
1) Not subject to production test - verified by design/characterization.
2) Valid at constant rotation speed.

All delay times specified in Table 12 are valid for an ideal internal oscillator frequency of 24 MHz. For the exact
timing, the variation of the internal oscillator frequency has to be taken into account (see Chapter 4.3.7).

Data Sheet 24 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor
Specification

4.3.7 Clock supply (CLK timing definition)


The internal clock supply of the TLE5012B is subject to production-specific variations, which have to be
considered for all timing specifications.

Table 13 Internal clock timing specification


Parameter Symbol Values Unit Note or Test Condition
Min. Typ. Max.
Digital clock fDIG 22.8 24 25.8 MHz
Internal oscillator frequency fCLK 3.8 4.0 4.3 MHz

In order to fix the IC timing and synchronize the TLE5012B with other ICs in a system, it can be switched to
operate with an external clock signal supplied to the IFC pin. The clock input signal must fulfill certain
requirements:
• The high or low pulse width must not exceed the specified values, because the PLL needs a minimum pulse
width and must be spike-filtered.
• The duty cycle factor should typically be 50%, but it can vary between 30% and 70%.
• The PLL is triggered at the positive edge of the clock. If more than 2 edges are missing, a chip reset is
generated automatically and the sensor restarts with the internal clock. This is indicated by the S_RST, and
CLK_SEL bits, and additionally by the Safety Word (see Chapter 4.4.1.2).

tCLK
tCLKh tCLKl

VH

VL
t

Figure 19 External CLK timing definition

Table 14 External clock specification


Parameter Symbol Values Unit Note or Test Condition
Min. Typ. Max.
Input frequency fCLK 3.8 4.0 4.3 MHz
1)2)
CLK duty cycle CLKDUTY 30 50 70 %
CLK rise time tCLKr 30 ns From VL to VH
CLK fall time tCLKf 30 ns From VH to VL
1) Minimum duty cycle factor: tCLKh(min) / tCLK with tCLK= 1 / fCLK
2) Maximum duty cycle factor: tCLKh(max) / tCLK with tCLK= 1 / fCLK

Data Sheet 25 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor
Specification

4.4 Interfaces

4.4.1 Synchronous Serial Communication (SSC)


The 3-pin SSC interface consists of a bi-directional push-pull (tri-state on receive) or open-drain data pin
(configurable with SSC_OD bit) and the serial clock and chip-select input pins. The SSC Interface is designed
to communicate with a microcontroller peer-to-peer for fast applications.

4.4.1.1 SSC timing definition

tCSs tSCKp tCSh tCSoff

CSQ
tSCKh tSCKl

SCK

DATA

tDATAs tDATAh
Figure 20 SSC timing

SSC inactive time (CSoff)


The SSC inactive time defines the delay time after a transfer before the TLE5012B can be selected again.

Table 15 SSC push-pull timing specification


Parameter Symbol Values Unit Note or Test Condition
Min. Typ. Max.
1)
SSC baud rate fSSC 8.0 Mbit/s
1)
CSQ setup time tCSs 105 ns
1)
CSQ hold time tCSh 105 ns
CSQ off tCSoff 600 ns SSC inactive time1)
1)
SCK period tSCKp 120 125 ns
1)
SCK high tSCKh 40 ns
1)
SCK low tSCKl 30 ns
1)
DATA setup time tDATAs 25 ns
1)
DATA hold time tDATAh 40 ns
1)
Write read delay twr_delay 130 ns
Update time tCSupdate 1 µs See Figure 241)
1)
SCK off tSCKoff 170 ns
1) Not subject to production test - verified by design/characterization.

Data Sheet 26 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor
Specification

Table 16 SSC open-drain timing specification


Parameter Symbol Values Unit Note or Test Condition
Min. Typ. Max.
SSC baud rate fSSC 2.0 Mbit/s Pull-up Resistor = 1 kΩ1)
1)
CSQ setup time tCSs 300 ns
1)
CSQ hold time tCSh 400 ns
CSQ off tCSoff 600 ns SSC inactive time1)
1)
SCK period tSCKp 500 ns
1)
SCK high tSCKh 190 ns
1)
SCK low tSCKl 190 ns
1)
DATA setup time tDATAs 25 ns
1)
DATA hold time tDATAh 40 ns
1)
Write read delay twr_delay 130 ns
Update time tCSupdate 1 µs See Figure 241)
1)
SCK off tSCKoff 170 ns
1) Not subject to production test - verified by design/characterization.

