Nothing Special   »   [go: up one dir, main page]

Industrial Strucure (Coating) Report - Dev Oza - PSD20099

Download as pdf or txt
Download as pdf or txt
You are on page 1of 67

Master of Technology

(Structural Engineering Design)

“Analysis and Design of Industrial Structure”

Industrial Shed with Gantry (Coating)


Prepared by:
DEV ABHAYBHAI OZA
Code No: PSD20099

Guided by
Mr. Shashin Patel1 and Mr. Rupal Shah2
1S3M Design Consultants LLP, Ahmedabad, India
2Torsion Engineers & Consultants, Ahmedabad, India
2021
Industrial Shed-Coating

ABSTRACT

Industrial Shed is Single Story roofed structure used for manufacturing and Storage of goods.
Sheds very in their Sizes and Complexity. Industrial Shed have different types of cranes
according to requirements like EOT crane, Semi-Goliath Crane, Jib Crane, Goliath Crane etc.
Sheds are designed for various types of loads like Dead load, live load, Crane load and lateral
loads. In lateral loads generally in one story industrial shed Wind load will govern, if the crane
capacity is very high then the Structure should be checked for earthquake load. This Project
briefs about the Structural Analysis of the Coating Plant (Industrial shed) located in
Gandhidham, Gujarat. The Project consists of Main Plant Building with 15 Tons EOT & Semi
goliath crane and Storage/office unit (Mono pitch). The Project deals with the Structural
Framing of the Portal Frame’s and affixing the Portal Framing configuration for the
Architectural Plan issued by the Architect and client requirement.

Dev Oza (PSD20099) i


Industrial Shed-Coating

CONTENTS

ABSTRACT................................................................................................................................ i

LIST OF TABLES ..................................................................................................................... v

LIST OF FIGURES .................................................................................................................. vi

ABBREVIATIONS .................................................................................................................vii

1 INTRODUCTION ............................................................................................................. 8

2 PROBLEM STATEMENT ................................................................................................ 9

3 OBJECTIVE & DESIGN PHILOSOPHY ...................................................................... 10

4 ARCHITECTURAL & STRUCTURAL DRAWINGS .................................................. 11

4.1 ARCHITECTURAL DRAWINGS ........................................................................... 11

4.2 STRUCTURAL SYSTEM ........................................................................................ 13

5 LOAD CALCULATION ................................................................................................. 17

5.1 DEAD LOAD ............................................................................................................ 17

5.2 LIVE LOAD (AS PER IS875(2):2003) .................................................................... 17

5.3 WIND LOAD CALCULATION (AS PER IS 875(3):2015) .................................... 18

5.3.1 Co-efficient of wind & wind pressure co-efficient ............................................ 19

5.3.2 Permeability of building & internal pressure co- efficient (cpi) ......................... 19

5.3.3 Wind Pressure calculation.................................................................................. 20

5.3.4 Wind load on Wall (Cnet) ................................................................................... 20

5.3.5 Wind load on Roof (Cnet) ................................................................................... 23

5.3.6 Wind Load on Mono-Slope ............................................................................... 25

5.3.7 Wind load on 10m Canopy ................................................................................ 26

5.3.8 Wind load on 3m Canopy .................................................................................. 27

5.4 CRANE LOAD CALCULATION ............................................................................ 28

5.4.1 Load applied on Bracket (IS875(2)-2003-Pg:15) .............................................. 28

Dev Oza (PSD20099) ii


Industrial Shed-Coating

6 ANALYTICAL MODEL................................................................................................. 29

6.1 MAIN MODEL PREPARATION ............................................................................ 29

6.1.1 Final main model ............................................................................................... 29

6.2 22.5 GANTRY MODEL PREPARATION .............................................................. 30

6.2.1 Final 22.5 gantry Model ..................................................................................... 30

6.3 10m Cantilever Canopy Model ................................................................................. 31

6.3.1 10m Canopy Model ........................................................................................... 31

6.4 PRIMARY LOAD & LOAD COMBINATION ....................................................... 32

6.4.1 Primary Load Cases ........................................................................................... 32

6.4.2 Serviceability load Combination........................................................................ 33

6.4.3 Strength load Combination ................................................................................ 33

7 DESIGN ........................................................................................................................... 34

7.1 DESIGN OF GANTRY GIRDER............................................................................. 34

7.1.1 22.5m Gantry Truss ........................................................................................... 34

7.1.2 15m Gantry Girder ............................................................................................. 34

7.1.3 7.5m Gantry Girder ............................................................................................ 36

7.2 DESIGN OF 10m CANTILIVER CANOPY MEMBERS ....................................... 37

7.2.1 10m Cantilever Canopy For 22.5m Span ........................................................... 37

7.2.2 10m Cantilever Canopy For 15m Span .............................................................. 37

7.3 RAFTER DESIGN .................................................................................................... 39

7.4 BRACEING DESIGN ............................................................................................... 40

7.5 TIE MEMBER DESIGN ........................................................................................... 40

7.6 CRANE BRACKET.................................................................................................. 41

7.7 LACING DESIGN .................................................................................................... 41

7.8 COLUMN DESIGN .................................................................................................. 42

7.9 JACK BEAM DESIGN ............................................................................................. 42

Dev Oza (PSD20099) iii


Industrial Shed-Coating

ANNEXURE A-MEMBER DESIGN SHEETS ...................................................................... 43

Design of Purlin ................................................................................................................... 43

Design of Laterally Supported Gantry Girder (15m Span) .................................................. 44

Design of Laterally Unsupported Gantry Girder (15m Span) ............................................. 48

Design of Laterally Unsupported Gantry Girder (7.5m Span) ............................................ 52

Design of Laterally Unsupported Beam .............................................................................. 56

ANNEXURE B-ARCITECTURAL DRAWINGS.................................................................. 61

ANNEXURE C-STRUCTURAL SYSTEM............................................................................ 62

ANNEXURE D-DETAILING ................................................................................................. 63

Dev Oza (PSD20099) iv


Industrial Shed-Coating

LIST OF TABLES

Table 2-1 GENERAL INFORMATION ................................................................................... 9

Table 5-1 DEAD LOAD .......................................................................................................... 17

Table 5-2 LIVE LOAD ............................................................................................................ 17

Table 5-3 WIND CO-EFFICIENTS ........................................................................................ 19

Table 5-4 CALCULATION OF Cpi ........................................................................................ 19

Table 5-5 CRANE LOAD CALCULATION .......................................................................... 28

Table 5-6 APPLIED CRANE LOAD ...................................................................................... 28

Table 6-1 PRIMARY LOAD CASES ..................................................................................... 32

Table 6-2 SERVICEBLITY LOAD COMBINATION ........................................................... 33

Table 6-3 STRENGTH LOAD COMBINATION ................................................................... 33

Dev Oza (PSD20099) v


Industrial Shed-Coating

LIST OF FIGURES

Figure 4-1 ARCHITECTURAL PLAN ................................................................................... 11

Figure 4-2 ARCHITECTURAL SECTIONS .......................................................................... 12

Figure 4-3 STRUCTURAL PLAN .......................................................................................... 13

Figure 4-4 BRACING PLAN .................................................................................................. 14

Figure 4-5 SIDE ELEVATIONS ............................................................................................. 15

Figure 4-6 SECTION ............................................................................................................... 16

Figure 6-1 FINAL MAIN MODEL ......................................................................................... 29

Figure 6-2 FINAL CRANE MODEL ..................................................................................... 30

Figure 6-3 10M CANTILIVER CANOPY MODEL FOR 22.5m SPAN ............................... 31

Figure 6-4 10M CANTILIVER CANOPY MODEL FOR 15m SPAN .................................. 31

Dev Oza (PSD20099) vi


Industrial Shed-Coating

ABBREVIATIONS

MF = Main Frame

LF = Leaning frame

EoT=Electric overhead traveling crane

HT=Horizontal Thrust

DL= Dead Load

LL= Live Load

CL= Crane Load

WL= Wind Load

RHS=Rectangular Hollow Section

CHS= Circular Hollow Section

BMD= Bending Moment Diagram

Dev Oza (PSD20099) vii


Industrial Shed-Coating

1 INTRODUCTION

The principal objective of this project is to analyze and design of the Coating Plant (Industrial
shed) located in Gandhidham, Gujarat. The Project consists of Main Plant Building with 15
Tons EOT & Semi goliath crane and Storage/office unit (Mono pitch). The Project deals with
the Structural Framing of the Portal Frame’s and affixing the Portal Framing configuration for
the Architectural Plan issued by the Architect and client requirement. The design involves load
calculation and designing of structure according to Limit state design conforming to Indian
Standard code practice. The concept of structural design is to produce structures that are Stable
and Serviceable in different cases.

