PROBLEM 4.156: Solution
PROBLEM 4.156: Solution
PROBLEM 4.156: Solution
156
A 2100-lb tractor is used to lift 900 lb of gravel. Determine the reaction at
each of the two (a) rear wheels A, (b) front wheels B.
SOLUTION
SOLUTION
ΣFx = 0: C x + ( 5 lb ) = 0
∴ Cx = −5 lb
ΣFy = 0: C y − ( 5 lb ) = 0
∴ C y = 5 lb
( Cx )2 + ( C y )
2
Then C = = ( 5 )2 + ( 5 )2 = 7.0711 lb
+5
and θ = tan −1 = −45°
−5
or C = 7.07 lb 45.0°
SOLUTION
From f.b.d of system
ΣFx = 0: C x + ( 5 lb ) = 0
∴ Cx = −5 lb
ΣFy = 0: C y − ( 5 lb ) = 0
∴ C y = 5 lb
( C x )2 + ( C y )
2
Then C = = ( 5 )2 + ( 5 )2 = 7.0711 lb
5
and θ = tan −1 = −45.0°
−5
or C = 7.07 lb 45.0°
∴ M C = −45.0 lb ⋅ in.
or M C = 45.0 lb ⋅ in.
PROBLEM 4.159
The bent rod ABEF is supported by bearings at C and D and by wire AH.
Knowing that portion AB of the rod is 250 mm long, determine (a) the
tension in wire AH, (b) the reactions at C and D. Assume that the bearing
at D does not exert any axial thrust.
SOLUTION
(a) From f.b.d. of bent rod
( )
ΣM CD = 0: λ CD ⋅ rH /B × T + λ CD ⋅ rF /E × F = 0 ( )
where λ CD = i
rH /B = ( 0.25 m ) j
T = λ AH T
=
( y AH ) j − ( z AH ) k T
( y AH )2 + ( z AH )2
y AH = ( 0.25 m ) − ( 0.25 m ) sin 30°
= 0.125 m
= 0.21651 m
T
∴T= ( 0.125j − 0.21651k )
0.25
rF /E = ( 0.25 m ) k
F = −400 N j
1 0 0 1 0 0
T
∴ 0 1 0 ( )
0.25 0 0 1 ( 0.25 )( 400 N ) = 0
+
0.25
0 0.125 −0.21651 0 −1 0
∴ T = 461.88 N
or T = 462 N
PROBLEM 4.159 CONTINUED
− ( 400 N )( 0.05 m ) = 0
∴ C y = −336.10 N
∴ Cz = 466.67 N
or C = − ( 336 N ) j + ( 467 N ) k
∴ Dy = 505.16 N
∴ Dz = −66.670 N
or D = ( 505 N ) j − ( 66.7 N ) k
PROBLEM 4.160
For the beam and loading shown, determine (a) the reaction at A, (b) the
tension in cable BC.
SOLUTION
(a) From f.b.d of beam
ΣFx = 0: Ax = 0
∴ Ay = 245 lb
or A = 245 lb
(b) From f.b.d of beam
ΣM A = 0: (15 lb )( 22 in.) + ( 20 lb )(16 in.) + ( 35 lb )(8 in.)
− (15 lb )( 6 in.) − TB ( 6 in.) = 0
∴ TB = 140.0 lb
or TB = 140.0 lb
Check:
ΣFy = 0: −15 lb − 20 lb − 35 lb − 20 lb
− 15 lb − 140 lb + 245 lb = 0?
245 lb − 245 lb = 0 ok
PROBLEM 4.161
Frame ABCD is supported by a ball-and-socket joint at A and by three
cables. For a = 150 mm, determine the tension in each cable and the
reaction at A.
SOLUTION
− ( 0.48 m ) i + ( 0.14 m ) j
First note TDG = λ DGTDG = TDG
( 0.48)2 + ( 0.14 )2 m
−0.48i + 0.14 j
= TDG
0.50
TDG
= ( 24i + 7 j)
25
− ( 0.48 m ) i + ( 0.2 m ) k
TBE = λ BETBE = TBE
( 0.48)2 + ( 0.2 )2 m
−0.48i + 0.2k
= TBE
0.52
TBE
= ( −12 j + 5k )
13
From f.b.d. of frame ABCD
7
ΣM x = 0: TDG ( 0.3 m ) − ( 350 N )( 0.15 m ) = 0
25
or TDG = 625 N
24 5
ΣM y = 0: × 625 N ( 0.3 m ) − TBE ( 0.48 m ) = 0
25 13
or TBE = 975 N
7
ΣM z = 0: TCF ( 0.14 m ) + × 625 N ( 0.48 m )
25
− ( 350 N )( 0.48 m ) = 0
or TCF = 600 N
PROBLEM 4.161 CONTINUED
12 24
Ax − 600 N − × 975 N − × 625 N = 0
13 25
∴ Ax = 2100 N
7
Ay + × 625 N − 350 N = 0
25
∴ Ay = 175.0 N
ΣFz = 0: Az + (TBE ) z = 0
5
Az + × 975 N = 0
13
∴ Az = −375 N
SOLUTION
− ( 0.48 m ) i + ( 0.14 m ) j
First note TDG = λ DGTDG = TDG
( 0.48)2 + ( 0.14 )2 m
−0.48i + 0.14 j
= TDG
0.50
TDG
= ( 24i + 7 j)
25
− ( 0.48 m ) i + ( 0.2 m ) k
TBE = λ BETBE = TBE
( 0.48)2 + ( 0.2 )2 m
−0.48i + 0.2k
= TBE
0.52
TBE
= ( −12i + 5k )
13
From f.b.d of frame ABCD
7
ΣM x = 0: TDG ( 0.3 m ) − ( 350 N )( 0.3 m ) = 0
25
or TDG = 1250 N
24 5
ΣM y = 0: × 1250 N ( 0.3 m ) − TBE ( 0.48 m ) = 0
25 13
or TBE = 1950 N
7
ΣM z = 0: TCF ( 0.14 m ) + × 1250 N ( 0.48 m )
25
− ( 350 N )( 0.48 m ) = 0
or TCF = 0
PROBLEM 4.162 CONTINUED
12 24
Ax + 0 − × 1950 N − × 1250 N = 0
13 25
∴ Ax = 3000 N
7
Ay + × 1250 N − 350 N = 0
25
∴ Ay = 0
ΣFz = 0: Az + (TBE ) z = 0
5
Az + × 1950 N = 0
13
∴ Az = −750 N
SOLUTION
(a)
(a) ΣM B = 0: ( 300 lb )(16 in.) − T (16 in.) + T ( a ) = 0
or T =
( 300 lb )(16 in.)
(16 − a ) in.
∴ T becomes infinite when
16 − a = 0
or a = 16.00 in.
8
(b) ΣM C = 0: (T − 80 N )( 0.2 m ) − T ( 0.175 m )
(b) 17
15
− T ( 0.4 m − a ) = 0
17
0.2T − 16.0 − 0.82353T − 0.35294T + 0.88235Ta = 0
16.0
or T =
0.88235a − 0.23529
∴ T becomes infinite when
0.88235a − 0.23529 = 0
a = 0.26666 m
or a = 267 mm