Data Sheet 27 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor
Specification

4.4.1.2 SSC data transfer


The SSC data transfer is word-aligned. The following transfer words are possible:
• Command Word (to access and change operating modes of the TLE5012B)
• Data words (any data transferred in any direction)
• Safety Word (confirms the data transfer and provides status information)

twr_delay

COMMAND READ Data 1 READ Data 2 SAFETY-WORD

SSC-Master is driving DATA


SSC-Slave is driving DAT A

Figure 21 SSC data transfer (data-read example)

twr_delay

COMMAND WRITE Data 1 SAFETY-WORD

SSC-Master is driving DATA


SSC-Slave is driving DAT A
Figure 22 SSC data transfer (data-write example)

Command Word
SSC Communication between the TLE5012B and a microcontroller is generally initiated by a command word.
The structure of the command word is shown in Table 17. If an update is triggered by shortly pulling low CSQ
without a clock on SCK a snapshot of all system values is stored in the update registers simultaneously. A read
command with the UPD bit set then allows to readout this consistent set of values instead of the current
values. Bits with an update buffer are marked by an “u” in the Type column in register descriptions. The
initialization of such an update is described on page 30.

Table 17 Structure of the Command Word


Name Bits Description
RW [15] Read - Write
0: Write
1: Read
Lock [14..11] 4-bit Lock Value
0000B: Default operating access for addresses 0x00:0x04
1010B: Configuration access for addresses 0x05:0x11

Data Sheet 28 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor
Specification

Table 17 Structure of the Command Word (cont’d)


Name Bits Description
UPD [10] Update-Register Access
0: Access to current values
1: Access to values in update buffer
ADDR [9..4] 6-bit Address
ND [3..0] 4-bit Number of Data Words

Safety Word
The safety word consists of the following bits:

Table 18 Structure of the Safety Word


Name Bits Description
1)
STAT Chip and Interface Status
[15] Indication of chip reset or watchdog overflow (resets after readout) via
SSC
0: Reset occurred
1: No reset
[14] System error (e.g. overvoltage; undervoltage; VDD-, GND- off; ROM;...)
0: Error occurred (S_VR; S_DSPU; S_OV; S_XYOL: S_MAGOL; S_FUSE;
S_ROM; S_ADCT)
1: No error
[13] Interface access error (access to wrong address; wrong lock)
0: Error occurred
1: No error
[12] Valid angle value (NO_GMR_A = 0; NO_GMR_XY = 0)
0: Angle value invalid
1: Angle value valid
RESP [11..8] Sensor number response indicator
The sensor number bit is pulled low and the other bits are high
CRC [7..0] Cyclic Redundancy Check (CRC)
1) When an error occurs, the corresponding status bit in the safety word remains “low” until the STAT register (address
00H) is read via SSC interface.

Data Sheet 29 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor
Specification

Bit Types
The types of bits used in the registers are listed here:

Table 19 Bit Types


Abbreviation Function Description
r Read Read-only registers
w Write Read and write registers
u Update Update buffer for this bit is present. If an update is issued and the Update-
Register Access bit (UPD in Command Word) is set, the immediate values
are stored in this update buffer simultaneously. This allows a snapshot of
all necessary system parameters at the same time.

Data communication via SSC

SSC Transfer
twr_delay
Command Word Data Word (s)

SCK

DATA MSB 14 13 12 11 10 9 8 7 6 5 4 3 2 1 LSB MSB 1 LSB

CSQ

RW LOCK UPD ADDR LENGTH

SSC -Master is driving DAT A


SSC -Slave is driving DAT A

Figure 23 SSC bit ordering (read example)

Update -Signal Command Word Data Word (s)

SCK Update -Event

DATA MSB LSB LSB

CSQ

tCSupdate

SSC -Master is driving DAT A


SSC -Slave is driving DAT A

Figure 24 Update of update registers

The data communication via SSC interface has the following characteristics:
• The data transmission order is Most-Significant Bit (MSB) first, Last-Significant Bit (LSB) last.
• Data is put on the data line with the rising edge on SCK and read with the falling edge on SCK.
• The SSC Interface is word-aligned. All functions are activated after each transmitted word.
• After every data transfer with ND ≥ 1, the 16-bit Safety Word is appended by the TLE5012B.
• A “high” condition on the Chip Select pin (CSQ) of the selected TLE5012B interrupts the transfer
immediately. The CRC calculator is automatically reset.
• After changing the data direction, a delay twr_delay (see Table 16) has to be implemented before continuing
the data transfer. This is necessary for internal register access.