Dev Oza (PSD20099) 8


Industrial Shed-Coating

2 PROBLEM STATEMENT

Structure = Coating

Location = Gandhidham

Length of Structure "L “, m = 151.2

Eave Height of Main Building “h1“, m = 11

Eave Height of Leaning Building “h2“, m = 4.5

Rise of Pitch (Main Frame), m = 0.887

Rise of Pitch (Mono Pitch), m = 0.728

W1 = 33.085
Span of Structure, m
W2 = 10.345

MF = 16.333
Slope Length/Pitch Length, m
LF = 10.395

Distance between Portal Frame, m = 7.5

Spacing Between Purlin, m = 1.4

Slope of Pitch "(θ)", Deg. = 3.069

Grade of Structural Steel = fy250

Roof Sheeting = GALVALUME

Purlin and Clad runner = TATA Z Section

EoT Crane = 15T, 1 Nos

Semi Goliath Crane = 15T, 1 Nos

Table 2-1 GENERAL INFORMATION

Dev Oza (PSD20099) 9


Industrial Shed-Coating

3 OBJECTIVE & DESIGN PHILOSOPHY


Initially the structural arrangement in relation to the requirements of the layout of Openings
and equipment are planned. Accordingly, the initial structural plan for the final architectural
plan is finalised, the Analysis, design & detailing of the Structure is to be completed compelling
to Client requirement and IS Code Provisions.
1. Structural System

Structural System for industrial shed is Finalized as per keeping in mind the client’s
requirements like opening of 22.5m and 15m span.

2. Load Calculation

Dead Load & Live load Calculation As per IS875

Crane Load Calculation As per IS 875(2)-1987

Wind Load Calculation As per IS875(3)-2015

3. Gantry Design

Gantry Girder designed for different cranes and for different spans.

4. Modelling & Load Application

3D Modelling in STAAD.Pro.

Load application to STAAD Model.

5. Behavior Study and Alteration in System as Per Requirements


6. Design of Structural Members

By Interpreting the Results Individual Members are Designed in STAAD.Pro by giving


design parameters and checked with Design Excel Sheets.

7. Detailing

Detailing for Design of members for one Portal Frame is detailed.

Dev Oza (PSD20099) 10


Industrial Shed-Coating

4 ARCHITECTURAL & STRUCTURAL DRAWINGS

4.1 ARCHITECTURAL DRAWINGS

Figure 4-1 ARCHITECTURAL PLAN

Dev Oza (PSD20099) 11


Industrial Shed-Coating

Figure 4-2 ARCHITECTURAL SECTIONS

Dev Oza (PSD20099) 12


Industrial Shed-Coating

4.2 STRUCTURAL SYSTEM

Figure 4-3 STRUCTURAL PLAN

Dev Oza (PSD20099) 13


Industrial Shed-Coating

Figure 4-4 BRACING PLAN

Dev Oza (PSD20099) 14


Industrial Shed-Coating

Figure 4-5 SIDE ELEVATIONS

Dev Oza (PSD20099) 15


Industrial Shed-Coating

Figure 4-6 SECTION

Dev Oza (PSD20099) 16


Industrial Shed-Coating

5 LOAD CALCULATION

5.1 DEAD LOAD

The Components such as Roof Sheeting i.e., Galvalume (As per Client Requirement) and
Purlin & Clad runner self-weight load over the Portal frame has been calculated and has been
tabulated below.

Dead Load of Materials


Roof Sheeting TATA - SHAKTI - GALVALUM
Thickness, mm 1.00
Width of Sheeting, m 1.00
2
Unit weight of Sheeting, kN/m 0.075
Purlin TATA Z – 240Z30 Section (LIP 45°)
Size: Depth, m 0.240
2
Unit Weight of Purlin, kN/m 0.100
Girts TATA Z – 240Z30 Section (LIP 45°)
Size: Depth, m 0.240
2
Unit Weight of Girts, kN/m 0.100

Table 5-1 DEAD LOAD

5.2 LIVE LOAD (AS PER IS875(2):2003)

As per IS 875 Part 2; Table 2 Page No.14, Live Roof Load for Industrial Buildings with rise
less than 10 Degree is as shown in table below.

Live Load as per Cl.4.1 (Tbl.2)1(ii) of IS 875 Part 2, kN/m2

Live Load as per Cl.4.1 (Tbl.2)1(ii), kN/m2 0.75

Table 5-2 LIVE LOAD

Dev Oza (PSD20099) 17


Industrial Shed-Coating

5.3 WIND LOAD CALCULATION (AS PER IS 875(3):2015)

Since the project is located at Gandhidham, Gujarat cyclonic western part of India. The
Structure is expected of heavy winds. Hence forth designed wind forces are computed
accordingly.

Structure Coating
Location Gandhidham
Basic Wind Speed: 'Vs'm/s 50
Length of Structure "L"m 151.2
Width of Structure "W"m 43.43
Eve Height of Structure "H"m 11
W1 33.085
Width of Structure, m
W2 10.345
X1 7.5
Span of Portal Frame
X2 5.5
Slope Length/ Main Frame 16.333
Pitched Length Leang. Frame 10.395
Rise of Pitch (Main Frame), m 0.887
Rise of Pitch (Leang.Frame), m 0.728
Slope of Pitch "(θ)”, Deg 3.07
All general buildings and
Class of Structure
structures
Mean Probable life 50 Years
Terrain Category Category 3
Angle of Upwind Slope 0°
Type on Cyclone imp. Industrial structures
Buildings, solid signs, open
Spec. for Wind Directionality Factor signs, lattice frameworks, trussed
towers

Dev Oza (PSD20099) 18


Industrial Shed-Coating

5.3.1 Co-efficient of wind & wind pressure co-efficient

Coefficients for Design Wind Speed

Risk Coefficient (cl. 6.3.1) (Pg.: 5) k1 1.00

Terrain & Height Coefficient (cl. 6.3.2) (Pg:5) k2 1.01

Topography Roughness Coefficient (cl 6.3.3) k3 1.00

Cyclone Coefficient (cl. 6.3.4) (Pg.: 8) k4 1.15

Pressure Factors

Wind Directional Factor (cl. 7.2.1) (Pg.: 9) kd 0.9

Area Averaging Factor (cl. 7.2.2) (Pg.: 10) ka 0.82

Combination Factor (cl. 7.3.3.13) (pg.: 16) kc 0.9

Table 5-3 WIND CO-EFFICIENTS

5.3.2 Permeability of building & internal pressure co- efficient (cpi)

The Inflow of the Wind flowing through the opening such as Open windows & Large Shed
openings. Since one wall have very large opening Internal Pressure Co-efficient calculated
accordingly.

Calculation of Cpi (cl. 7.3.2) (Pg: 11)

Permeability of the Structure

Total Opening Area (m2) 379.5

Total Wall Surface Area (m2) 1650

% Of Opening 23%

Category of Building Large Opening

(+) Cpi +0.7

(-) Cpi -0.7

Table 5-4 CALCULATION OF Cpi

Dev Oza (PSD20099) 19


Industrial Shed-Coating

5.3.3 Wind Pressure calculation

Design Wind Speed (cl. 6.3) (Pg: 5)

Vz = Vb x (k1 x k2 x k3 x k4)

Vz = 50 x 1.00 x 1.01 x 1.00 x 1.15

Vz = 58.08 m/s
2
Wind Pressure "pz" N/m (cl. 7.2) ( Pg: 9 )
2
pz = 0.6 x Vz
pz = 0.6 x 3373
2 2
pz = 2023.62 N/m 2.023 kN/m
2
Design Wind Pressure "pd" N/m (cl. 7.2) (Pg:9 )

pd = ka x kd x kc x pz

pd = 0.82 x 0.9 x 0.9 x 2023.62


2
Pd = 1349.55 N/m

5.3.4 Wind load on Wall (Cnet)

Dev Oza (PSD20099) 20


Industrial Shed-Coating

Case 1: Wind Direction +X +Cpi


↑ ↑
0.60 1.30
C ↑ C
0.70

0.25

0.00

0.95
→ A B → + ← 0.70 → = ← A B →

D ↓ D
0.60 1.30
↓ ↓
Cpe Cpi Cnet

Case 2: Wind Direction +X -Cpi


↑ ↓
0.60 0.10
C ↓ C
0.70

0.25

1.40

0.45
→ A B → + → 0.70 ← = → A B ←

D ↑ D
0.60 0.10
↓ ↑
Cpe Cpi Cnet

Case 3: Wind Direction +Z +Cpi


↓ ↑
0.70 0.00
C ↑ C
0.50

0.50

1.20

1.20
← A B → + ← 0.70 → = ← A B →

D ↓ D
0.10 0.80
↓ ↓
Cpe Cpi Cnet

Case 4: Wind Direction +Z -Cpi


↓ ↓
0.70 1.40
C ↓ C
0.50

0.50

0.20

0.20

← A B → + → 0.70 ← = → A B ←

D ↑ D
0.10 0.60
↓ ↑
Cpe Cpi Cnet

Dev Oza (PSD20099) 21


Industrial Shed-Coating

Case 5: Wind Direction -X +Cpi


↑ ↑
0.60 1.30
C ↑ C
0.25

0.70

0.95

0.00
← A B ← + ← 0.70 → = ← A B →

D ↓ D
0.60 1.30
↓ ↓
Cpe Cpi Cnet

Case 6: Wind Direction -X -Cpi


↑ ↓
0.60 0.10
C ↓ C
0.25

0.70

0.45

1.40
← A B ← + → 0.70 ← = → A B ←

D ↑ D
0.60 0.10
↓ ↑
Cpe Cpi Cnet

Case 7: Wind Direction -Z +Cpi


↑ ↑
0.10 0.80
C ↑ C
0.50

0.50

1.20

1.20
← A B → + ← 0.70 → = ← A B →

D ↓ D
0.70 0.00
↑ ↓
Cpe Cpi Cnet

Case 8: Wind Direction -Z -Cpi


↑ ↓
0.10 0.60
C ↓ C
0.50

0.50

0.20

0.20

← A B → + → 0.70 ← = → A B ←

D ↑ D
0.70 1.40
↑ ↑
Cpe Cpi Cnet

Dev Oza (PSD20099) 22


Industrial Shed-Coating

5.3.5 Wind load on Roof (Cnet)

Roof Wind Calculations

Wind pressure (F) = (C pe -Cpi ) × Pd (Clause 7.3.1)

