Nothing Special   »   [go: up one dir, main page]

Stand S

Download as pdf or txt
Download as pdf or txt
You are on page 1of 50

 

STANDS

R COOLE CONENSERS

FIRST EDITION
 

Heat Exchange Institute, Inc.

PULICATION LIST
TITLE
Standards r Steam Surface Condensers,
10th Editon 2006

Standards for Direct Contact Barometric and


Low Level Condensers,
8 Edon 2010

Standards r Steam Jet Vacuum Systems,


6 Edon 2007

Standards r Closed Feedwater Heaters,


8 Ediion 2009

Standards and Typical Specications for


Tray Type Deaerators,
8 Edon 2008

Performance Standard for Liquid Ring


Vacuum Pumps,
4 Ediion 2011

Standards r Shell and Tube Heat


Exchangers,
4 Ediion 2004

1300 Sumner Avenue


Cleveland, Ohio 445-285
2162417333
Fax: 26-24-5
www

email:.heatexchange.g
hei@heatexchangeog
 

STADS for
AR COOLED CONDENSERS

FIRST EDI
Copyright 2011
Heat Exchange Institute, Inc.
1300 Sumner Avenue
Cleveland, Ohio 4415-2851

Reproducon of any porton of hs standard whou wrtten permsson of the


Heat Exchange Insiute is stricly rbdden.
 

HEAT
EXCGE
INSTIUE, IN.
AR COOLED CONDENSERS

Btc Intntin
Malto, NJ

GEA P g c.


Lewod, CO

SX g Tchgs c


Overlad ak K

ii
 

CONTENTS Page

FOEORD ..
.. . ... .    .
.  
 . . ..
.   . .
.
. .... ... .  . 
  v
1.0 SCOPE ND PURPOSE  .    . . . .  .. . ... . ... .. .  . 1
 2.0 DEFINTOS     

  . . .
.  . 
  . .. ..
... .     
 . 
 1
 30 SBOS & UNTS  .  . ..  . .   ..     
  .
.  
   3

 400
 4 GEEA OVERVIE / DESCRIPTIO
DESCRIPTIO  OF
O F AN ACC SYSTEM ...
... : 
...
...  4
 4 Denton
Denton ofan
of an ACC ..............
..............
  4
 42 Major Components of an ACC System .....
........
...   4

 50 DESIG COSDETONS .......


.........
..   5
 5 1  Desgn Pressure and Temperature.
Temperature........
..........
.......
......
..  5
 52 Corroson Allowance ..........
..........  6
 53  ArMoving Equipment Seecion Guidelnes
Guidelnes.....
.....  6
 54  Air Flow Consderations ...............
................
..
...  7
 55 Fn Tube Cleaning Systems .............
.............  7

6.0  AR COOLED CODESER PERFORMCE OPERATON....... ........ . .  8


 61 General Considerations..
Considerations.. . ...... . .
.    . .... . . .. .
.  .     .  8
 6.2 Thermal
Therm al Perrmanc ... : .................
................... ..   8 ·
 6.3 Deaeration and Dissolved Oxygen .
...   . . .
..
. .. ..      

    .    ...   9
 64 Condensate Suboolng    
 
... ..  . . . .. .... .... 10
 6.5 Cleanlness Facos, Foulng Factors,
Factors, ad Perrmance
Perrmance Margns  ... .     10
 6.6 Steam-side Hdr
Hdraulics
aulics  
   . ..     . .. 
... . .. . 11
 67  Arside Press
Pressure
ure osses . .  .
. . .
.   .
. .  .. .  . .       11
 68  Ar nlet Temperature .. . . . .. . . .  .
.. . . .... . .. .    
  12
 6.9  Auxilary Power Consumpton     . .. . .. .   
 ..  13
 610 Cod Weather
Weather Perormace...
Perormace .... . . . .   .    . .... ... 13
 611 ow oad
o ad Operation . .. . . . . . . . . . ..... . . ..... .. ..  
 14
 612 Perrmance Cures . . .. . .
. . .  .   . .  . . .. . 
  14
 613 Perrmance Testing ........
......... .  ..  
   .  14
 614
 614 Eects ofWind
of Wind on ACC Permance.
Permance. . . ... .. . . . .. . . . . .  14
 615
 615 Eecs o Solar
Solar Radiation 
.
.. .
. .... ..... .      
 .    15

 70  STRUMETA
STRUMETATIONTION AND COTRO
COTRO.
.......
..............
........ 1 5  
 7 71 Recommended nstrumentaton
nstrumentaton..
...
.....
..........
...... 15
 72  ACC Contro and
an d Freeze Protecton Considerations .....
......
. . . 
. 16
 73 Selection ofNumer ofsolato Valves  ... . 

   . . ... 16
 7 4
 7 Drain Pot Capacty .
. . .
...
.. 
. 
  
 . ... .. . .. . .. ..
... 17
 75  Condensae Tank Capacity  .
     ..
....... . . .
. ... . 1 7  

 80 SERVCE COEC


COECTIONS
TIONS ...
........
............
........
. 1 7
 81 General Consideratons ..........
..........
 1 7  
 822
 8 Flow Data 
.
.......... .....
......... ... 1 7  
 3  
 8 . 3 Connecton ocatons
ocatons ....
......
...
. 1 7  
 8 . 4   Connection Design Guidelnes ...
....
.. 18
 
 8 . 5  Steam Turbine E
Exhaus
xhaus nterce  ....
....
 ......
...... . 19
 8 86
6 Steam Turbine Bypass Gudeines 
 ............
...............
...  200
 2
 8 . 7   Feedwaer Heater Consderaions  
..
...
.   22

ii
 

CONTENTS 

 90 NTIG QPMT CPACITIS  ....


.  .
....
.........
...... .... ....
.  23
 9.1
 9.1   Venting Reureme
Reurements...
nts........
.  ..
.. ..
 ....
..  
...  2 3
 3  
 92 Desgn Suction Pressure . .....
.. .
........
.........  23
 9.
 9 . 3
 3   Design Suction Temperature  ......
.... . ...... ............. ...  2 3
 9. Calculaton ofWater
ofWater Vapor Load Component...
Component....... .....
...
.........   23
 9.
 9. 5   Mnimum Recommended Capacities   . .... . .... ..........  23
 9.66
 9. Rapid vacua
vacuaton
ton (Hoggng) quipment . . ...