Data Sheet 30 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor
Specification

• If in the Command Word the number of data is greater than 1 (ND > 1), then a corresponding number of
consecutive registers is read, starting at the address given by ADDR.
• In case an overflow occurs at address 3FH, the transfer continues at address 00H.
• If in the Command Word the number of data is zero (ND = 0), the register at the address given by ADDR is
read, but no Safety Word is sent by the TLE5012B. This allows a fast readout of one register.
• At a rising edge of CSQ without a preceding data transfer (no SCK pulse, see Figure 24), the content of all
registers which have an update buffer is saved into the buffer. This procedure serves to take a snapshot of
all relevant sensor parameters at a given time. The content of the update buffer can then be read by
sending a read command for the desired register and setting the UPD bit of the Command Word to “1”.
• After sending the Safety Word, the transfer ends. To start another data transfer, the CSQ has to be
deselected once for at least tCSoff.
• By default, the SSC interface is set to push-pull. The push-pull driver is active only if the TLE5012B has to
send data, otherwise the DATA pin is set to high-impedance.

Cyclic Redundancy Check (CRC)


• This CRC is according to the J1850 Bus Specification.
• Every new transfer restarts the CRC generation.
• Every Byte of a transfer will be taken into account to generate the CRC (also the sent command(s)).
• Generator polynomial: X8+X4+X3+X2+1, but for the CRC generation the fast-CRC generation circuit is used
(see Figure 25).
• The seed value of the fast CRC circuit is ‘11111111B’.
• The remainder is inverted before transmission.

Serial X7 X6 X5 X4 X3 X2 X1 X0
CRC 1 1 1 1 xor 1 xor 1 xor 1 1 & xor Input
output
TX_CRC

parallel
Remainder

Figure 25 Fast CRC polynomial division circuit

Data Sheet 31 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor
Specification

4.4.2 Pulse Width Modulation (PWM) interface


The Pulse Width Modulation (PWM) interface can be selected via SSC (IF_MD = ‘01’).
The PWM update rate can be programmed within the register 0EH (IFAB_RES) in the following steps:
• ~0.25 kHz with 12-bit resolution
• ~0.5 kHz with 12-bit resolution
• ~1.0 kHz with 12-bit resolution
• ~2.0 kHz with 12-bit resolution
PWM uses a square wave with constant frequency whose duty cycle is modulated according to the last
measured angle value (AVAL register).
Figure 26 shows the principal behavior of a PWM with various duty cycles and the definition of timing values.
The duty cycle of a PWM is defined by the following general formulas:

ton
Duty Cycle =
t PWM
t PWM = t on + toff
1
f PWM =
t PWM
(4.2)
The duty cycle range between 0 - 6.25% and 93.75 - 100% is used only for diagnostic purposes. In case the
sensor detects an error, the corresponding error bit in the Status register is set and the PWM duty cycle goes
to the lower (0 - 6.25%) or upper (93.75 - 100%) diagnostic range, depending on the kind of error (see “Output
duty cycle range” in Table 20). Except for an S_ADCT error, an error is only indicated by the corresponding
diagnostic duty-cycle as long as it persists, but at least once. However the value in the status register will
remain until a read-out via the SSC interface or a chip reset is performed. An S_ADCT error on the other side
will be transmitted until the next chip reset. This fail-safe diagnostic function can be disabled via the MOD_4
register.
Sensors with preset PWM are available as TLE5012B E50x0.

tON
UIFA ON = High level
tPWM
OFF = Low level Duty cycle = 6.25%
Vdd

tOFF
‚0'
UIFA Duty cycle = 50%
Vdd t

‚0'
UIFA Duty cycle = 93.75% t
Vdd

‚0'
t
Figure 26 Typical example of a PWM signal

Data Sheet 32 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor
Specification

Table 20 PWM interface


Parameter Symbol Values Unit Note or Test Condition
Min. Typ. Max.
1)
PWM output frequencies fPWM1 232 244 262 Hz
(Selectable by IFAB_RES) fPWM2 464 488 525 Hz 1)

1)
fPWM3 929 977 1050 Hz
1)
fPWM4 1855 1953 2099 Hz
Output duty cycle range DYPWM 6.25 93.75 % Absolute angle1)
2 % Electrical Error (S_RST;
S_VR)1)
98 % System error (S_FUSE;
S_OV; S_XYOL; S_MAGOL;
S_ADCT)1)
0 1 % Short to GND1)
99 100 % Short to VDD, power loss1)
1) Not subject to production test - verified by design/characterization.

The PWM frequency is derived from the digital clock via:

(4.3)
f DIG * 2 IFAB_RES
f PWM =
24 * 4096
The min/max values given in Table 20 take into account the internal digital clock variation specified in
Chapter 4.3.7. If external clock is used, the variation of the PWM frequency can be derived from the variation
of the external clock using Equation (4.3).