Internal pressure coefficient, C pi (+ve) = -0.70 (Clause 7.3.2)


Internal pressure coefficient, C pi (-ve) = 0.70 (Clause 7.3.2)

EF GH EG FH
External pressure coefficient, C pe = 0o -0.86 -0.40 0.00 0.00 (Clause 7.3.3, Table 6)
90o 0.00 0.00 -0.80 -0.40

h
= 0.33 (θ),Deg = 3.07
w

Case 1: Wind Direction +X +Cpi

0.86 0.4 0.7 0.7 1.56 1.1


↖ ↗ ↖ ↗ = ↖ ↗
EF GH EF GH EF GH

Case 2: Wind Direction +X -Cpi

0.86 0.4 0.7 0.7 0.16 0.3


↖ ↗ ↘ ↙ = ↖ ↙
EF GH EF GH EF GH

Case 3: Wind Direction +Z +Cpi

0.8 0.8 0.7 0.7 1.5 1.5


↖ ↗ ↖ ↗ = ↖ ↗
EG EG EG EG EG EG

0.4 0.4 0.7 0.7 1.1 1.1


↖ ↗ ↖ ↗ = ↖ ↗
FH FH FH FH FH FH

Case 4: Wind Direction +Z -Cpi

0.8 0.8 0.7 0.7 0.1 0.1


↖ ↗ ↘ ↙ = ↖ ↗
EG EG EG EG EG EG

0.4 0.4 0.7 0.7 0.3 0.3


↖ ↗ ↘ ↙ = ↘ ↙
FH FH FH FH FH FH
Dev Oza (PSD20099) 23
Industrial Shed-Coating

Case 4: Wind Direction +Z -Cpi

0.8 0.8 0.7 0.7 0.1 0.1


↖ ↗ ↘ ↙ = ↖ ↗
EG EG EG EG EG EG

0.4 0.4 0.7 0.7 0.3 0.3


↖ ↗ ↘ ↙ = ↘ ↙
FH FH FH FH FH FH

Case 5: Wind Direction -X +Cpi

0.4 0.86 0.7 0.7 1.1 1.56


↖ ↗ ↖ ↗ = ↖ ↗
GH EF GH EF GH EF

Case 6: Wind Direction -X -Cpi

0.4 0.86 0.7 0.7 0.3 0.16


↖ ↗ ↘ ↙ = ↘ ↗
GH EF GH EF GH EF

Case 7: Wind Direction -Z +Cpi

0.8 0.8 0.7 0.7 1.5 1.5


↖ ↗ ↖ ↗ = ↖ ↗
EG EG EG EG EG EG

0.4 0.4 0.7 0.7 1.1 1.1


↖ ↗ ↖ ↗ = ↖ ↗
FH FH FH FH FH FH

Case 8: Wind Direction -Z -Cpi

0.8 0.8 0.7 0.7 0.1 0.1


↖ ↗ ↘ ↙ = ↖ ↗
EG EG EG EG EG EG

0.4 0.4 0.7 0.7 0.3 0.3


↖ ↗ ↘ ↙ = ↘ ↙
FH FH FH FH FH FH

Dev Oza (PSD20099) 24


Industrial Shed-Coating

5.3.6 Wind Load on Mono-Slope

Combined Roof Wind Calculations

Wind pressure (F) = (C pe -Cpi ) × Pd (Clause 7.3.1)

Internal pressure coefficient, C pi (+ve) = -0.70 (Clause 7.3.2)


Internal pressure coefficient, C pi (-ve) = 0.70 (Clause 7.3.2)

A A',B' B EG FH
o
External pressure coefficient, C pe = 0 0.13 -0.40 -0.50 0.00 0.00 ( Table 22 )
90o 0.00 0.00 0.00 -1.00 -0.50

Inside Height of Combined roof, h2 = 6.03 m h1 H


= 1.82 = 0.52 (θ),Deg = 3.07
outside height of combined roof, H = 5.4 m h2 W

Case 1: Wind Direction +X +Cpi

0.5 ← b 0.7 ← b 1.2 ← b


=
0.13 ↘ 0.7 ↖ 0.57 ↖
a a a

Case 2: Wind Direction +X -Cpi

0.5 ← b 0.7 → b 0.2 → b


=
0.13 ↘ 0.7 ↘ 0.83 ↘
a a a

Case 5: Wind Direction -X +Cpi

0.4 ← b 0.7 ← b 1.1 ← b


=
0.4 ↖ 0.7 ↖ 1.1 ↖
a a a

Case 6: Wind Direction -X -Cpi

0.4 ← b 0.7 → b 0.3 → b


=
0.4 ↖ 0.7 ↘ 0.3 ↘
a a a

Dev Oza (PSD20099) 25


Industrial Shed-Coating

Case 3,7: Wind Direction +Z,-Z +Cpi

1 ↖ 0.7 ↖ 1.7 ↖
=
EG EG EG

0.5 ↖ 0.7 ↖ 1.2 ↖


=
FH FH FH

Case 4,8: Wind Direction +Z,-Z -Cpi

1 ↖ 0.7 ↘ 0.3 ↖
=
EG EG EG

0.5 ↖ 0.7 ↘ 0.2 ↘


=
FH FH FH

5.3.7 Wind load on 10m Canopy

Wind pressure (F) = (Cpe -Cpi ) × Pd (Clause 7.3.1)

Internal pressure coefficient, C pi (+ve) = 1.00 (Clause 7.3.2)


Internal pressure coefficient, C pi (-ve) = -1.00 (Clause 7.3.2)

a e B +Cp -Cp
External pressure coefficient, C pe = 0o 0.50 -0.40 -0.50 0.00 0.00
90o 0.00 0.00 0.00 0.20 -0.50

Inside Height of Combined roof, h2 = 4 m h1 H


= 2.75 = 0.4 (θ),Deg = 0.00
outside height of combined roof, H = 4 m h2 W

Case 1: Wind Direction +X


a e
0.5 ↘ 1 ↘ 2.02 ↖
=

Case 2: Wind Direction -X


a e
0.4 ↖ 0.25 ↖ 0.34 ↖
=
a a

Case 3,7: Wind Direction +Z,-Z


"+cp" "-cp" "+cp" "-cp"
0.2 ↘ 0.5 ↖ 0.27 ↘ 0.67 ↖
=
all all

Dev Oza (PSD20099) 26


Industrial Shed-Coating

5.3.8 Wind load on 3m Canopy

Wind pressure (F) = (Cpe -Cpi ) × Pd (Clause 7.3.1)

Internal pressure coefficient, C pi (+ve) = 1.00 (Clause 7.3.2)


Internal pressure coefficient, C pi (-ve) = -1.00 (Clause 7.3.2)

a e B Cp FH
External pressure coefficient, C pe = 0o -0.13 -0.40 -0.50 0.00 0.00
90o 0.00 0.00 0.00 0.20 -0.50

Inside Height of Combined roof, h2 = 3.45 m h1 H


= 1.57 = 0.35 (θ),Deg = 0.00
outside height of combined roof, H = 3.45 m h2 W

Case 1: Wind Direction +X


a e
0.13 ↖ 1 ↘ 8.81 ↘ 4.4
=

Case 2: Wind Direction -X


a e
0.4 ↖ 0.25 ↖ 6.58 ↖ 3.29
=
a a

Case 3,7: Wind Direction +Z,-Z


"+cp" "-cp" "+cp" "-cp"
0.2 ↘ 0.5 ↖ 2.02 ↘ 5.06 ↖
=
all all

Dev Oza (PSD20099) 27


Industrial Shed-Coating

5.4 CRANE LOAD CALCULATION

Main building has 15T EOT Crane Spanning 30m inside the building and 15T Semi-Goliath
crane Spanning 22m outside the building Connected with one side of building. Crane Moment,
Shear force, Reactions are shown below for different spans. Data taken from MelTech
Brochure.