 . ..  
 . .  2 5  

1 0.
0.00  ATMOSPHRIC RIF DVCES..
DVCES....
 ...
 . ... ...
. .
.... ....  29
1 0
011 Genera  29
102 Vacum Breaker Vaves .. .. . ...
 .  .... ...
...........
......  29
1 03 Rupture Devic
Device
e..
.        .
 .......
  29

1.0 INS PCTION, QULITY ND FID INSTAATION ...........


INSPCTION, ............ .  3 0
 3 0
111 Leaage Testing...
Testing.........
....... . : ....
 ......  3 0
 3 0  
112 Inspection and Quality
Quality of
o fWelding ..............
........ ......  3 0  
1133 Surce Preparaton Reurements ..
11 ...........
...........  31 
 31
114
114 Panting Coatng an
Panting and
d Corroson Prot
Proteection
ction· ................
.....................
.....   3 2  
115
115 Quality Assur
Assurance
ance ...........
..................
.......  3 2
 2  
116 rction Advisor Duties
Duties ...........
..................
........
.  3 2
117 rection Cleanliness 
.... 
.
 . 
 .  ...... .. . .  32
118 Posrection Walkdown...
Walkdown...  
 .. . 
. .
 . .....
  33

 20 COMMISSIONNG. . .   


COMMISSIONNG.   .  .
....
... 
..
.. ...   ... .. .  33
1 2.1 Cold Comissioning .  .....
..      
  .
.
.......... ..  3 3
 3  
1 22 Hot Commissioning ..
.. ..... ..
.. ..... ..
........ .   3 
1 2.3 Duties o a Commissioning
Commissioning Advisor ....... .. ...
......... .. .. .    3 4  

APPENICES
 Apendx A HI ACC Data Seets ......................
......................  35
 Appendix B Conversion Factors ....................................
.....................................  37
 Appendx   ACC Troubeshootin
Troubeshootingg Gudelines .....................
.......................  38

TALES
Table 1 Typcal Corrosion Aowance Values ..............
...............
.. 6
Table 2 Ratio o
o  the Actual Non-Condensable
Non-Condensable Load Remoed From the System
9
Table 3 to Design Capacity...................
Prerred Capacity
Locatons.........................
ofConnections sually Instaled on te ACC System ......
......
.... 18
Tabl  Typcal Alowabe ozzle
ozz le oads .....................
................. .......
....
..  22
Table 5 One L Exhaust Casng .................
.....................
.....  2 5
Table 6 Two LP xaust Casngs ...................
...................  27
Table 7 Tree P Exhaust Casngs ..........................
...........................  28
Table 8 Vacuum Breaker Size r ACCs ...................
....................  29
Table 9 Recommended Acceptable
Acceptable Preparatons of Components and Assembles Built
n Manuctures Faclites ..........................
..............................
......  311
 3

FGURES
Fgure 1  AFram Air Cooled Condnser
Condnser ....................
.........................
...... 4
Figur 2  Ar Cooed Condenser Bundles
Bundles ..................
.....................
.... 

iv
 

gure 3  Air net Bockage Consierations .....


......
.

 7
gure 4  ACC Operating
Operating Characterstic ........
. .........
...
.  8
gure 5 Recmmended Vacuum Steam Velocity Limts (Impeial Unts)

  . 11
igure 6 Recommended Vacuum Steam Velocity Lmts (SI Unts .
..
. . 11

igure 7  ACC with Recircuation


Recircuation...
... . 14
igure 8  ACC with net A Fow Reductio
Reductio  ........
........

...
...

 15

u
 

FOREWORD

The rst diton Standards fr Air Cooled Condnsers has been developed by te Ar Cooled Condenser
Section o the Heat Exchange Insttute Inc. he technica inormation in these standards combnes
present industry standards typical Purcaser requiremens, and Manuact
Manuacturer
urers
s experience.In
experience.In additon,
te standards outlne the important desgn critera r air cooled condensers These standards provde
practical nrmation on nomencature, dimensons, testng, and perrmce. Use o te standard will
ensure a minimum o misunderstanding between Manucturer and Purchaser, and wil assist in the
proper selecton o equipment best suited to the requirements o te appcation
The publicaton o the rst edition o Standards r Air Coold Codensers represents another step in
the Heat xchange Institute's
Institute's continu
continuing
ing program to provide standa
standards
rds which refect the latest techno
techno
logical advancement in thefeld o heat exchange equipment. he Standards r Air Cooled Condensers
are continally reviewed
reviewed by the ecnical Commttee at a t scheduled meeting under the directon o the
r Cooled Condenser Section Suggestions r mprovement o this standard are welcom and should be
sent to the Heat Excange nstitute,
nstitute, Inc
Inc,  30
3000 Sumner Avenue,
Aven ue, Cleveland,
Cleveland, Ohio
Ohio 4 4 5 , or va teleph
telephone
one
at 21 62 4 1- 7 333,
333, v
va
a 
ax
ax at 21 6-24 -0 10 5, or email
email the HEI at he@eatexchange.org Addtional
nfrmation, such as tech sheets, member company proles, membershp inormaton, and a complete
isting o al HE Standards, can be und at wwwheatexcange.org

ui
 

1.0 SCOPE AND PURPOSE

Tis tandard covers te specication and design conditions suc as terma perrmance eects in
considerations along wit te perrmance nd te summer deadzone rmation and eezing in
opeationa issues ssociated wit Air Cooed te winter
Condensers ACC) r power pant applications. In
addition genral eld installation and commission Tere are many ierent types of ACCs designed
ing practices will also be discussed r varios seices Tis tandard appies only to

Tis tandard wi address cmmon operational twostage


utilized in vacuum steam
power plant condensers predominanty
appications
problems experienced during extreme ambient