Data Sheet 33 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor
Specification

4.4.3 Short PWM Code (SPC)


The Short PWM Code (SPC) is a synchronized data transmission based on the SENT protocol (Single Edge
Nibble Transmission) defined by SAE J2716. As opposed to SENT, which implies a continuous transmission of
data, the SPC protocol transmits data only after receiving a specific trigger pulse from the microcontroller. The
required length of the trigger pulse depends on the sensor number, which is configurable. Thereby, SPC allows
the operation of up to four sensors on one bus line.
SPC enables the use of enhanced protocol functionality due to the ability to select between various sensor
slaves (ID selection). The slave number (S_NR) can be given by the external circuit of SCK and IFC pin. In case
of VDD on SCK, the S_NR[0] can be set to 1 and in the case of GND on SCK the S_NR[0] is equal to 0. S_NR[1] can
be adjusted in the same way by the IFC pin.
As in SENT, the time between two consecutive falling edges defines the value of a 4-bit nibble, thus
representing numbers between 0 and 15. The transmission time therefore depends on the transmitted data
values. The single edge is defined by a 3 Unit Time (UT, see Chapter 4.4.3.1) low pulse on the output, followed
by the high time defined in the protocol (nominal values, may vary depending on the tolerance of the internal
oscillator and the influence of external circuitry). All values are multiples of a unit time frame concept. A
transfer consists of the following parts (Figure 27):
• A trigger pulse by the master, which initiates the data transmission
• A synchronization period of 56 UT (in parallel, a new sample is calculated)
• A status nibble of 12-27 UT
• Between 3 and 6 data nibbles of 12-27 UT
• A CRC nibble of 12-27 UT
• An end pulse to terminate the SPC transmission

Data-Nibble 1 Data-Nibble 2 Data-Nibble 3


Trigger Nibble Synchronisation Frame Status -Nibble Bit 11-8 Bit 7-4 Bit 3-0 CRC End -Pulse

24,34,51,78 tck 56 tck 12..27 tck 12..27 tck 12..27 tck 12..27 tck 12..27 tck 12 tck

µC Activity Time-Base: 1 tck (3µs+/-dtck )


Sensor Activity Nibble-Encoding : ( 12+x)*tck

Figure 27 SPC frame example

The CRC checksum includes the status nibble and the data nibbles, and can be used to check the validity of
the decoded data. The sensor is available for the next trigger pulse 90 µs after the falling edge of the end pulse
(see Figure 28).

Trigger Nibble Synchronisation Frame End-Pulse Trigger Nibble Synchronisation Frame End-Pulse

... ...

µC Activity
Sensor Activity > 90 µs

Figure 28 SPC pause timing diagram

Data Sheet 34 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor
Specification

In SPC mode, the sensor does not continuously calculate an angle from the raw data. Instead, the angle
calculation is started by the trigger nibble from the master. In this mode, the AVAL register, which stores the
angle value and can be read via SSC, contains the angle which was calculated after the last SPC trigger nibble.
In parallel to SPC, the SSC interface can be used for individual configuration. The number of transmitted SPC
nibbles can be changed to customize the amount of information sent by the sensor. The frame contains a 16-
bit angle value and an 8-bit temperature value in the full configuration (Table 21).
Sensors with preset SPC are available as TLE5012B E9000.

Table 21 Frame configuration


Frame type IFAB_RES Data nibbles
12-bit angle 00 3 nibbles
16-bit angle 01 4 nibbles
12-bit angle, 8-bit temperature 10 5 nibbles
16-bit angle, 8-bit temperature 11 6 nibbles

The status nibble, which is sent with each SPC data frame, provides an error indication similar to the Safety
Word of the SSC protocol. In case the sensor detects an error, the corresponding error bit in the Status register
is set and either the bit SYS_ERR or the bit ELEC_ERR of the status nibble will be “high”, depending on the kind
of error (see Table 22). Except for an S_ADCT error, an error is only indicated by the corresponding error bit in
the status nibble as long as it persists, but at least once. However the value in the status register will remain
until a read-out via the SSC interface or a chip reset is performed. An S_ADCT error on the other side will be
transmitted until the next chip reset. The fail-safe diagnostic function can be disabled via the MOD_4 register.

Table 22 Structure of status nibble


Name Bits Description
SYS_ERR [3] Indication of system error (S_FUSE, S_OV, S_XYOL, S_MAGOL, S_ADCT)
0: No system error
1: System error occurred
ELEC_ERR [2] Indication of electrical error (S_RST, S_VR)
0: No electrical error
1: Electrical error occurred
S_NR [1] Slave number bit 1 (level on IFC)
[0] Slave number bit 0 (level on SCK)

Data Sheet 35 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor
Specification

4.4.3.1 Unit time setup


The basic SPC protocol unit time granularity is defined as 3 µs. Every timing is a multiple of this basic time
unit.To achieve more flexibility, trimming of the unit time can be done within IFAB_HYST. This enables a setup
of different unit times.