Crane 2 (Semi-
Crane 1(EOT)
Goliath)
Capacity, kN 150 150
Span, m 30 22
Wheelbase, m 5 4.2
Max. Wheel Load, kN 180 150
Crane Self Weight, kN 340 220
Crab Weight, kN 40 40
Wheel HT, kN 4.75 4.75

Crane 1 Crane 2
VL HT VL HT VL HT VL HT VL HT VL HT
Span of Girder, m 22.5 15 7.5 22.5 15 7.5
BM(Max), kN.m 1600 42.2 938 24.7 338 8.91 1387 43.9 832 26.3 292 9.23
Shear Force (Max),
320 8.44 300 7.92 240 6.33 272 8.61 258 8.17 216 6.84
kN
Reaction (Max), kN 320 8.44 300 7.92 240 6.33 272 8.61 258 8.17 216 6.84
Table 5-5 CRANE LOAD CALCULATION

5.4.1 Load applied on Bracket (IS875(2)-2003-Pg:15)


Crane 1 Crane 2
Span of Girder, m 15 7.5 15 7.5
Reaction (VMax), kN, (+25% of Max.
375 300 323 270
Static Load)
Reaction (VMin), kN 175 140 129 108
Horizontal Thrust, kN (10% of Weight
7.92 6.33 8.17 6.84
of Crab & Capacity of Crane)
Longitudinal Thrust, kN (5% of Wheel
9 9 7.5 7.5
Load)
Table 5-6 APPLIED CRANE LOAD

Dev Oza (PSD20099) 28


Industrial Shed-Coating

6 ANALYTICAL MODEL

6.1 MAIN MODEL PREPARATION

• Preparation of model as per final structural system


• Apply Releases
• Application of Load as per Calculation
• Checking for DL/LL
• Application of Lateral load & Crane Load
• Define Load Combination
• Satisfy Serviceability Criteria
• Application of Design Parameter

6.1.1 Final main model

Figure 6-1 FINAL MAIN MODEL

Dev Oza (PSD20099) 29


Industrial Shed-Coating

6.2 22.5 GANTRY MODEL PREPARATION

• Preparation of model as per final structural system OF CARNE


• Apply Releases
• Application of Crane Load as per Calculation
• Checking for Crane Load
• Transfer of Lateral load & DL/LL Reactions Form main model & 10m Canopy Model
• Define Load Combination
• Satisfy Serviceability Criteria
• Application of Design Parameter

6.2.1 Final 22.5 gantry Model

Figure 6-2 FINAL CRANE MODEL

Dev Oza (PSD20099) 30


Industrial Shed-Coating

6.3 10m Cantilever Canopy Model

• Preparation of model as per structural system of canopy


• Apply Releases
• Application of Load as per Calculation
• Checking for DL/LL
• Application of Lateral load
• Define Load Combination
• Satisfy Serviceability Criteria
• Application of Design Parameter

6.3.1 10m Canopy Model

Figure 6-3 10M CANTILIVER CANOPY MODEL FOR 22.5m SPAN

Figure 6-4 10M CANTILIVER CANOPY MODEL FOR 15m SPAN

Dev Oza (PSD20099) 31


Industrial Shed-Coating

6.4 PRIMARY LOAD & LOAD COMBINATION


6.4.1 Primary Load Cases

Primary Load Cases Considered for STAAD

1 DL: DL+SW

2 LL: Live load

3 WL-1: 0° Pressure (Cpi: +0.7)

4 WL-2: 0° Suction (Cpi: -0.7)

5 WL-3: 90° Pressure (Cpi: +0.7)

6 WL-4: 90° Suction (Cpi: -0.7)

7 WL-5: 180° Pressure (Cpi: +0.7)

8 WL-6 :180° Suction (Cpi: -0.7)

9 WL-7: 270° Pressure (Cpi: +0.7)

10 WL-8: 270° Suction (Cpi: -0.7)


CL-1: 1 Crane Load with Max. Vertical reaction at A With Traction Force &
11
Surge Force
CL-2: 1 Crane Load with Max. Vertical reaction at B With Traction Force &
12
Surge Force
CL-3: 1 & 2 Crane Load with Max. Vertical reaction at Mid Portion with
13
Traction Force & Surge Force
CL-4 :2 Crane Load with Max. Vertical reaction at B With Traction Force &
14
Surge Force
Table 6-1 PRIMARY LOAD CASES

Dev Oza (PSD20099) 32


Industrial Shed-Coating

6.4.2 Serviceability load Combination


Sr load combinations DL LL CL WL
No
1 DL+LL+CL 1.0 1.0 1.0 -

2 DL+LL+CL+WL 1.0 0.8 0.8 0.8

3 DL+WL 1.0 - - 1.0

Table 6-2 SERVICEBLITY LOAD COMBINATION

6.4.3 Strength load Combination

Sr load combinations DL LL CL WL
No

1 DL+LL+CL 1.5 1.5 1.05 -

2 DL+LL+CL 1.5 1.05 1.5 -

3 DL+LL+CL+WL 1.2 1.2 1.05 0.6

4 DL+LL+CL+WL 1.2 1.05 1.2 0.6

5 DL+LL+CL+WL 1.2 1.2 0.53 1.2

6 DL+LL+CL+WL 1.2 0.53 1.2 1.2

7 DL+WL 1.5 - - 1.5

8 DL+WL 0.9 - - 1.5

Table 6-3 STRENGTH LOAD COMBINATION

Dev Oza (PSD20099) 33


Industrial Shed-Coating

7 DESIGN

7.1 DESIGN OF GANTRY GIRDER


7.1.1 22.5m Gantry Truss

22.5-meter unsupported gantry girder could be designed as a plate girder, but it will fail in the
deflection criteria if we satisfy the deflection criteria in normal plate girder then the Sizes of
the member will be huge and overall design will be uneconomical

Also, there will be Columns of Two portal frame Supported on the jack beam, this jack beam
design will be also Uneconomical.

Truss girder can be the Solution to this Problem, also can be economical Overall.

Members are Designed for Combined Forces As per IS:800-2007 (Section 9 & Annexure E)

Final Member Sizes are Provided in Annexure D

7.1.2 15m Gantry Girder

15m Gantry Truss can be designed as unsupported and supported girder, if Supported girder is
designed then the top Compression Flange should be Supported by the truss member (Tie).
Here Supported Plate Girder is Selected as a Final Design, Unsupported Plate Girder design is
also shown for Comparison.

7.1.2.1 15m Gantry for Crane 1(EOT)

Girder (crane 1:15 m) (Wheel Load-338kN)

Laterally Supported

Major Minor

Max Moment (kN.m) 1759 46

Max Shear Force 563 15

Dev Oza (PSD20099) 34


Industrial Shed-Coating

7.1.2.2 15m Gantry for Crane 1(EOT)

Girder (crane 1:15 m) (Wheel Load-338kN)

Laterally Unsupported

Major Minor

Max Moment (kN.m) 1759 46

Max Shear Force 563 15

7.1.2.3 15m Gantry for Crane 2(Semi-Goliath)

Girder (crane 2:15 m) (Wheel Load-225kN)

Laterally Supported

Major Minor

Max Moment (kN.m) 1560 49

Max Shear Force 484 15

Dev Oza (PSD20099) 35


Industrial Shed-Coating

7.1.2.4 15m Gantry for Crane 2(Semi-Goliath)

Girder (crane 2:15 m) (Wheel Load-225kN)

Laterally Unsupported

Major Minor

Max Moment (kN.m) 1560 49

Max Shear Force 484 15

7.1.3 7.5m Gantry Girder

Girder (crane 1,2:7.5 m) (Max. Wheel Load-


338kN)

Laterally Supported

Major Minor

Max Moment (kN.m) 634 16.7

Max Shear Force 450 12

Designed Sec. Adopted

Sec. Type
ISMB 600

ISMC 300

Dev Oza (PSD20099) 36


Industrial Shed-Coating

7.2 DESIGN OF 10m CANTILIVER CANOPY MEMBERS


7.2.1 10m Cantilever Canopy For 22.5m Span

Canopy is Connected With the 22.5m Gantry Truss, accordingly the structural system is
prepared as shown below, shear connection should be provided at the Connection with truss.

CHS ISWB300
219.1X4.8

Moment Mz
- 80
(kN.m)

Shear Force - 47

Compression
173 72
(kN)

Tension (kN) 84 148

7.2.2 10m Cantilever Canopy For 15m Span

This Canopy is directly connected with Columns 15m apart.

Dev Oza (PSD20099) 37


Industrial Shed-Coating

ISMB400(10m) ISMB400(15m) ISMB500 CHS 273X6

Moment Mz (kN.m) 210 204 408 -

Shear Force 121 55 109 -

Compression (kN) 188 - - 426

Tension (kN) 389 - - 206

Dev Oza (PSD20099) 38


Industrial Shed-Coating

7.3 RAFTER DESIGN

The Section adopted is Tapered section imitating the BMD of the Rafter. The Design Sections has been arrived from several iteration for optimum
utilization of the section, Rafter is Designed as laterally restraint at every 1.4m(Spacing of purlin). Designed for Combined Forces As per IS:800-
2007 (Section 9 & Annexure E)

Dev Oza (PSD20099) 39


Industrial Shed-Coating

7.4 BRACEING DESIGN

X-Bracings are designed as Only Tension member and Compression Strut is Provided between
X-bracing. In X-Bracing Steel rod of 18,28,40 Dia. Is Provided as per requirement.

Member:
2498.

Member of Compression Strut taken as CHS Sections for lighter sections and economy.
Different type if CHS Sections used are CHS 88.9X3.2, CHS 114.3X3.6 & in Gable End Star
angle ISA 110X110X8, ISA 120X120X8, ISA 130X130X8 is used for better economy.

Member:
2506.

7.5 TIE MEMBER DESIGN

Tie Members are Designed for Combined forces and RHS sections are assigned for economical
use as the members are good in compression. Design sections adopted are RHS 172x92X4.8,
RHS 240x120X5, RHS 240x120X6, RHS 300x150X8 as per requirement.

Dev Oza (PSD20099) 40


Industrial Shed-Coating

Member: 468

7.6 CRANE BRACKET

Member: 259

7.7 LACING DESIGN

Lacing is designed for axial force and design section adopted is ISMC 100 & ISMC 75.