20 DEFITNS

21 F 29 B F 


art of the steel structure above te n deck The are esured at te ce side of a
i te shape of te letter A tat ay support budle The len of te bundle is equal to te
te heat exchager bundles Atoug tis is length of the tubes excluding the ube seets Te
te most coon couratio alternative with correspods to te width of te oral air
bunde arraeents re feasible (ie horizotal ow plane on a per bunde basis
vetcal, Vae etc 210 
22 t P allest subdivisio i  ACC, soeties
The pressure measured o absolute
absolute zero  rerred to as odule which ca nctio as an
ic gA  br. independent unit wth
ow; it is unded regrd by
eerally to air andexterior
either steam
23 R
R
 St
 syste to reove o-condesable gases walls or patition
patitio n wlls Each cell may ave oe or
ad maitai the capbiliy of the ACC The ore as although typicl the uber of ans
airrmoval syste ay contain additioal per cell is ite
itedd to oe
componets to support the opertio of a vacuu 211 t 

daerator ollects the condenste o the ed tube
24    C budles and conveys the uncodensed steam om
A eat echger usg abiet air as te the rst stge to te scod stge budles
heat sink to bsorb het directly o sea at 212 t /R
vcuum codtios codensin te stem ad A vessel t approiately the same pressure
recoveg the condese as would be typiclly as the ACC that collects condesate retug
usd in an electric powergeneratig sttion. o the eat trasr suraces system dras
25  
 Ht and akeup water t is equivalent to the hot
'e eiht om gade level to the a inlet o well of a ste suface codeser
bottom of the a rings 213  P P

26   t
t  The absolute static pressure of te condensing
Te dry bulb teperature of the ar enteri stea at a dened location.
the ACC includig the eect of rcirculation n/ 214  St t
t
or added et sources The saturatio teperature coresponding
27
2 7 B P to te absolute static pressure of te condensig
Te absolute value of the static pressure t stea at  dened location
the prescribed locatio ypically at or ear e 215 Dt
stem turbie ehaust ange at
a t which desig and A ass transr device tht reoves
reo ves dissolved
dissolved
guaranteed perorace are to be achieved nocondesbles o te condensate and/or
28 B keup wter
 et ecager element
eleme nt composed of a set of
ned ubes hrin coon tube sheets

1
 

216 Da P 227 Ra


A vsse that is an intega pat of the steam A condtion in whch a porton of the ACC's
duct ocated at the owest point and coects the wa dschage a eentes the a net aong
condensate o steam duct Atenativey, a wth esh ambent ai ts eect is an eevation of
sepate coecton vesse can be uted wth a the aveage a inet tepeatue compaed wth
gavty dain connection at the ow pont of the the ambent dy bub tempeatue
stea duct 228 R CC R)
217 Ea Sa  Ra Goup of ces served by a common stea
Tota mass ow rate of the steam etng the heade t s aso eed to as a "steet
ow pessue stea tubine ehaust 229 S Sa C
218 E  a ACC ce wth the steam and condnsate owng
The aveage dy bub temeatue of the ai n counte-ow; the second stage c coects
eaving the heat ehange bundes the non-condensabes and s connected wth the
29 a  e e  aeova syste at the top and the condensate
The aveage air net veocity noma to the heade at the boom  s aso efeed to as a
bunde ce ephegato o eu ce.
220 a D 230 S R
oizonta pane ocated at the top of the ACC
AC C A mechanca device incopoated beween the
sbstctue with access to the ns drve and the n, desgned to educe the speed of
the drve to an optu speed  the an A speed
221 F
F
 Sae Ce edu�er c be eithe a geabo o a Vbet.
CC ce wth the stea and condensate
owing down concuenty the st stage bundes 231 Sea D
D Se
ae connected wth the steam heade at the top Conveys the ow of sta om the ow pessue
and the condensate heade at the botto It s steam tubne eaust
eaust to the bundes. The duct may
aso efered to as a Ko Condense ce incude epanson joints byass spages, dain pot,
bach syses (ises) and isoaton vaves.
222 H Se 232 Sa Ha
The poton of the a-emova system used
duig statup to emove ar om the ACC Conveys the steam o the ises to the net of
bee admttng stea a st stage bundes n an ACC ow
223 H Se 233 Sa Qa
The potion ofte
of te a emova syste dedcated The mass action of dy ad satuated stea in
to contnuous emova of noncondensabe gases a satuated wate/stea mtue. A stea quaity
o the top of the second stage bundes of zeo ndcates % condensate, whie a stea
quaity of  indcates % dy ad satuated
224 I eea
eeae e D OD seam
The dence between the condensing steam
tepeatue at the ACC iet and the ai inet 23   Ha  S a
teperatu. The tota aea of the outsde heat tans
suce posed to ai.
225 L a  ae
ae De
LD) 235  Ea
nce the condensng pocess n an ACC s not The d
tubine nteace betwen
the ACC steathe ow pesse steam
duct.
sothema because of the sigicat steasde
pessue dop nvoved, a epesentative vaue  23  Ea e
the MT can be dened as the tota heat duty of ee back pessue.
condensaton dvided by the puct o the ovea 23 Wa
heat tansfe coecent utiped by the tota The vetica peimete wals above the an deck,
aisde heat tasr suce aea whch tycay extend to the top of the tube bundes
226 P e/S to minmize potntia ecicuation and shed the
The aea between a pimay ACC suppot heat tans suce om wind eects
coumns pected at grade eve

2
 

3.0 SYMBOLS & UNITS

Abreviato Name Typcal Uns


FV Fu Vauum Hg, (a
(a)
)
Prt,ins Iaed Moo Powe h (kW)
P Fa Sha Powe h, (kW)
. Deg A e emeaue "F, ( °C)
c�
c�i i

 Mmum A Ie emeaue F (C)


AIH A Ie egh  (m)
Q Hea Loa� Bu/h (W)
Uve Oea ea afe Coee See Bu/2 h °F, (/m K)
(/m 2

A A-e ea afe Sufae Aea   (m )


 

M ogahm Mea emeaue Deee F (C)