Table 23 Predivider setting


Parameter Symbol Values Unit Note or Test Condition
Min. Typ. Max.
Unit time tUnit 3.0 µs IFAB_HYST = 001)
2.5 IFAB_HYST = 011)
2.0 IFAB_HYST = 101)
1.5 IFAB_HYST = 111)
1) Not subject to production test - verified by design/characterization.

Data Sheet 36 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor
Specification

4.4.3.2 Master trigger pulse requirements


An SPC transmission is initiated by a master trigger pulse on the IFA pin. To detect a low-level on the IFA pin,
the voltage must be below a threshold Vth. The sensor detects that the IFA line has been released as soon as
Vth is crossed. Figure 29 shows the timing definitions for the master pulse. The master low time tmlow as well as
the total trigger time tmtr are given in Table 24.
If the master low time exceeds the maximum low time, the sensor does not respond and is available for a next
triggering 30 µs after the master pulse crosses Vthr. tmd,tot is the delay between internal triggering of the falling
edge in the sensor and the triggering of the ECU.

tmtr

SPC

Vth ECU trigger


level

tmlow t md,tot

Figure 29 SPC master pulse timing

Table 24 Master pulse parameters


Parameter Symbol Values Unit Note or Test Condition
Min. Typ. Max.
1)
Threshold Vth 50 % of
VDD
Threshold hysteresis Vthhyst 8 % of VDD = 5 V1)
3 VDD VDD = 3 V1)
Total trigger time tmtr 90 UT SPC_Trigger = 0;1)2)
tmlow +12 UT SP_Trigger = 11)
Master low time tmlow 8 12 14 UT S_NR =001)
16 22 27 S_NR =011)
29 39 48 S_NR =101)
50 66 81 S_NR =111)
1)
Master delay time tmd,tot 5.8 µs
1) Not subject to production test - verified by design/characterization.
2) Trigger time in the sensor is fixed to the number of units specified in the “Typ.” column, but the effective trigger time
varies due to the sensor’s clock variation.

4.4.3.3 Checksum nibble details


The checksum nibble is a 4-bit CRC of the data nibbles including the status nibble. The CRC is calculated using
a polynomial x4+x3+x2+1 with a seed value of 0101B. The remainder after the last data nibble is transmitted as
CRC.

Data Sheet 37 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor
Specification

4.4.4 Hall Switch Mode (HSM)


The Hall Switch Mode (HSM) within the TLE5012B makes it possible to emulate the output of 3 Hall switches.
Hall switches are often used in electrical commutated motors to determine the rotor position. With these
3 output signals, the motor will be commutated in the right way. Depending on which pole pairs of the rotor
are used, various electrical periods have to be controlled. This is selectable within 0EH (HSM_PLP). Figure 30
depicts the three output signals with the relationship between electrical angle and mechanical angle. The
mechanical 0° point is always used as reference.
The HSM is generally used with push-pull output, but it can be changed to open-drain within the register
IFAB_OD.
Sensors with preset HSM are available as TLE5012B E3005.

Hall-Switch-Mode: 3phase Generation

Electrical Angle 0° 60° 120° 180° 240° 300° 360°

HS1

HS2

HS3
Angle

Mech. Angle with


0° 12° 24° 36° 48° 60° 72°
5 Pole Pairs

Mech. Angle with


3 Pole Pairs 0° 20° 40° 60° 80° 100° 120°

Figure 30 Hall Switch Mode

The HSM Interface can be selected via SSC (IF_MD = 010).

Data Sheet 38 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor
Specification