Member: 1477

Dev Oza (PSD20099) 41


Industrial Shed-Coating

7.8 COLUMN DESIGN

Member: 1647

Member: 1468

7.9 JACK BEAM DESIGN

Member:
484

Dev Oza (PSD20099) 42


Industrial Shed-Coating

ANNEXURE A-MEMBER DESIGN SHEETS

Design of Purlin
Design of Purlin
1. Data
Actual Span of Purlin, m 7.5 Rise Angle, deg 4
Sag Rod 1 Dead Load, kN/m² 0.075
Effective Span of Member along Mjr Axis, m7.5 Live Load, kN/m² 0.75
Effective Span of Member along Mnr Axis,3.75
m Wind Load, kN/m² 1.349
Spacing of purlins, mm 1400

2. Load Calculation
Dead Load, kN/m 0.105 DL perpendicular to rafter (Major Dir.) 0.10474
Live Load, kN/m 1.05 LL perpendicular to rafter (Major Dir.) 1.04744
Wind Load, kN/m 1.8886 DL perpendicular to rafter (Minor Dir.) 0.00732
LL perpendicular to rafter (Minor Dir.) 0.07324

-Load Combination -BM and SHEAR calculation


major axis minor Axis Mz = wl²/8 kN.m 20.5
DL + LL 1.728 0.121 My = wl²/8 kN.m 0.2
DL +LL+WL 3.649 Fz = wl/2 kN 13.68
Factored Load, kN/m 3.649 0.12 Fy = wl/2 kN 0.453

3. Sectional Parameters
Section Adopted 240Z30 zz yy
2 4
Yield Stress, Fy,N/mm 350 Moment of Inertia, mm 1.1E+07 1695000
3
Depth of Section, D, mm 240 Plastic Modulus(Zp ), mm 99297 14520
Flange Width, bf,mm 70 Elastic Modulus(Ze), mm3 90340 18920
Lip/Edge Stiffner Depth ; de ,mm 29.8 Radius of Gyration, mm 92.21 36.46
Web Thickness, tw,mm 3 Torsional Constant, I t , mm4 3366
Flanges Thickness, tf, mm 3 Warping Constant, I w, mm4 5.1E+10
Sectional Area, A, mm2 12.75

4.Design for Shear 5. Check for moment capacity


major axis minor Axis major axis minor Axis 70
Shear Force, kN 13.68 0.12 Mdz βb*Zp*Fy/1.1 22.5675 3.3
Shear Capacity(Vd), kN 94.59 55.18 Mdz < 1.2*Zez*Fy/1.1 OK OK
0.6*Vd 56.75 33.11
OK OK Mz My
+ <= 1 0.9610073 OK
Mdz Mdy

6.Check for Deflection


major axis minor Axis
w,kN 3.041 0.08
Actual Deflection, mm 7.704 1.31
Permissible Deflection, mm41.67 41.67
OK OK

7.Check of Section
`
Check 1 : Actual Depth 240 Check 3 : Edge Stiffner/Lip width 29.8
100t 300 B/5 14
L/45 167 HENCE OK
DevHENCE
Oza (PSD20099) OK 43
Check 2 : Overall Width 70 Check 4 : Total width over full Flange 140
35t 105 L/60 125
major axis minor Axis
w,kN 3.041 0.08
Actual Deflection, mm
Industrial Shed-Coating7.704 1.31
Permissible Deflection, mm41.67 41.67
OK OK

7.Check of Section

Check 1 : Actual Depth 240 Check 3 : Edge Stiffner/Lip width 29.8


100t 300 B/5 14
L/45 167 HENCE OK
HENCE OK

Check 2 : Overall Width 70 Check 4 : Total width over full Flange 140
35t 105 L/60 125
HENCE OK HENCE OK

Design of Laterally Supported Gantry Girder (15m Span)

1. Design Forces
Length of Beam = 15 m Lateral Length of Beam = 7.5 m

Zdir. Ydir.
Max. Positive BM = 1759 46 kNm Wheel Load = 180 kN
Max. Shear Force = 563 15 kN
fy 250
2. Results

Slendernes ratio 0.58 Ok.


Shear check 0.81 Ok.
Bending check 0.99 Ok.
Web buckling - Ok.
Web Crippling - Ok.
Deflection check 8.14 Ok.

3. Section Selection
Optimum Depth of girder
depth of web plate, d = 950 mm
thickness of web plate = 10.00 mm
Depth of web plate provided 885 mm
Area of flange , Af = 8146.10 mm²
For compression flange with welded section
b = 8.4e
tf
b= 8.4*tf
Area of one flange
Af = bf * tf
thickness of flange = 22.02 mm
thickness of flange provided 20.00 mm
Width of flange = 407.30 mm
Width of flange provided 325.00 mm

Dev Oza (PSD20099) 44


Industrial Shed-Coating

4. Section Properties
325
2
Cross sectional Area A = 21850.0 mm 20

Ixx = 3239893020.8 mm4


Moment of Inertia
Iyy = 114434458.3 mm4 10

rxx = 385.1 mm

885
Radius of Gyration

925
ryy = 72.4 mm
Zez = 7005174.1 mm3
Elastic Section Modulus 3
Zey = 704212.1 mm
Zpz = 7840562.5 mm3 20
Plastic Section Modulus 3
Zpy = 1078375.0 mm
fyf = 240 Mpa 325

fyw = 250 Mpa


εflange = 1.02
εweb = 1

5. Slenderness Ratio ( Table 3 )

ƛZ = 38.953963 < 180 ƛy = 104 < 180

b/tf = 8.125 Flanges are Plastic. d/tw = 88.5 Web is Compact.

6. Minimum web thickness requirement

1. serviceability requirement
when transverse stiffners are not provided. cl. 8.6.1.1.P-63
d 89 < 200ε okay
=
tw

2. Compression flange buckling requirement


when transverse stiffners are not provided,
d 89 < 345ε² okay CL.8.6.12 p-63
=
tw

7. Check for minimum web thickness (cl. 8.6.1.1(b)) C = 2

Case 1: when 3d ≥ c ≥ d ,d/tw ≤ 200 ε Governing case : 3d ≥ c ≥ d


Case 2: when 0.74d ≤ c < d ,c/tw ≤ 200 εw ,d/tw ≤ 200 ε
Case 3: when c < d ,d/tw ≤ 270 εw 88.5 ≤ 200
Case 4: when c > 3d Web shall be considered as
unstiffened

8. Check for compressiom flange buckling requirement : (As per clause 8.6.1.2(b) : C = 2

Case 1: when c ≥ 1.5d ,d/tw ≤ 345 εf2 Governing case : c ≥ 1.5d


Case 2: when c < 1.5d ,d/tw ≤ 345 εf ,d/tw ≤ 345 εf
88.5 ≤ 352

9. Shear Check ( Cl. 8.4.1 )

Z-Z Y-Y
Vd = 1161 1638 kN
0.6Vd = 697 983 kN (Cl. 8.2.1.3)
Ok. Ok.

Dev Oza (PSD20099) 45


Industrial Shed-Coating

10. Laterally supported beam ( Cl. 8.2.2 )

Z-Z Y-Y
βb = 1.00 1.00 Mpa
Zp = 7840562.5 1078375.0 Welded Steel Sec.
Md = 1781.95 245.09
Ok. Ok.

11. Check for Deflection

Munfa ctored = 938 24.7 kN.m


d v,a ctua l = 8.14 6.07 mm
d v,Permes i bl e = 10 10 mm Ok.

12. Check for Bearing Stiffners (Cl. 8.7.4)

at Sup. at Pt. L.
b1 = 150 0 mm
n2 = 100.00 100.00 mm
ƛ = 221.25 221.25
Fw = 568.2 227.3 kN
Ok. Ok.
13. Bearing Stiffner ( Cl. 8.7.4 )

Width of stiffbearing (b1) = 50 mm Length at flange and web junction (n


= 2)50 mm
Web crippling stength = 227.27 kN > Ok.

Design of Bearing Stiffner

Thickness of web tw = 10 mm
Length of Stiffner = 157 mm
Thickness of Stiffners tq = 10 mm
Maximum Outstand of Stiffner = 200 mm
Outstand of Core Section = 140 mm (Cl. 8.7.1.2)
Provide outstand = 150 mm
Provide Thickness = 10 mm

1. Check for Buckling


End
Effective area = 5000 mm²
Iyy = 24842500 mm4 (Cl. 8.7.1.5)
Ry = 70.49 mm
kl/r = 8.79
Euler Buckling Stress Fcc = 25528.89191
λ = 0.098958709
Ф = 0.480141297
Fcd = 239.2 N/mm²
Buckling Resistance Fqd = 1196.2 kN

2. Check for bearing strength of stiffners

Bearing Strength, Fpsd = Fpsd=Aq*fyq/(0.8*ϒmo)>=Fx


Consider Chamfer = 10 mm
Bearing Area, Aq = 2800 mm²
Bearing Strength, Fpsd = 795.5 kN

Dev Oza (PSD20099) 46


Industrial Shed-Coating

3. Check for Torsinoal restraint provided by end Stiffners( Cl. 8.7.9 )

LLt/Ry = 103.6355067
α = 0.002793213 CL. 8.7.9 IS-875-2007
Is = 15032742.41 mm4 Required
4
MI of Stiffner = 24825833.33 mm