E ea Exhage Efeee
m a'
Ma Fow Rae A /e, (kg/e)
C,a S ea A Bu/ F (J/kg K)
I I a emeaue Deee F (C)
Tslam,i Ie Seam emeaue F (C)
Trn1t
Tr Ie A emeaue F, c·>
fT.1, Chage  emeae of he A F (C)
m"
Ie Ma Fow Rae /e (kg/e)
h; Ie Ehay Bu/ (kJ/kg)
 ot Oue Ma Fow Rae /e, (kg/e)
h hay Coeae Bu/ (kJ/kg)
m vn
vnll Ma Fow Ve /e (kg/e)
h_ Ehay Ve Bu/ (k/kg)
DO Doe Oyge 
 Foug Fao h  F/B (mK
 Oea ea afe Coee New a Cea Bu/ h F, (W/m K)
w Wae Vao oa / (kg/kg)
MW Moeua Wegh, NoCoeae g/mo
P Sauao Peue of Seam a Mxue emeaue a (aa)
P oa Peue of Mxue a (aa)
A Mmum Reque Fow Aea ( )
w. Dhage Fow Rae (/h)
K Fow Coee
Coee
PA Reeg Peue a

3
 

4.0 GENERAL OVERVEW / DESCRIPTO


DESCRIPTON
N
OF AN A R COOLED CONDENSER (ACC)
(ACC) SYSTE
SYSTEM
M

4 1 De
Den
nt
tn
n of an ACC

An ACC is a system that conveys exhaust stea


to an array
steam of heat the
by rejecting exchangers
heat to that condense
abient th
air. The
mthod o cooling is direct heat exchange because
the heat is transrred o the primary source
(exhaust stea) directy to th� utmate cooing
meda (ambient air) The ACC cn use natura dra
or mechanical dra (rced or induced) to drive ----•
) cn
cnde
dens
nsabl
ables
es o
ott
ambient air across the heat xchange surce (tube nndensabes out
bundes). Te most comon design is the A-Frame
rced dra
dra arrangement
arrangement as seen in igure No. 1. Fgre 2
AR
AR COOED CONDENSER BU NDES

Vndwal
Stage Bundle  es
422.1 First Stage esee bundes
A Moving System are connected
connected to the steam header
hea der at the top
and condensate e!der at te_bQtom. The
Fan ec
steam ows concurrenty through th tubes
o the rst stage bundes,
bunde s, where steam and
condensate ow
design, steam in th are
veocities sae drection
maintain
maintained By
ed high
Supp
enough to continuay sweep nonondens
Sture abe gases into the second stage bunde via
Mi t D the condensate header. Condensate s aso
coleced within the condensate hedr and
Figre 1 drained. The rst stage bundes typcay
A - FRAME AIR
AIR COOLED
COOLED CONDENSER condense 6090% o the tota stea through
the ACC
42 Ma
Majr
jr Cpnents
C pnents  an ACC Syst
System:
em:
Stage Bunde  he second
4222 Secnd Stage second
421 Air-
Air-Mving
Mving Syst
System
em  A typica
typica rce
rcedd stage bundles condense the rmaining
dra airmoving system
system consists o the owing
owin g stea and coect noncondensabe gases
coponents: at the top o the bunde. These bundles
• Fan  Ax Axia
ia ns push
push ambien
ambientt coolng
coolng are attached to the condensate header at
air across the extended surce o the n the bottom and have ar remova headers
tube bunde to transer the heat om the at the top r noncondensabe extraction
condnsing steam within the tubes by the air remova sysem. Ste ows
• Eectric
n
Mtr  Eect
Eectric
ric motors
motors drive
drive the countercuently through the tubes o the
second stage bundles, where the steam and
• Speed Reducer  The gearbox or V bet noncondensabes trave up and condensate
reduces the rotationa speed o the n and ows down
down into the condensate header.
provides the n with th required torue and
sped. 4.27
4.2 7 Supprt
Supprt Structure  The support
• RTh
RThe enrin
nringisa
gisacyindr
cyindricastruc
icastructure
ture structure s typcaly an arrangement o coumns
that surounds the n in order to optimize and bracng that uppots the ACC coponents
n perrance. It s typcally constructed at the proper eevaton abov gade
o steel, berglass or poypropyene.
42.8 Fan Deck  The n deck s the ower
ower n
422 Bundes  A bunde conssts o multipe penum boundary r the airoving system
nned tubes weded into
int o the tubesheets at ethe
etherr
end. There are two types
types o bundles rst and
second stag
stag condensing
condensin g bundles

4
 

29 S
S
 Dtt St
St  The stea
steam
m bundles. The nction of the windwal is to
distributon system consists of the llowing reduce te negative wind eects on the an air
primary components: ow and unirm heat transr, as well as to
• M St D D
  The man
man steam duct mnimze potental r warm air recirculation.
interces with the steam turbne and serves
to convey all eaust steam to the steam 2  


 
  Te condensate
distribution network The main steam duct is tank serves to collect te condensate that
also dsigned to provide connection ponts r s rmed within the ACC ran pipng is
steam turbine bypass mscllaneous vents, routed om the condensate eaders to the
drains, low point drain pot, etc tank Typcally, the condensate tank s located
 S D M  The steam beneat the ACC and supported at ade level.
dstrbution manild s _used to dstribute
steam between te main steam duct and 212   St St  The prmaprmary
ry
the steam headers Ts manild includes purpose ofthe
ofthe ar removal system is to extract any
vertical ducts rerred to as risers The non-condensable gases that accumulate at te
risers wll generally ave expansion joints to top of te second stage condensing bundles Air
accommodate te thermal xpansion. removal systems are typcally either a twostage
 St H  The steamsteam ader sees to steam et air eector
eector (JAE)
( JAE) or luid
l uid ring vacuum
convey stea between te manilds and the pump (LRV) system Alternatively, ybrid
rst stage bundles of an ACC row. Expansion systems may also be employ
employed
ed Typcally, te air
onts may also be required in te steam removal system also contains a hogging system
header to accommodate termal expansion. to rapidly evacuate the ACC volume r startup

420   Wndwals are generally


installed around the perimeter of the ACC and
extend om te an dec to the top of the tube

