Nothing Special   »   [go: up one dir, main page]

Batch VI: CH22B108-CH22B119: First Instruction Day: 13/03/2023, Last Instruction Day: 22/06/2023

Download as pdf or txt
Download as pdf or txt
You are on page 1of 19

Batch VI: CH22B108-CH22B119 and EE22B001-EE22B073

Calendar

First  Instruction day: 13/03/2023, Last instruction day: 22/06/2023

Tentatively there will be 41 lectures and 10 tutorials. 

Quiz-I: 20/04/2023, Quiz-II: 25/05/2023, Endsem: 28/06/2023

Evaluation pattern: Quiz-I: 20 marks, Quiz-II:  20 marks, Endsem: 60 marks

Note: ASSIGNMENT 1 is already on moodle.


THE PH1020-SHEET
1 q
E= r.̂ Electric field due to a point charge
4πϵ0 r 2
1⇢
<latexit sha1_base64="X732c+i7xbDJWkF/ghSd0lgFqSs=">AAACRnicbVDBahRBEK1ZNSYbjasecxlcAh5kmRFRL0JIEHKM4CaBnWGp6anJNunpnnTXiMswX5dLzt78BC85KOLV3skcYmJBw+O9elXVL6uUdBxF34PBvfsP1h6ubww3Hz3eejJ6+uzImdoKmgqjjD3J0JGSmqYsWdFJZQnLTNFxdra/0o+/kHXS6M+8rCgt8VTLQgpkT81HacL0lbs5jaW8bRKNmcJE5IY7KSuaj+2HpLAomtjLVDmpjG4TuzCvkvPzGvPewrIkd8MTtcP5aBxNoq7CuyDuwRj6OpyPviW5EXVJmoVC52ZxVHHaoGUpFLXDpHZUoTjDU5p5qNGvTJvu/Dbc8UweFsb6pzns2JuOBkvnlmXmO0vkhbutrcj/abOai/dpI3VVM2lxvaioVcgmXGUa5tKSYLX0AIWV/tZQLNAnxj75VQjx7S/fBUevJ/HbSfzpzXh3r49jHbbhBbyEGN7BLhzAIUxBwAX8gJ/wK7gMroLfwZ/r1kHQe57DPzWAv5XZtK8=</latexit>

<latexit sha1_base64="sXxb/+CmwB5Okw44uj9gMQrjCgY=">AAACNHicbVBNSxtBGJ6N3/ErtUcvg6HgKeyKaC8FUYSCFwWjgUwIs7PvmiGzM8vMu2JY9kf14g/xUgo9WEqv/gZnYw5t7AvDPDzv1/M+ca6kwzD8ETQWFpeWV1bXmusbm1vbrQ87N84UVkBXGGVsL+YOlNTQRYkKerkFnsUKbuPxWZ2/vQfrpNHXOMlhkPE7LVMpOHpq2LpgCA84nVNaSKqSxUYlbpL5j2keK85EYpCyjOMoTuk5/UJZarkomR0ZXw65k8pPCqtq2GqHnXAa9D2IZqBNZnE5bD2xxIgiA41Ccef6UZjjoOQWpVBQNVnhIOdizO+g76HmGbhBORVb0U+eSWhqrH8a6ZT9u6Pkmavv8JW1djefq8n/5foFpp8HpdR5gaDF26K0UBQNrR2kibQgUE084MJKr5WKEfeWoPe56U2I5k9+D24OOtFR5/DqsH1yOrNjleySPbJPInJMTshXckm6RJBv5Dt5Jr+Cx+Bn8Dv481baCGY9H8k/Eby8ArexrUI=</latexit>

r ·· E
E== ⇢, r⇥E=0 ρ
✏✏0 ∇⋅E= Differential form
ϵ0
Maxwell’s equations for electrostatics
Qenc

E ⋅ da = Integral form
Electrostatic potential, V, is defined as E =
<latexit sha1_base64="lMLmJsl4vHJacyU6AyZPm4Hilro=">AAAB/nicbVDLSsNAFJ3UV62vqLhyM1gEN5ZEiroRiiK4rGAf0IRyM520QyeTMDMRSij4K25cKOLW73Dn3zhts9DWAwOHc+7lnjlBwpnSjvNtFZaWV1bXiuuljc2t7R17d6+p4lQS2iAxj2U7AEU5E7Shmea0nUgKUcBpKxjeTPzWI5WKxeJBjxLqR9AXLGQEtJG69oEXgR4EIb7FV/jUExBwwM2uXXYqzhR4kbg5KaMc9a795fVikkZUaMJBqY7rJNrPQGpGOB2XvFTRBMgQ+rRjqICIKj+bxh/jY6P0cBhL84TGU/X3RgaRUqMoMJOTsGrem4j/eZ1Uh5d+xkSSairI7FCYcqxjPOkC95ikRPORIUAkM1kxGYAEok1jJVOCO//lRdI8q7jnlep9tVy7zusookN0hE6Qiy5QDd2hOmoggjL0jF7Rm/VkvVjv1sdstGDlO/voD6zPH/NplDM=</latexit>