14. Weld Connected to web plate & Flange (Cl. 8.7.2.6)

Assume filet weld on each side of web


Maximum Shear Force V = 563 kN
Area of Flange Af = 6500 mm²
Y = 452.5 mm
4
Iz = 3239893021 mm
qw = 255.3252707 N/mm
= 0.255325271 kN/mm
for Tw = 16 mm
S = 6 mm
Tt = 4.2 mm
Fwd = 189.4 N/mm²
Lw = 1 mm
P= Lw*Tt*Fwd =
p= = 0.795357731 kN/mm
For 1 mm effective length
c/c spacing of weld = 3.12 P/Qw
Assume effective length of weld = 50 mm CL. 10.5.5.1
c/c spacing of weld = 155.8 mm
Clear Spacing = 105.8 mm
Provided Spacing = 100.0 mm
As per CL. 10.5.5.2 IS 800-2007 P-79
12*(thickness of thinner plate = 120 mm

15. Weld Connected to Stiffner and Web ( Cl. 8.7.2.6 )

Q1 = 0.133333333 kN/mm
Tw²/(5*Bs)
Net SF = Vz-SF resisted by web
Fcdw = 154.18 kN
kL/r = 306.57
Euler Buckling Stress Fcc = 20.98
λ = 3.45
Ф = 7.25
Fcd = 16.67 N/mm²
Net SF = 408.32 kN
Length of weld = 865 mm
Q2 = 0.47 kN/mm
Qw=Q1+Q2 = 0.61 kN/mm
Force on each side of weld = 0.30 kN/mm
Strength of weld (6 mmsize) = 0.795 kN/mm From Above calculation
For 1 mm effective length
c/c spacing of weld = 2.63 P/Qw
Assume effective length of weld = 50 mm CL. 10.5.5.1 IS-800-2007 P-79
c/c spacing of weld = 131.4 mm
Clear Spacing = 81.4 mm
Provided Spacing = 80 mm
As per CL. 10.5.5.2 IS 800-2007 P-79
12*(thickness of thinner plate = 120 mm

Dev Oza (PSD20099) 47


Industrial Shed-Coating

Design of Laterally Unsupported Gantry Girder (15m Span)

1. Design Forces
Length of Beam = 15 m Lateral Length of Beam = 15 m

Zdir. Ydir.
Max. Positive BM = 1759 46 kNm Wheel Load = 180 kN
Max. Shear Force = 563 15 kN

2. Results

Slendernes ratio 0.73 Ok.


Shear check 0.55 Ok.
Bending check 0.97 Ok.
Web buckling - Ok.
Web Crippling - Ok.
Deflection check 12.89 Ok.

3. Section Properties

475
2
Cross sectional Area A = 41580.0 mm 30

Ixx = 10234766500.0 mm4


Moment of Inertia
Iyy = 535872455.0 mm4 12

rxx = 496.1 mm
1090

1150
Radius of Gyration
ryy = 113.5 mm
Elastic Section Zez = 17799593.9 mm3
3
Modulus Zey = 2256305.1 mm
Plastic Section Zpz = 19524300.0 mm3 30

Modulus Zpy = 3423615.0 mm3


Mpa 475
fyf = 240
fyw = 250 Mpa
εflange = 1.02
εweb = 1

4. Slenderness Ratio ( Table 3 )

ƛZ = 30.2 < 180 ƛy = 132 < 180

b/tf = 7.92 Flanges are Plastic. d/tw = 90.8 Web is Compact.

Dev Oza (PSD20099) 48


Industrial Shed-Coating

5. Check for minimum web thickness (cl. 8.6.1.1(b)) C = 2 m

Case 1: when 3d ≥ c ≥ d ,d/tw ≤ 200 ε Governing case : 3d ≥ c ≥ d


Case 2: when 0.74d ≤ c < d ,c/tw ≤ 200 εw ,d/tw ≤ 200 ε
Case 3: when c < d ,d/tw ≤ 270 εw 90.8 ≤ 200
Case 4: when c > 3d Web shall be considered as
unstiffened

6. Check for compressiom flange buckling requirement : (As per clause 8.6.1.2(b) : C = 2 m

Case 1: when c ≥ 1.5d ,d/tw ≤ 345 εf2 Governing case : c ≥ 1.5d


Case 2: when c < 1.5d ,d/tw ≤ 345 εf ,d/tw ≤ 345 εf
90.8 ≤ 352

7. Shear Check ( Cl. 8.4.1 )

Z-Z Y-Y
Vd = 1716 3590 kN
0.6Vd = 1030 2154 kN (Cl. 8.2.1.3)
Ok. Ok.

8. Laterally Unsupported beam ( Cl. 8.2.2 )

Z-Z Y-Y
f cr,b = 158.61 158.61 Mpa
αLT = 0.49 0.49 Welded Steel Sec.
χLT = 0.41 0.41
ƛLT = 1.3 1.3 LTB CR.
ØLT = 1.5 1.5
f bd = 92.76 92.76 Mpa
βb = 1 1
Md = 1811.09 209.30 kN m
Ok. Ok.

9. Check for Deflection

Munfa ctored = 1172.5 30.875 kN.m


d v,a ctua l = 12.89 6.48 mm
d v,Permes i bl e = 20 20 mm Ok.

10. Check for Bearing Stiffners (Cl. 8.7.4)

at Sup. at Pt. L.
b1 = 100 0 mm
n2 = 150.00 150.00 mm
ƛ = 227.08 227.08
Fw = 681.8 409.1 kN
Ok. Ok.

Dev Oza (PSD20099) 49


Industrial Shed-Coating

11. Bearing Stiffner ( Cl. 8.7.4 )

Width of stiffbearing (b1) = 150 mm Length at flange and web junction (n


= 2) 75 mm
Web crippling stength = 613.64 kN > Ok.

Design of Bearing Stiffner

Thickness of web tw = 12 mm
Length of Stiffner = 231 mm
Thickness of Stiffners tq = 10 mm
Maximum Outstand of Stiffner
= 240 mm
Outstand of Core Section = 140 mm (Cl. 8.7.1.2)
Provide outstand = 150 mm
Provide Thickness = 12 mm

1. Check for Buckling


End
Effective area = 6480 mm²
4
Iyy = 3E+07 mm (Cl. 8.7.1.5)
Ry = 68.50 mm
kl/r = 11.14
Euler Buckling Stress Fcc = 15893.6
λ = 0.12542
Ф = 0.48959
Fcd = 236.0 N/mm²
Buckling Resistance Fqd = 1529.6 kN

2. Check for bearing strength of stiffners

Bearing Strength, Fpsd = Fpsd=Aq*fyq/(0.8*ϒmo)>=Fx


Consider Chamfer = 15 mm
Bearing Area, Aq = 3240 mm²
Bearing Strength, Fpsd = 920.5 kN

3. Check for Torsinoal restraint provided by end Stiffners( Cl. 8.7.9 )

LLt/Ry = 132.13
α = 0.00172 CL. 8.7.9 IS-875-2007
Is = 3E+07 mm4 Required
MI of Stiffner = 3E+07 mm4

Dev Oza (PSD20099) 50


Industrial Shed-Coating

12. Weld Connected to web plate & Flange (Cl. 8.7.2.6)

Assume filet weld on each side of web


Maximum Shear Force V = 563 kN
Area of Flange Af = 14250 mm²
Y = 560 mm
4
Iz = 1E+10 mm
qw = 219.289 N/mm
= 0.21929 kN/mm
for Tw = 16 mm
S = 6 mm
Tt = 4.2 mm
Fwd = 189.4 N/mm²
Lw = 1 mm
P= Lw*Tt*Fwd =
p= = 0.79536 kN/mm
For 1 mm effective length
c/c spacing of weld = 3.63 P/Qw
Assume effective length of weld= 50 mm CL. 10.5.5.1
c/c spacing of weld = 181.3 mm
Clear Spacing = 131.3 mm
Provided Spacing = 150.0 mm
As per CL. 10.5.5.2 IS 800-2007 P-79
12*(thickness of thinner plate = 144 mm

13. Weld Connected to Stiffner and Web ( Cl. 8.7.2.6 )

Q1 = 0.192 kN/mm
Tw²/(5*Bs)
Net SF = Vz-SF resisted by web
Fcdw = 219.12 kN
kL/r = 314.66
Euler Buckling Stress Fcc = 19.92
λ = 3.54
Ф = 7.60
Fcd = 15.88 N/mm²
Net SF = 343.38 kN
Length of weld = 1060 mm
Q2 = 0.32 kN/mm
Qw=Q1+Q2 = 0.52 kN/mm
Force on each side of weld = 0.26 kN/mm
Strength of weld (6 mmsize) = 0.795 kN/mm From Above calculation
For 1 mm effective length
c/c spacing of weld = 3.08 P/Qw
Assume effective length of weld= 50 mm CL. 10.5.5.1 IS-800-2007 P-79
c/c spacing of weld = 154.2 mm
Clear Spacing = 104.2 mm
Provided Spacing = 80 mm
As per CL. 10.5.5.2 IS 800-2007 P-79
12*(thickness of thinner plate = 144 mm

Dev Oza (PSD20099) 51


Industrial Shed-Coating

Design of Laterally Unsupported Gantry Girder (7.5m Span)

Major minor
Maximum Moment kN.m 633.75 16.70625
Maximum shear force kN 450 11.86875
Wheel Load kN 180 4.75
Span Length m 7.5 7.5

1. Section selection for gantry girder


Economic depth of girder mm 625 625 L/12
Total Depth of girder mm 600 600

Width of flange mm 187.5 187.5 L/40


Width of flange mm 250 250 L/30

Zp Required mm³ 3549000 93555

Select Appropriate Sections as per above requirements.