5. 0 ESI
ESIGN
GN CONSDERATIONS

 D
D
 P
P  t
t At certain locatons of the steam duct, te local
temperature may exceed the maximum design
511 The maximum desigdesign
n pressue is te temperature (at te bypass connections, r
maximum pressure specied by t ACC example), and the supplier typcally imposes a
supplier as a crterion r ACC design The lmit on the enthalpy of the bypass
bypass steam
steam entering
mamum design pressure is not the same the duct A maximu
maximum m value
value of  7 Btu/lb (7
as orating pressure; it is somewhat ger kJ/k
kJ /kgg  is typical.
typical. Te value of  7 Btu/b (7
than te operating pressure r all operating J/kg) may result in a steam temperature > 
conditions. Althoug te maximum and F (   C.
C . owe
owever,
ver, experen
experence
ce has
has proven
proven that
mnimum design temperature and pressure this is a in
results good practical upper
acceptable limit andwen
temperatures typically
te
could also be specied by the purcaser, the
maximum limits are typically determined by ACC is operated undr vacuum conditions.
the ACC tub technology For sngle row tube
technologes, the mamum desg pressure of Te desgn temperature s primarly used r
the ACC is typically set at  psig (. barg. selectng materal suitability and thermal
expansion calculations
e minimum desgn pressure r ACCs
operatng below atmospheric pressure s ll The desi pressure is used r te design of
vacuum (FV. steam ducting tanks and, ruptur discs, among
other equipm
equipment.
ent.
The desig temperatu
temperature
re is typica
typically
lly  °F   
·)

5
 

5.2 Cor
Corrosion
rosion Allowance motors normally hae a seice
sei ce ctor
cto r of 11 5 
Classinsulatio
Class insulationn with a Cla
ClassB
ssB temperature rise
Corrosion allowance is the incremental material
thickness aboe what is required to meet th or stan
standar
dardd nois
noisee applica
applicatiotions,
ns, 1 8 0 0 rpm, sinle
structural anor process requirements A corrosion speed (wi
(with
th or without
without VDs) or two speed sinle
allowance is recommended r all surces exposed windi
windin
n mot
motor
orss (1 8 0 0/9 0 0 rpm)
rpm) cancan be used
used

to the process uid as per Table 1 Control of turbine back ressure and
and/or
/or eeze
protection wll determine whether sinle speed,
Table 1 two-speed motors or VDs ar required in order
TYPICAL CORROSION ALOWANCE VALUES to proide a sucient number of control steps

ACC Equipment I Typ cal Corros


Allowance Valeson n the eent VFDs ar used, the motor should be
suitable r such application
Dg 1 mm
b 0m Horizontal motors mounted ertically are
�p 3m typically used r ACCs desined in accordance
with NEMA
NEMA B
k 3m
h rat
rated
ed motor power
powe r shall be eater tan
t an the
53
5 3 Air-ovng Eqpment electio
electionn equired motor output power at the desin point
Guidenes n accordance with th lowi equation:
The air-moin equipment of an ACC consists of
ofa mot,slsl . (f,sh /  0
Pmot,  0.. 9 7 ) X ( 27  3
 3 + Tdesi )/( 27 3  T i 
i 
°
 
an, speed reducer and motor wih T deag 
and T m 
i n  C 

531 Fan Selecton  irst, the n n is selected; Where T is the mnimum inlet ar temperature
m
axial ow ns ar used r ACC applications r which one ofthe motos is expected to be at
The duty point of the n is detemned by ll speed  this alue
alue is typica lly 5  C or an
typically 

the required air ow rate and correspond aessie motor selection and hiher desin
n n static pressure in order to meet the bient tempera
temperatures
tures T may be increased up
thermal capacity of the ACC or lare siz to 10 C Athouh the drien load may exceed
°

ns (dameter .  28 , a mnimum of e an the nameplate alue at temperatures below this
blades is recommended with a maximum tip point this is normally acceptable to the motor
spe thathatt should
should not exceed 6 0 ms ( 1 2, 0 0 0 suppliers due to the additional coolin aailable.
m
m The an
an sha power
p ower serves as the basis r
r Conrmation should be obtained om the motor
determinin
determin in the
th e motor rat
ratin
inThe n rotati
rotation
on supplier this applies only to rced dra con
speed is used in combination with the motor rations with the motor installed in the cold
speed to determine th sed reduction ratio ambient air stream
Aditionall fa selection parameters:
Aditiona 5 33 pee
peed
d Rucer eecto
eecton
n  ypi
ypical
call
l
•  Air ow marin the speed reducers are helical, multi-reduction
• ressure margin paralel sha earboxes.Vbelts
earboxes.Vbelts can also
also be used
• an coerae on smaller installations The sece ctor r
• an blade tip clearance speed reducers (eabox or belt shoul
shouldd be   2
 2.0
.0
• Operatin and natural equency of an blade based on the motor nameplate power r sinle
• an blade loadin and multised motors and  17 5 r ariable
• Low ambient temperature hardware equency drie applicationsThe
applicationsThe thermal ratin
• Viration imits of the earbox should be 10 at the maxmum
,

• Stati
Staticc eciency
ecien cy air temperature based on the motor nameplate
• Wind eect on the n capacity powr Possible accessories r eboxes are
• an ocation with respect to obstacles listed below
• ose limitations • Backstops
 Oil pumps (sha drien or electrical
5.32 Motor election  yp ypica
ically
lly 4 6 0V
0V// 3 • Oil pressure/ow switches
phase/6 0 Hz, NMA, TEC motors are used r
phase/6 • Oil heater & themostat
 ACCapplications up to and includin 25 0 hp
hpuch • Input couplin