rV ϵ0
<latexit sha1_base64="9qjukQ5j3WKDwqRupTiXyof+h/E=">AAACH3icbVDLSgMxFM34rPVVdekmWAQ3lplSqhuh6MZlBVuFTi2Z9I4NzWSG5I5YhvkTN/6KGxeKiLv+jWntwteBwOGce5KbEyRSGHTdsTM3v7C4tFxYKa6urW9slra22yZONYcWj2WsrwNmQAoFLRQo4TrRwKJAwlUwPJv4V3egjYjVJY4S6EbsVolQcIZW6pXqPsI9Tu/JNPTzzFcskOymStv0hB76oWY88/Ugtg4kRkgbcvO8Vyq7FXcK+pd4M1ImMzR7pQ+/H/M0AoVcMmM6nptgN2MaBZeQF/3UQML4kN1Cx1LFIjDdbLpXTvet0qdhrO1RSKfq90TGImNGUWAnI4YD89ubiP95nRTD424mVJIiKP71UJhKijGdlEX7QgNHObKEcS3srpQPmK0EbaVFW4L3+8t/Sbta8eqV2kWt3Did1VEgu2SPHBCPHJEGOSdN0iKcPJAn8kJenUfn2Xlz3r9G55xZZof8gDP+BDr6o7c=</latexit>

2 ⇢
r V =
✏0
Poisson’s equation
Superposition principle E = Ei

i
Continuous Charge Distributions

2
Potential energy of a discrete charge distribution Lets make a collection of 4 charges

First comes for free and second costs

While the third and fourth one cost

Total cost

In general, we have

Or, the potential energy stored in the system is


3
Potential energy of a continuous charge distribution

For a volume charge density, we have

Let the surface be at infinity

4
Potential energy of a charge distribution
Consistent?

Because electrostatic energy is quadratic in the


fields, it does not obey a superposition principle.

5
Conductors
A conductor in an
A perfect conductor contains unlimited supply of free charges electric field E0 induces
An ideal conductor does not exist but metals come very close charges on the surface.

E = 0 inside a conductor at the electrostatic equilibrium (when This leads to an electric


there is no net motion of charge within a conductor field E1 inside the
conductor.
Gauss’s law ∇ ⋅ E = ρ/ϵ0, implies that ρ = 0 inside a conductor
E1 and E0 cancel inside
Any charge resides on the surface of a conductor
but not outside

Electric field is perpendicular to the surface


b

∫a
A conductor is an equipotential:V(b) − V(a) = − E ⋅ dl =0

In summary, E = ρ = 0 inside an ideal conductor


6
Induced charges
Electric field of charge q will
induces charges on the conductor
due to the field it creates

This happens as the charge of


the conductor moves around in
such a way as to kill off the field
of q for points inside the
conductor, where the total field
must be zero.) A conductor with a cavity will
have electric field in the cavity
Charge enclosed by dotted surface
is zero and thus total charge on
outer surface is +q.

7
Boundary conditions

Gauss’s law

For a very thin pillbox

The normal component of E is discontinuous by an amount σ/ϵ0 at any boundary.

1
<latexit sha1_base64="X732c+i7xbDJWkF/ghSd0lgFqSs=">AAACRnicbVDBahRBEK1ZNSYbjasecxlcAh5kmRFRL0JIEHKM4CaBnWGp6anJNunpnnTXiMswX5dLzt78BC85KOLV3skcYmJBw+O9elXVL6uUdBxF34PBvfsP1h6ubww3Hz3eejJ6+uzImdoKmgqjjD3J0JGSmqYsWdFJZQnLTNFxdra/0o+/kHXS6M+8rCgt8VTLQgpkT81HacL0lbs5jaW8bRKNmcJE5IY7KSuaj+2HpLAomtjLVDmpjG4TuzCvkvPzGvPewrIkd8MTtcP5aBxNoq7CuyDuwRj6OpyPviW5EXVJmoVC52ZxVHHaoGUpFLXDpHZUoTjDU5p5qNGvTJvu/Dbc8UweFsb6pzns2JuOBkvnlmXmO0vkhbutrcj/abOai/dpI3VVM2lxvaioVcgmXGUa5tKSYLX0AIWV/tZQLNAnxj75VQjx7S/fBUevJ/HbSfzpzXh3r49jHbbhBbyEGN7BLhzAIUxBwAX8gJ/wK7gMroLfwZ/r1kHQe57DPzWAv5XZtK8=</latexit>

r · E = ⇢, r⇥E=0

Maxwell’s equation - zero curl

8
Boundary conditions

What is the electric field outside a conductor with surface charge σ?

Because of Eq.(2.33) and the fact that the electric field inside a
conduction is zero, field just outside a conductor is

9
Surface charge and the Force per unit area
In presence of electric field, surface charge will experience a force. Which
electric field to use in expression of force (above or below)?

It should just be f = σ Eother, which is..

What is the force per unit area


on a sheet of charge?

σ2
So for an ideal conductor, where field inside is zero, force per unit area: f = n̂
2ϵ0 10
12
13
Multipole expansion

14
Multipole expansion

15
Multipole expansion

the multipole expansion of V in powers of 1/r.

16
Multipole expansion

17
18
Multipole expansion

19

You might also like