I-section C-section
Gantry girder sections ISMB 600 ISMC 300
Plastic section Modulus Zp mm³ 3510630
Area A mm² 15621 4564
Thickness of flange tf mm 20.8 13.6
thicknessof web tw mm 12 7.6
Width of flange bf mm 210 90
R mm 20
Moment of inertia Izz mm4 918130000 63628000
Moment of inertia Iyy mm4 26510000 3108000
Depth of section mm 600 300
Cyy mm 23.6

2. Calculation of Izz, Iyy & Zp of the trial section

Properties of combined section,


y̅ = a1y1 + a2y2 From bottom
a1 +a2

a1 mm² 15621
a2 mm² 4564
y1 mm 300
y2 mm 584

y̅ mm 364.214813 from bottom

Dev Oza (PSD20099) 52


Industrial Shed-Coating

Izz of built up section

Izz = Izz1 + Izz2


(Ig +ah²) + (Ig +ah²)
Izz mm4 1206118285

Elastic Section modulus Zez mm³ 3311557.47

Iyy of built up section

Iyy mm4 90138000

Iy of tension flange about y axis


Itf mm4 16052400

Iy of compression flange about y axis


Icf mm4 79680400

Zy of top flange alone mm³ 531202.6667

3. Calculation of Plastic section modulus


dp mm 190.17

Plastic section modulus below the equal area axis

Zp1 mm³ 3417451.207

Plastic section modulus above the equal area axis


Zp2 mm³ 910141.74

Zpz = Zp1 + Zp2 mm³ 4327592.947


Okay

For top flange only Zpy


Zpy mm4 721271.296
Okay
4. Check for moment capacity Table-2

Section Classification

b/t for flange of I section 4.76


Flanges are Plastic.

d/t for web of I section 46.53


Web is Plastic.

b/t for flange of channel 6.058823529


Flanges are Plastic.

Dev Oza (PSD20099) 53


Industrial Shed-Coating

Local moment capacity


Major Minor
Mdz = 1.2*Ze*Fy/1.1 kN.m 903.15 144.87
Mdz = βb*Zp*Fy/1.1 kN.m 983.54 163.93
okay okay
Safe in Carrying moment in major axis
Safe in Carrying moment in minor axis

Check for combined local capacity


Mz My
+ <= 1 0.817 okay
Mdz Mdy

5. Check for buckling resistanc cl.8.2.2,P-54


Mdz = βb*Zp*fbd
βb 1 For plastic & compact section
Zp mm³ 4327592.947
Llt = KL mm 7500
Ry = (Iyy/A)^0.5 mm 66.83
kL/Ry 112.23
Hf mm 589.6
tf mm 28.4
Hf/Tf 20.76

Elastic lateral buckling moment cl.8.2.2.1,P-54

Mcr C1 * 3.14²* E*Iy*Hf 1 (Llt/ry)² ^0.5


1+
2*Llt² 20*(hf/tf)²

C1 1.132 Table-42,P-130
Mcr N.mm 1654358366
λLT = (βb*Zp*fy/Mcr)^0.5 0.809
αLT 0.210 for rolled section
ФLT = 0.5[1+αLT(λLT-0.2)+λLT²] 0.891
χLT 0.790703269 < 1
okay
fbd N/mm² 179.7052883

Md kN.m 777.6913383 Okay

For top flang only


Mdy = fy * Zy kN.m 120.73 Okay
ϒmo

Check for biaxial bending


Mz My 1 Okay
+ <= 1
Mdz Mdy

6. Check for shear capacity cl.8.4.1 P-49

Shear capacity of web


Vd = Av * Fyw kN 944.7549859
1.73 * 1.10
0.6 * Vd kN 566.8529916
okay

Dev Oza (PSD20099) 54


Industrial Shed-Coating

7. Local buckling of web cl. 8.7.3.1, P-67

Buckling resistance (b1 + n1)tw*fcd


Assume stiff bearing,
b1 mm 150
for 45° load dispersion, on one side only at end.
n1 = mm 307.6
tw mm 12
d mm 518.4
Web slenderness kl/r
2.43 *d 104.976
tw
Euler buckling stress fcc 178.9407491
λ sqrt(fy/fcc) 1.181994291
α 0.49 Table-7
Ф 1.439143853
fcd 100.5571994

Buckling Resistance kN 552.1796935 > Wheel Load


(b1 + n1) tw*fcd Okay

8. Design of weld

Section of girder y̅ mm 219.785187


Area of channel section mm² 4564
Shear force kN 450
Iz mm4 1206118285

qw = V*A*y̅ N/mm 374.25


Iz
Size of weld mm 6
Size of weld tt 0.7*S mm 4.2
Fwd N/mm² 189
Capacity of 1 mm long weld
lw * tt * fwd N/mm 793.8
okay

9. Check for deflection

Deflection
W*L³[(3a/4L)-(a³/L³)]
6EI

Wheel Base, C mm 3500


a= (L-c)/2 mm 2000
Wheel Load W kN 180 Working load
Span Length mm 7500
Izz mm4 1206118285
d v, 9.498446501

Permissible Deflection L mm 10 Table-6,P-331


750
okay

Dev Oza (PSD20099) 55


Industrial Shed-Coating

Design of Laterally Unsupported Beam


Section Defination (I Section) 36 Remarks
Length of Member Lz (mm) 15000
Length of Member Ly (mm) 1400
fy (N/mm2) 250 IS 800:2007 Table 5
⋎ m0 1.1
E 200000
Deflection Vertical
Design Load & Member LL_CantiliverSpan
Maximum Allowed Deflection Span ÷ 180
180 17
W. T

233
465.6
10.2
250 500

βf 0.5
βb 1
K 1
Provisioned Steel Section Rolled
Classification of Section Plastic IS 800:2007, Table 2
STADD.Pro Value & Design Value
Maximum Compressive Force (Pu)(N), kN 0.00
Design Compressive Strength 1926.18 OK
Maximum Tensile Force (T), kN 0.00
Design Tensile Strength 2486.62 OK
Shear Acting. (kN) 13.00
Shear Capacity of Member (kN) 669.20 OK
Moment about Z, Mz(kN.m) 408.00
Design Bending Moment 442.02 OK
Moment about Y, My(kN.m) 0.00
Design Bending Moment 67.00 OK
Utilization ratio 0.92 OK
Permisible Deflection Limit (mm) 83.33 IS 800:2007, Table 6
Check for Web buckling 642.86

For Tension 0.92 IS 800:2007, 9.3

For Compression 0.92 IS 800:2007, 9.3

Meffz (kN*m) 408.00


IS 800:2007, 9.3.2.1
Meffy (kN*m) 0.00

0.92 IS 800:2007, 9.3.2.2

0.83 IS 800:2007, 9.3.2.2

Dev Oza (PSD20099) 56


Industrial Shed-Coating

Depth of section h (mm) 500.00


Width of Flange bf (mm) 180.00
Thickness of Flange tf (mm) 17.20
Thickness of Web tw (mm) 10.20
Depth of Web dw (mm) 465.60
Sectional Area a (mm2) 10941.12
Moment of inertia X Ixx (mm4) 446779196.31
Moment of inertia Y Iyy (mm4) 16722436.75
Radius of Gyration UU (mm) ruu (mm) 202.08
Radius of Gyration UU (mm) rvv (mm) 39.09
Elastic Section Modulus Zez (mm3) 1787116.79
Elastic Section Modulus Zey (mm3) 185804.85
Plastic Section Modulus Zpz (mm3) 2047546.37
Plastic Section Modulus Zpy (mm3) 290750.26
Ψ 1.00 IS 800:2007 Table 42

Modulus of Rigidity G=E/2(1+µ), N/mm 2 76923.08 E/2(1+µ)


Tortional constant I t 775313.24
IS 800:2007 (As Annexure E-1.2)
warping constant I w 974482610389
k 1.00 IS 800:2007, Table 42
kw 1.00 IS 800:2007 (As Annexure E-1.2)
c1 1.13 IS 800:2007, Table 42
c2 0.46 IS 800:2007, Table 42
c3 0.53 IS 800:2007, Table 42
yg 250.00 IS 800:2007 (As Annexure E-1.2)
yj 0.00 IS 800:2007 (As Annexure E-1.2)
Lateral Tortional Buckling moment, M cr c1(π2EIy/Llt){[(K/Kw)2(Iw/Iy)+(GIt(Llt)2/π2EIy)+(c
3030 2 0.5
(kN.m) (As Annexure E-1.2) 2 yg+c3 yj ) ] -(c2 yg+c3 yj )}
Non dim. Slenderness Ratio, λ LT 0.41 IS 800:2007, 8.2.2, (βbZpfy/Mcr)0.5
Imperfaction factor, α LT 0.21 IS 800:2007, 8.2.2
∅LT 0.61 IS 800:2007, 8.2.2, 0.5[1+α LT(λLT-0.2)+λLT2]
Bending Stress Reduction Factor, χLT 0.95 IS 800:2007, 8.2.2, 1/[∅LT+(∅LT2-λLT2)0.5]
2
Design Bending Comressive stress, fbd ( N/mm ) 215.88 IS 800:2007, 8.2.2, χLTfy/⋎m0
Moment Carrying Capacity of sec., M dz ( kN.m ) 442.02
Design moment about Z, Mdz (kN*m) 442.02
Lateral Tortional Buckling moment, M cr c1(π2EIy/Llt){[(K/Kw)2(Iw/Iy)+(GIt(Llt)2/π2EIy)+(c
3030 2 0.5
(kN.m) (As Annexure E-1.2) 2 yg+c3 yj ) ] -(c2 yg+c3 yj )}
Non dim. Slenderness Ratio, λ LT 0.14 IS 800:2007, 8.2.2, (βbZpfy/Mcr)0.5
Imperfaction factor, α LT 0.21 IS 800:2007, 8.2.2
∅LT 0.50 IS 800:2007, 8.2.2, 0.5[1+α LT(λLT-0.2)+λLT2]
Bending Stress Reduction Factor, χLT 1.01 IS 800:2007, 8.2.2, 1/[∅LT+(∅LT2-λLT2)0.5]
2
Design Bending Comressive stress, fbd ( N/mm ) 230.45 IS 800:2007, 8.2.2, χLTfy/⋎m0
Moment Carrying Capacity of sec., M dy ( kN.m ) 67.00
Design moment about Y, Mdy (kN*m) 67.00
Shear Capacity of section, Vd (kN) 669.20