6
 

54 Ar Flow Consideration Equpment pacement and obstaces undeneath


and besdes the ACC sha be coodnated wth
54.1 Coon a fows nto the ACC ns va the the manuctue
manuctue 
a net
net n most cases some o the a net
n et aea • Eectca o othe budns
w be bocked by obstaces e the steam duct, • Condensate tank and vacuum deaeato
othe equpment o o  bu
b udngs
dngs ven i obstaces
obstaces • A emova equipment
ae not ocated unde the ACC o at the a net, • Condensate extacton pumps
these can st be consdeed bockae •• Cabe
Othe tays
heat exchanes
 As a ue o thumb obstaces that
that  beow a 4 5 • Othe obstaces
degee ne onatn at a pont equa to 1 a
net heht AH) away om_
om_ the ACC w have 55 Fin Tube Cean ng Sysem
negigbee eects on
negigb o n the a
a  w to the ACC
ACCAny
obstace that extends above ths ne sha be 55 The purpose o a n Tube Ceann
consdeed n the manuctue's desin System CS) s to cean the outside heat
tans sufce n such a way that the thema
capacity o the ACC s estoed cose to the
ona capacy Extena ung o the heat
tans sufce by abone patcuates can
signicanty educe
 educe the pemanc o the
the ACC.
ACC.
Because the extent o extena ung s hghy
hgh y
dependent on oca envonmenta condtons
the equency o ceanng w vay with the
Fige 3 envonmenta condtons. At a mnmum, the
AR NLET BCKAGE CNSIDERAT
CNSIDERATION
IONS
S  ACC shoud be cea
ceaned
ned once pe yea typca
typcay
y
bee the wam season stats
542 To mnimze warm a eccuaton t s 552 The n tube bundes ae ceaned usng
ecommended that the aveage a veocty at hh pessue wate; an opeatn pessue o at
the ACC
the  ACC outet be equa to o eate than the
t he east
east 7 5 0 ps s ecommended Hi Hihe
he pessues
pessues
aveage a veocty
veoc ty at the ACC net, wth both can esut n a moe eectve ceann and
the aveage a net and a outet veoctes educe cean tme and wate consumpton.
based on ee ow aea The quaty
qua ty o the wate  the n tube ceann
system shoud be spece
sp ecedd by the ACC manuc
manuc
In addton t s ecommnded to mt the tue to avod cooson and scang o the
aveage a net
n et veocty
ve octy to 5 ms
ms based on the outsde
outs de heat exchange
exchan ge suce
ee ow aea) and shou
s houdd be seected to
to pomote
unm a dstbuton to a fns 553 Deent n tube
tub e ceanin
ce anin systms ae on
the maet and can be cateozed by the eve
543 The tota n statc pessue sha o automaton
automaton o th
thee ceann
c eann devce
consde the own osses:
• A net accee
a cceeaton
aton and tunn 553 Manua fn tube canin systems

• Fan uad bockae


net be shape consst oon one
mounted o sevea
a suppot spay
that uns heades
alon both
• Fan bdge bocae sdes o the A-ame Because thee ae no
• Penum dschae motoed parts, the spay headers must be
• Bunde moved manua y.
• Dectona chanes
• Dschage oss 5532 Sem automatc n tube ceann
• Natua daf coecton systems have a educed numbe o spay
• A net
ne t and ai oute
outett ouvers  appcab
appcabe)
e) nozzes mounted on an automated spay
• A net ad a outet nose sences ( caae that taveses the bundes Some
appcabe) degee o manua oeaton s
 s equed wth
ths system
t is ecommended that every ce sha be
patton ed on the
pattoned th e an dschae
dscha e sd
s de

7
 

6.0 AR COO LED CONDEN


CONDENSER
SER PERF ORMA NCE / OPE
OPERA
RATION
TION

6. 1 Genera
Generall Consideatons
Consideatons The genera heat transfer equaton are
The errmance of an ACC cannot be exactly Q = 1
1 LM
redicted under all ossble oerating conditions. UA

Consequently
errmance datacures or aroximate
are only tabulations excet
of ACCr
Q = E  ;,
;,cp
cpI
ITD
TD with   i   1 - e"
 with "r'
r' and
one secic condition termed the Desgn Pont" JTD  =  T,1 miinn - Tai
a lt  l 
Perrmance chcks should be mad only when the
system has been stablized and eroducble vaues
are attain
attainabe.
abe.
Q�
� m i hl.  m
· OU hcond  m· wt h vent
Commercia oeratng conditions are recognized as
nvolving uncontrollable variations in ar eakage
nto the ACC and ts reated system under vacuum. I should be noted that the term   h is
These varations whie neggble under some qute sma and is generaly considered negigible;
conditions, render te exact redcton of the ACC therere,
there re, r the urose of the thrmal
thrmal errmance
rrmance imractical r ar/non-condensable caculatons the above equaton can b rduced to:
ilet rates exceeding 50% of the values secied in
section 9 � m•  hin - mo
Q=� · u, hcd
mou
ACC errmance nrmation is based on venting The overal serice heat transr coecent (U)
equiment havng a caacity secied n Section 9. combnes
at the ofconvective
the insde th tube heat transrthrough
conduction coecient
th
Due to the eect on ACC errmance the ocaton tube wall and ns, and the convective heat transr
o edwater heaters and/or extraction iing and coecint at the outside of the ns. The governing
b-ass sargers or related equment shoud be resistance
resistan ce r heat transfer
transfer is the air-side resistance
subject to the ACC manucturer's aroval aer whch s deendent on the tube and n geometry
th turbine ow disrbution dagram (veocity
(veocity ma) Therere  s a function of the tube character
arc
ha been made availabe
availabe istics and will vary r each manucturer
Ithoud be recognized that the ACC errmance The steam temerature is related to the steam
becomes unredictable at reduced heat duty ambent ressur
res suree whch is a known reationshi r saturated
tmeratures below eezng and ow turbine back steam conditions. Therere r a given ITD, the back
back
ressures ressure wil vary wth thethe ar net temerat
temerature.
ure.
62  
  reations
reationsh
h between
between From the equations above it can be demonstratd
trbne back ressure stam ow T• altitude that f the load () is increased, then the ITD wll
and n ower. incease roortonally, ignorng th eect of the
steamsde ressure losses.
losses.
The desig of angases
non-condensable ACC that
mustareconsider
rsentthein eects
the ACCof
and ressure dro of the steam as it ows through
the duct
du ct syst
system
em and through
thro ugh the tubes of both stages
stages
of the ACC
The heat transr coecent of a typica commercial
oeratng ACC is ess than that attainable n
aboratory tests The sce heat transr
cocent coared wth a new and clean heat
transr surce area shoud be taken into account
in the design of the
the ACC
Figre 4
ACC OPERATING CHARACTERSTC
CHARACTERSTC