Table 25 Hall Switch Mode


Parameter Symbol Values Unit Note or Test Condition
Min. Typ. Max.
Rotation speed n 10000 rpm Mechanical2)
Electrical angle accuracy αelect 0.6 1 ° 1 pole pair with
autocalibration1)2)
1.2 2 ° 2 pole pairs with autocal.1)2)
1.8 3 ° 3 pole pairs with autocal.1)2)
2.4 4 ° 4 pole pairs with autocal.1)2)
3.0 5 ° 5 pole pairs with autocal.1)2)
3.6 6 ° 6 pole pairs with autocal.1)2)
4.2 7 ° 7 pole pairs with autocal.1)2)
4.8 8 ° 8 pole pairs with autocal.1)2)
5.4 9 ° 9 pole pairs with autocal.1)2)
6.0 10 ° 10 pole pairs with autocal.1)2)
6.6 11 ° 11 pole pairs with autocal.1)2)
7.2 12 ° 12 pole pairs with autocal.1)2)
7.8 13 ° 13 pole pairs with autocal.1)2)
8.4 14 ° 14 pole pairs with autocal.1)2)
9.0 15 ° 15 pole pairs with autocal.1)2)
9.6 16 ° 16 pole pairs with autocal.1)2)
Mechanical angle switching αHShystm 0 0.703 ° Selectable by IFAB_HYST2)3)4)
hysteresis
Electrical angle switching αHShystel 0.70 ° 1 pole pair; IFAB_HYST=111)2)
hysteresis5) 1.41 ° 2 pole pairs; IFAB_HYST=111)2)
2.11 ° 3 pole pairs; IFAB_HYST=111)2)
2.81 ° 4 pole pairs; IFAB_HYST=111)2)
3.52 ° 5 pole pairs; IFAB_HYST=111)2)
4.22 ° 6 pole pairs; IFAB_HYST=111)2)
4.92 ° 7 pole pairs; IFAB_HYST=111)2)
5.62 ° 8 pole pairs; IFAB_HYST=111)2)
6.33 ° 9 pole pairs; IFAB_HYST=111)2)
7.03 ° 10 pole pairs; IFAB_HYST=111)2)
7.73 ° 11 pole pairs; IFAB_HYST=111)2)
8.44 ° 12 pole pairs; IFAB_HYST=111)2)
9.14 ° 13 pole pairs; IFAB_HYST=111)2)
9.84 ° 14 pole pairs; IFAB_HYST=111)2)
10.55 ° 15 pole pairs; IFAB_HYST=111)2)
11.25 ° 16 pole pairs; IFAB_HYST=111)2)

Data Sheet 39 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor
Specification

Table 25 Hall Switch Mode (cont’d)


Parameter Symbol Values Unit Note or Test Condition
Min. Typ. Max.
Fall time tHSfall 0.02 1 µs RL = 2.2 kΩ; CL < 50 pF2)
Rise time tHSrise 0.4 1 µs RL = 2.2 kΩ; CL < 50 pF2)
1) Depends on internal oscillator frequency variation (Section 4.3.7).
2) Not subject to production test - verified by design/characterization.
3) GMR hysteresis not considered.
4) Minimum hysteresis without switching.
5) The hysteresis has to be considered only at change of rotation direction.

To avoid switching due to mechanical vibrations of the rotor, an artificial hysteresis is recommended
(Figure 31).

Ideal Switching Point

α HShystel αHShystel

αelect 0° αelect
Figure 31 HS hysteresis

4.4.5 Incremental Interface (IIF)


The Incremental Interface (IIF) emulates the operation of an optical quadrature encoder with a 50% duty
cycle. It transmits a square pulse per angle step, where the width of the steps can be configured from 9 bit
(512 steps per full rotation) to 12 bit (4096 steps per full rotation) within the register MOD_4 (IFAB_RES)1). The
rotation direction is given either by the phase shift between the two channels IFA and IFB (A/B mode) or by the
level of the IFB channel (Step/Direction mode), as shown in Figure 32 and Figure 33. The incremental interface
can be configured for A/B mode or Step/Direction mode in register MOD_1 (IIF_MOD).
Using the Incremental Interface requires an up/down counter on the microcontroller, which counts the pulses
and thus keeps track of the absolute position. The counter can be synchronized periodically by using the SSC
interface in parallel. The angle value (AVAL register) read out by the SSC interface can be compared to the
stored counter value. In case of a non-synchronization, the microcontroller adds the difference to the actual
counter value to synchronize the TLE5012B with the microcontroller.
After startup, the IIF transmits a number of pulses which correspond to the actual absolute angle value. Thus,
the microcontroller gets the information about the absolute position. The Index Signal that indicates the zero
crossing is available on the IFC pin.
Sensors with preset IIF are available as TLE5012B E1000.

1) Decreasing the number of bits does not increase the maximum rotation speed.

Data Sheet 40 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor
Specification

A/B Mode
The phase shift between phases A and B indicates either a clockwise (A follows B) or a counterclockwise
(B follows A) rotation of the magnet.

Incremental Interface
(A/B Mode)
90° el . Phase shift
VH
Phase A
VL
VH
Phase B
VL
Counter 0 1 2 3 4 5 6 7 6 5 4 3 2 1

Figure 32 Incremental interface with A/B mode

Step/Direction Mode
Phase A pulses out the increments and phase B indicates the direction.

Incremental Interface
(Step /Direction Mode)

Step VH
VL

Direction VH
VL
Counter 0 1 2 3 4 5 6 7 6 5 4 3 2 1

Figure 33 Incremental interface with Step/Direction mode

Table 26 Incremental interface


Parameter Symbol Values Unit Note or Test Condition
Min. Typ. Max.
Incremental output frequency fInc 1.0 MHz Frequency of phase A and
phase B1)
Index pulse width t0° 5 µs 0°1)
1) Not subject to production test - verified by design/characterization.