For Tension 0.92 IS 800:2007, 9.3

For Compression 0.92 IS 800:2007, 9.3

Dev Oza (PSD20099) 57


Industrial Shed-Coating

Design Tension Member


Design Tension (kN) 2486.62 IS 800:2007, 6.2, Tdg=A gfy/⋎m0
Meffz (kN*m) 408.00
IS 800:2007, 9.3
Meffy (kN*m) 0.00

Design Compression Member


Y-Y
Slenderness ratio ( kL/r y ) 35.81 IS-800:2007, 7.1.2, kL/r y
Eular buckling stress, fcc = π2E/(KL/r)2 1537.70 IS-800:2007, 7.1.2, π2E/(KL/r)2
Non-dimentional effective slenderness ratio λ
0.40 IS-800:2007, 7.1.2, (fy/fcc)0.5
= (fy/fcc)0.5
α 0.34 IS-800:2007, Table-7
∅ 0.62 IS-800:2007, 7.1.2, 0.5[1+α(λ-0.2)+λ 2]
Stress reduction factor χ 0.92 IS-800:2007, 7.1.2, 1/[∅+(∅2-λ2)0.5]
Design Compressive Stress fcd = χfy/⋎m0 210.18 IS-800:2007, 7.1.2, χfy/⋎m0
Compression Capacity P d = Ae x fcd (kN) 2299.62 IS-800:2007, 7.1.2, A e x fcd
Mdy 66.08 Is 800:2007, 9.3.2.2
ny 0.00 Is 800:2007, 9.3.2.2
λy 0.40 Is 800:2007, 9.3.2.2
Ky 1.00 Is 800:2007, 9.3.2.2
Cmy 0.90 IS-800:2007, Table-11
Cmlt 0.50 IS-800:2007, Table-11
Z-Z
Slenderness ratio ( kL/r z ) 74.23 IS-800:2007, 7.1.2, kL/r z
Eular buckling stress, fcc = π2E/(KL/r)2 357.88 IS-800:2007, 7.1.2, π2E/(KL/r)2
Non-dimentional effective slenderness ratio λ
0.84 IS-800:2007, 7.1.2, (fy/fcc)0.5
= (fy/fcc)0.5
α 0.21 IS-800:2007, Table-7
∅ 0.92 IS-800:2007, 7.1.2, 0.5[1+α(λ-0.2)+λ 2]
Stress reduction factor χ 0.77 IS-800:2007, 7.1.2, 1/[∅+(∅2-λ2)0.5]
Design Compressive Stress fcd = χfy/⋎m0 176.05 IS-800:2007, 7.1.2, χfy/⋎m0
Compression Capacity P d = Ae x fcd (kN) 1926.18 IS-800:2007, 7.1.2, A e x fcd
M dz 465.35 IS 800:2007, 9.3.2.2
nz 0.00 IS 800:2007, 9.3.2.2
λz 0.84 IS 800:2007, 9.3.2.2
Kz 1.00 IS 800:2007, 9.3.2.2
Cmz 0.90 IS-800:2007, Table-11
Klt 1.00 IS-800:2007, Table-11
Compression Strength of Member, kN 1926.18

0.92 IS 800:2007, 9.3.2.2

0.83 IS 800:2007, 9.3.2.2

Dev Oza (PSD20099) 58


Industrial Shed-Coating

Staad Results

Dev Oza (PSD20099) 59


Industrial Shed-Coating

Dev Oza (PSD20099) 60


Industrial Shed-Coating

ANNEXURE B-ARCITECTURAL DRAWINGS

Dev Oza (PSD20099) 61


2
1
L L

CONTROL PANELS
K X2 K
J J
OPENING OPENING OPENING OPENING
15200 x 4000 14665 X 4000 22165 X 4000 22165 X 4000

H H

G G

F F
COATING -2 PLANT SHED
248240 x 32740

X1

E E

D D

CONTROL PANELS
C C

MECHANICAL ELECTRICALCAL
B PE STORAGE PAINT STORAGE GEN. STORE TOILETS MAINTANANCE MAINTANANCE EPOXY ROOM B
25500 x 10000 18000 x 10000 15000 x 10000 7300 x 10000 35000 x 10000
ROOM ROOM COMPESSOR ROOM COOLING TOWER
7300 x 10000 7300 x 10000 16000 x 10000 25080 x 10000

A A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

GROUND FLOOR PLAN - GRID 1 TO 21

RIDGE LEVEL
(+12.935 LVL.) X5

BTM. OF EAVES BTM. OF EAVES


(+11.000 LVL.) (+11.000 LVL.)

SEMI GOLIATH CRANE 15MT SEMI GOLIATH CRANE 15MT

BTM. OF EAVES BTM. OF EAVES


(+04.500 LVL.) (+04.500 LVL.)

CANOPY BOTTOM LVL.


(+03.450 LVL.)

PLINTH LVL. PLINTH LVL. PLINTH LVL.


(±00.000 LVL.) (±00.000 LVL.) (±00.000 LVL.)
PLANT BUILDING UTILITY BUILDING UTILITY BUILDING PLANT BUILDING
F.R.L. F.R.L. F.R.L.
(-00.450 LVL.) (-00.450 LVL.) (-00.450 LVL.)

J SECT- 2 J H G F E D C B A SECT- 1 A B C D E F G H J J

R E V I S I O N E S
Industrial Shed-Coating

ANNEXURE C-STRUCTURAL SYSTEM

Dev Oza (PSD20099) 62


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

L L L L

K G-1 G-1
K K K
J J J LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1
J
G-1 G-1
I I I I

H H H

G G G G

F F F F

E E E E

D D D D

LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1

C C C C

B B B B

A A A A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

PLAN AT +8.30M- GRID 1 TO 21


BRACING PLAN

RIDGE LEVEL
RIDGE LEVEL (+12.935 LVL.)
(+12.935 LVL.)
BTM. OF EAVES
BTM. OF EAVES (+11.000 LVL.) LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1
(+11.000 LVL.)

LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-1 LB-2 LB-2 LB-2 LB-2 LB-2

PLINTH LVL.
PLINTH LVL. (±00.000 LVL.)
(±00.000 LVL.) F.R.L.
F.R.L. (-00.450 LVL.)
(-00.450 LVL.)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

ELEVATION A ELEVATION K

RIDGE LEVEL
(+12.935 LVL.)

BTM. OF EAVES
(+11.000 LVL.)

SEMI GOLIATH CRANE 15MT

BTM. OF EAVES
(+04.500 LVL.)

CANOPY BOTTOM LVL.


(+03.450 LVL.)

PLINTH LVL. PLINTH LVL.


(±00.000 LVL.) (±00.000 LVL.)
PLANT BUILDING UTILITY BUILDING
F.R.L. F.R.L.
(-00.450 LVL.) (-00.450 LVL.)

L
K J I H G F E D C B A
R E V I S I O N E S
Industrial Shed-Coating

ANNEXURE D-DETAILING

Dev Oza (PSD20099) 63


RIDGE LEVEL
(+13.020 LVL.)

BTM. OF EAVES
(+11.000 LVL.)

SEMI GOLIATH CRANE 15MT

BTM. OF EAVES
(+04.500 LVL.)

CANOPY BOTTOM LVL.


(+03.450 LVL.)

PLINTH LVL. PLINTH LVL.


(±00.000 LVL.) (±00.000 LVL.)
PLANT BUILDING UTILITY BUILDING
F.R.L. F.R.L.
(-00.450 LVL.) (-00.450 LVL.)

L
J I H G F E D C B A

1 1 1 1 1 1
1 1
13

5 5 5 5 5 5 6
12 12
7 7 7 7
8 8

7 7 7 7
7 7
9

1 1 1 1 1 1

6 6 6 6 6
11 11
10 10 10 10

7 7 7 7

PLAN PLAN
1 1 1 1 1 1
A

4 2 4 2 4 2 4 2 4 2 4 2
13 13 13 13 13

1
1 2
1 3
1 4
1 5
1 6
1 7

SIDE VIEW
A
7 7 7 7 SIDE VIEW
9 13 9 13 9 13 9 13 9

B
7 7 7 7
2 3 4 5 6

10m CANTILIVER CANOPY 22.5m WIDE 10m CANTILIVER CANOPY 15m WIDE

CRANE TRUSS 22.5M

R E V I S I O N E S

You might also like