8
 

6 2
62 Oher ors
ors inening he ACC e ACC perrmane owever, under
perrmane are ised beow eezing ambien ondiions, aumua
62 Fae a ety  Te e air ion of nonondensaes (dead zones)
veloy is diretly proportonal to te air may aso resut in damage to the hea
mass ow rae hrough the ea exhangr ransr sura de o eeing of e
and has a signiant impat on he overall ondensae side he ubes
hea ransfr oeient or a given
ACC, iger
inreased e heat
overal ar veoty
ransr resls n an
oien, 626
62 6sally
leves oiseave
ACCsower
desiged r low oise
e veoities and
abei agains inreased an power owerr speed ns Conseque
owe Consequenly,
nly, these ACCs
A CCs
ypay ave greaer sure area and are
62 2  esy  Th Thee air ma
mass
ss o
ow
w more sensive to wind ees
rate is proporonal  he ar density,
and has an impat on e overal eat 62 7 

  Re
Re
rr o eti
etion
on 
transr oeen as we. T air densty
is a ntion of e dry bb emperatre, 628 Pea  repitation may
atmosper pressre, and o a muh lesser have a beneia ee on he herma
exten, of the
the relaive midity ne e perrmane as a onseqene
onseqen e of evaporaive
evaporaive
impa of he relaiv midity on he oolng However, in some ass te preipi
herma perrmane of  ACC is rater aion an inreas he airside rsisanes
sma i is suay omied in the ermal eading o a redution in perrmane
aulaions
62 9 S
629 Sa
a aa  Rer o etion
62  3 F  Ref
Refer
er to e
eon
on 
 

624 Sea ees  63 eaea


eaea
 a sse ye
sualy, he steam leavig he seam
rbne ehast s sauraed
sauraed wh a steam Under pratia operang ondiions, withou a
quaiy geaer a 8% nder bypass deaeraor a reasonably
deaeraor reasonably airtgh ACC
AC C an be exptd
or sartup onditions, sperhaed seam to prode ondensae wih a dissoled oxygen (DO
may ener he ACC. ACC manuar onen no exeedng 0 ppb Rer o Table  elow
ers usuay impose limiaons on he
ntapy
nta py of he seam
seam entering the ACC
AC C Wit erain onditions of sable opeaion and
tha are lower tan hose r steam stable onsruion, an oxygen onent no
srae ondensers This s reated to exeeding 0 ppb may be obtained as lows:
he reativey on
ong
g rav
rav dis
disanes
anes of te
seam
seam por t o reahng he eat
e at ransr 63
6 3 Th
Thee rato of h
hee aa
aall nonondensable
sraces and he assoiaed arge ermal load removed om he sysem o te desgn
epansion of he steam dting A yia apay of te arremoval eqipment shoud e
maximum seam enhapy entering t no greaer an the vaes in te table beow
du is  0 B
Bu/
u/b
b (0 kJ/kg)
kJ/kg)
Tabl
Table
e2
621 esaes  RATIO OF THE
THE ACTUAL NON-CONDEN SABLE
Nonondensaes mus e removed om LOAD REMOVED FROM THE SYSTEM
he ACC o avoid aumul
au mula
aion,
ion, whih wi
resu  redued ACC apabity There
are two major ees of nonondens
abes a redution in avaae ea
transr area (when nonondensabs are
V

I
TO DESI GN CAPACTY

 
  
 '   b
 E 
 

aumuating o rm a dead zone or air 50 50 
pok) and a redion in overal eat 0  0 M
M 5 0 
ransfer oeien (redued ondensa
ion rae) espeialy in he seond sage, 50 50 
0 0 M
M 5 0 
where he onentration of non-ondens
aes ecomes sigian ng warm > 0 M ee oe  ee oe 
weaher operation, aumuaion o f
non-ondensabes would primay aet

9
 

Noes: 634.2 Wheer or no a vacuum deaeraor


aTe des design
ign capaciy of e air-remova is uilized, e above O leves canno be
equipmen sould be in accordance wi acieved during saup condiions low
Secon 9 load operaion (less an 25%
25% or in eeze
.T
Tes
esee raios
ra ios are r airremov
ai rremova
a equipme
eq uipmen
n proecion conrol mode.
raed a 1 inc HgA.
For airremova equipmen wi design 6.4 Condensate
C ondensate Subcoo
Subcoolng
lng
capacy
capac y exceeding 0 SCFM, e non-condens
non-condens
abess removed soud no excee
abe exceedd 20 SCFM 6.4.1 Condensae subcoo
Condensae subcooling
ling is casualy dened
r 5 0 ppb and  0 SCFM SCFM r 20 ppb. ppb. s e dierence beween e sauraion
emperaure of e seam a e seam ubine
6.3.2 Tere soud be zeroair eaage drecly exaus and e emperaure of e condensae
ino e condensae below e condensae evel a e oue ofe
ofe condensae ank is is no
in e condensae ank e arrangemen and o be consed wi e convenional subcooling
ocaion of
o f all ingress poins ino e condenser deniion, wic is e local emperaure
r waer vapor or oer gases sould be subjec dierence
dierence a
a  a given locaion
loc aion beween e seam
o e approva of e manucurer Examples nd e condensae
ofe poenial sources ofair ae as llow
llows
s
• P seam urbine casing ad inerace wi 6.42 ue o e sigican seamside pressure
e ACC losses, condensae subcooling will be muc
 eakage into e vacuum side of e sysem reaer an e values obseed in a seam
roug leaks in welds packing gands, gauge surce condenserValu
condenserValueses up o  5  F are possible
°

glass; insrumenaon eads loop seals wi ACC uness a vacuum deaeraor
deaeraor is used o
seam raps ec reea e condensae coming om e ACC A
• vens,
Low pressure eaerwen
paricularly condensae drainsbeow
operaing and vacuum deaeraor
ondensae sould
o wiin
o bee
4  F ofe