Data Sheet 41 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor
Specification

4.5 Test mechanisms

4.5.1 ADC test vectors


In order to test the correct functionality of the ADCs, the ADC inputs can be switched from the GMR bridge
outputs to a chain of fixed resistors which act as a voltage divider. The ADCs are then fed with test vectors of
fixed voltages to simulate a set of magnet positions. The functionality of the ADCs is verified by checking the
angle value (AVAL register) for each test vector. This test is activated via SSC command within the SIL register
(ADCTV_EN). Registers ADCTV_Y and ADCTV_X are used to select the test vector, as shown in Figure 34.
The following X/Y ADC values can be programmed:
• 4 points, circle amplitude = 70% (0°,90°, 180°, 270°)
• 8 points, circle amplitude = 100% (0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°)
• 8 points, circle amplitude = 122.1% (35.3°, 54.7°, 125.3°, 144.7°, 215.3°, 234.7°, 305.3°, 324.7°)
• 4 points, circle amplitude = 141.4% (45°, 135°, 225°, 315°)

Note: The 100% values typically correspond to 21700 digits and the 70% values to 15500 digits.

Table 27 ADC test vectors


Register bits X/Y values (decimal)
Min. Typ. Max.
000 0
001 15500
010 21700
011 32767
1)
100 0
101 -15500
110 -21700
111 -32768
1) Not allowed to use.

Data Sheet 42 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor
Specification

ADCTV_Y

122.1%
141.4%

0% 100 .0%

70% ADCTV_X

Figure 34 ADC test vectors

4.6 Supply monitoring


The internal voltage nodes of the TLE5012B are monitored by a set of comparators in order to ensure error-
free operation. An over- or undervoltage condition must be active at least 256 periods of the digital clock to
set the corresponding error bits in the Status register. This works as digital spike suppression.
Over- or undervoltage errors trigger the S_VR bit of Status register. This error condition is signaled via the in
the Safety Word of the SSC protocol, the status nibble of the SPC interface or the lower diagnostic range of the
PWM interface.

Table 28 Test comparator threshold voltages


Parameter Symbol Values Unit Note or Test Condition
Min. Typ. Max.
1)
Overvoltage detection VOVG 2.80 V
1)
VOVA 2.80 V
1)
VOVD 2.80 V
1)
VDD overvoltage VDDOV 6.05 V
1)
VDD undervoltage VDDUV 2.70 V
1)
GND - off voltage VGNDoff -0.55 V
1)
VDD - off voltage VVDDoff 0.55 V
1)
Spike filter delay tDEL 10 µs
1) Not subject to production test - verified by design/characterization

4.6.1 Internal supply voltage comparators


Every voltage regulator has an overvoltage (OV) comparator to detect malfunctions. If the nominal output
voltage of 2.5 V is larger than VOVG, VOVA and VOVD, then this overvoltage comparator is activated.

Data Sheet 43 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor
Specification

4.6.2 VDD overvoltage detection


The overvoltage detection comparator monitors the external supply voltage at the VDD pin.

VDDA

REF - 10µs
VDD Spike xxx_OV
VRG Filter
VRA +
VRD

GND GND
Figure 35 Overvoltage comparator

4.6.3 GND - Off comparator


The GND - Off comparator is used to detect a voltage difference between the GND pin and SCK. This circuit can
detect a disconnection of the supply GND pin.

VDD
VDDA
Diode-
reference

SCK +dV - 1µs 10µs


Mono Spike GND_OFF
Flop Filter
GND +

GND
Figure 36 GND - Off comparator

4.6.4 VDD - Off comparator


The VDD - Off comparator detects a disconnection of the VDD pin supply voltage. In this case, the TLE5012B is
supplied by the SCK and CSQ input pins via the ESD structures.

VDDA

VDD - 1µs 10µs


VVDDoff Mono Spike VDD _OFF
CSQ Flop Filter
SCK -dV +

GND GND
Figure 37 VDD - Off comparator

Data Sheet 44 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor
Pre-configured derivates

5 Pre-configured derivates
Derivates of the TLE5012B are available with different pre-configured register settings for specific
applications. The configuration of all derivates can be changed via SSC interface.

5.1 IIF-type: E1000


The TLE5012B-E1000 is preconfigured for Incremental Interface and fast angle update period (42.7 µs). It is
most suitable for BLDC motor commutation.
• Autocalibration mode 1 enabled.
• Prediction enabled.
• Hysteresis is set to 0.703°.
• 12bit mode, one count per 0.088° angle step.
• Incremental Interface A/B mode.

5.2 HSM-type: E3005


The TLE5012B-E3005 is preconfigured for Hall-Switch-Mode and fast angle update period (42.7 µs). It is most
suitable as a replacement for three Hall switches for BLDC motor commutation.
• Number of pole pairs is set to 5.
• Autocalibration mode 1 enabled.
• Prediction enabled.
• Hysteresis is set to 0.703°.

5.3 PWM-type: E5000


The TLE5012B-E5000 is preconfigured for Pulse-Width-Modulation interface. It is most suitable for steering
angle and actuator position sensing.
• Filter update period is 85.4 µs.
• PWM frequency is 244 Hz.
• Autocalibration, Prediction, and Hysteresis are disabled.

5.4 PWM-type: E5020


The TLE5012B-E5020 is preconfigured for Pulse-Width-Modulation interface with high frequency. It is most
suitable for steering angle and actuator position sensing.
• Filter update period is 42.7 µs.
• PWM frequency is 1953 Hz.
• Autocalibration mode 2 enabled.
• Prediction and Hysteresis are disabled.
• PWM interface is set to open-drain output.

Data Sheet 45 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor
Pre-configured derivates

5.5 SPC-type: E9000


The TLE5012B-E9000 is preconfigured for Short-PWM-Code interface. It is most suitable for steering angle and
actuator position sensing.
• Filter update period is 85.4 µs.
• Autocalibration, Prediction, and Hysteresis are disabled.
• SPC unit time is 3 µs.
• SPC interface is set to open-drain output.

Data Sheet 46 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor
Package information

6 Package information

6.1 Package parameters

Table 29 Package parameters


Parameter Symbol Values Unit Note or Test Condition
Min. Typ. Max.
Thermal resistance RthJA 150 200 K/W Junction to air1)
RthJC 75 K/W Junction to case
RthJL 85 K/W Junction to lead
Soldering moisture level MSL 3 260°C
Lead Frame Cu
Plating Sn 100% > 7 µm
1) according to Jedec JESD51-7

6.2 Package outline

Figure 38 PG-DSO-8 package dimension

Data Sheet 47 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor
Package information

Figure 39 Position of sensing element

Table 30 Sensor IC placement tolerances in package


Parameter Symbol Values Unit Note or Test Condition
Min. Typ. Max.
Position eccentricity -200 200 µm In X- and Y-direction
Rotation -3 3 ° Affects zero position offset of sensor
Tilt -3 3 °

6.3 Footprint
1.31

0.65
5.69

1.27

Figure 40 Footprint of PG-DSO-8

Data Sheet 48 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor
Package information

6.4 Packing

8 0.3

12 ±0.3
5.2
6.4 1.75
2.1

Figure 41 Tape and Reel

6.5 Marking

Position Marking Description


1st Line 012Bxxxx See Table 1 “Derivate ordering codes” on Page 2
2nd Line xxx Lot code
3rd Line Gxxxx G..green, 4-digit..date code

Processing

Note: For processing recommendations, please refer to Infineon’s Notes on processing

Data Sheet 49 Rev. 2.1


2018-06-20
TLE5012B
GMR-Based Angle Sensor
Revision history

7 Revision history

Revision Date Changes


Rev. 2.1 2018-06-20 New Template/New Logo
Chapter 4.4.5: Add footnote regarding maximum rotation speed
Chapter 3: Update Chapter 3

Data Sheet 50 Rev. 2.1


2018-06-20
Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

IMPORTANT NOTICE
Edition 2018-06-20 The information given in this document shall in no For further information on technology, delivery terms
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest
Published by
characteristics ("Beschaffenheitsgarantie"). Infineon Technologies Office (www.infineon.com).
Infineon Technologies AG With respect to any examples, hints or any typical
81726 Munich, Germany values stated herein and/or any information regarding
the application of the product, Infineon Technologies WARNINGS
hereby disclaims any and all warranties and liabilities
© 2018 Infineon Technologies AG. of any kind, including without limitation warranties of Due to technical requirements products may contain
All Rights Reserved. non-infringement of intellectual property rights of any dangerous substances. For information on the types
third party. in question please contact your nearest Infineon
In addition, any information given in this document is Technologies office.
Do you have a question about any subject to customer's compliance with its obligations
aspect of this document? stated in this document and any applicable legal Except as otherwise explicitly approved by Infineon
Email: erratum@infineon.com requirements, norms and standards concerning Technologies in a written document signed by
customer's products and any use of the product of authorized representatives of Infineon Technologies,
Infineon Technologies in customer's applications. Infineon Technologies’ products may not be used in
The data contained in this document is exclusively any applications where a failure of the product or any
Document reference consequences of the use thereof can reasonably be
intended for technically trained staff. It is the
Doc_Number expected to result in personal injury.
responsibility of customer's technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to
such application.

You might also like