of abe o reea
sauraed e
seam
amosperc pressur
pressure
e emperaure a e seam urbine exaus
• Me-up waer wic is usually sauraed xra consideraion sould be gven o e
wi oxygen seam-sde pressure drop beween e seam
• Condensae surge ank wen uilized in urbine exaus and e vacuum deaerao
closed cyces.
65 Ceaness Factors
Factors,, Foing Factors
Factors
63.3 Were condensae om
om processing sysems and Perfrmance Margns
anor cogeneraion sysems is nroduced o
e ACC i sal be assured a e oxygen 651  A cleaniness c
cor
or is e raio of e
conen ofe
ofe reurned condensae
condensae s no
n o eaer acual ea
 ea ransfer coecien
coecien  o e clean
an a specied r e dissolved oxygen ea ransr coecien
coeci en Aoug a cleanliness
cleanlin ess
guaanee Iis
Iis is no e case special inernal
inernal cor is used wi waercled condensers, i is
deaeraing provisions may be required and/or no applicable o ACCs since e seice value
reurns sa e deaeraed exernally prior o e overal ea rsfe coecien (U) is
ofe
of
beng reurnd o e ACC Te specic oxygen provded by e manucurer
evel (ppb n reuing condensae and e
quaniy
specied of
or
f condensae
e manu being
manuc reurned
reur
curer's
urer's ned mus
mus  be
consideraon
652  A ui
"seice uing
ng co
overa cor
ea rransfer
(F iserused
ransf o relae
cecien e
o e
"clean overall ea ransr coecien, and is
634 For all unspecied drains i is e dened by e lowng equaion
purcase's responsibiliy o limi e DO level
r all exernal sreams o a value below e 1 1
-
uaranee +F
Usrvic
=

ucle
6341  Aloug ACC sysems a ave
viruly no air leakage may yield ower 652.1  A ypica value r F is 0000
00 3 r
 leves, r design purposes vacuum  Fu or 00005 m based on e
2
deaeraors sould be uilized o oban leves
ppb down o 7 ppb.
om  20 ppb oa airside suce area wic accouns
r bo e seam-side and unrecoverabe
airside uling Addiional airsde uling

10
 

67. The lowing arside pressure osses shall 6 Bunde  This is the
6.76
6.7 the pressure
pressure loss
loss
be accounted r associated with the airow through the heat
67.  Ar in
inlet  Ths is the prssure oss
let exchanger bundles This loss incudes the
associated with drawing the ar i om the entrace loss to the heat exchang surce
ambient environment through the air inlet oss through the heat exchange surce
beneath the ACC along with the urning and the bundle outlet dumping loss. This
loss om a horizontal ow stream to a is highy dependent on n tube desgn and
vertica ow stream The ar nlet height varies between manucturers
manucturers  This is aso
should be sucient to provide unirm the predominant pressure drop within the
distribution of coolin
coolingg ar to al
al  ans
ans
 This syst
sy stem
em and
and typicaly
typicaly represe
represents
nts 5 0  7 0% of
is typically deterined by establishing a the tota air side pressure drop
air inlet velocity such that the horizontal
velocity pressure is scenty ower tha 6 7.. 7 Bun
Bund
dee outet- Th is the pressur
outet-
the static pressure developed by the an loss associated with air ow turning om the
 A typica
typicall mai
maimum
mum vaue r the ar inlet heat exchager bundle exit to the discharge
velocity is 5 ms. ofthe ACC.

6.7.2 Fan a and fan iet be  6.7.1.


6.7 .1. 8 Natura
Natura drat correction  This
correction
The n ard is typicaly
typi caly a rm of screen is the buoyancy contribution that the hot
that can vary om a lght gauge
g auge material to discharge air contributes to the air-side
prevent immediate access and sow ling pressure losses This will be reported as a
debris to a heavier gauge materal tha negative pressure oss and is a nction of
can also serve as a working platrm. The the windwal/dra height and the dierence
air-side pressure loss associated with the in the air density between the ambient and

n gard of
geomety depends upon the The
this component location and
an inlet the ACC discharge air
bell sees to create an ecient arow 6. 7 .9 Air net
net and air outet lover  if
outet lover
guide into the n The inlet prole and appicable)  Etreme ambien
ambienoperat
operationa
iona
overall geometry
overa geom etry of the an bel will aect considerations may necessitate air inlet or
the pressure loss Fan vendor equipment outlet louvers to enhance airow contro.
rating programs
progr ams utilized
utili zed withn the industry This feature can generate
gener ate signicant
sig nicant
typicaly consider these ctors
ctors additional
additional airside
ai rside pressu
pressure
re losses.

6.7 .1 3 Penu


Penum
m dicarge o   As the
dicarge 6.7..0  nlet and air outlet noie
air is discharged om the n ring to the lencer if appicab
appicable)
le)  Ext
Extreme
reme nois
nois
plenum there is a sudden enlargement of rstrictions may require air inlet or outlet
the air ow path This causes an expansion siencers to reduce the noise emitted by the
loss that
th at is a ncton of the geomet and  ACC This ature can generate signic
signicant
ant
airside properties (i.e., veocity and densit) additiona air-side pressure losses
 ACC manuc
manucturrs
turrs should consider this
loss and other losses associated with the
nonunrm airow conditions that exist at 68 Ar Inlet eperat
eperature
ure
the discha
d ischarge
rge ofthe n
68. The perrmance of an ACC is dependent
67 . 4 n bridge  The n bridge is
Fan
Fa
upon the dry bub temperature of the cooling
c ooling
the structura support of the airmoving air stream It is important to note that the air
system
syste m i
 iee an, motor
mo tor and
a nd gearbox).
ge arbox). Fan tmprature may vary aound the power pant
bridge designs vary and are manucturer and not be consistent or representative of the
depndent The ar ow obstruction type air temperature entering the hat exchanger
and dstance om the n aect ths oss bundles The tempera
temperature
ture of the air
a ir entering
the ACC may b negatively aected by the
6 1 B
B   This is th
thee pres
pressure
sure lowing:
oss assoiated with air ow turning om • Warm air recirculatio
recirculation
n
the n discharge into the heat exchanger • Discharge air om other heat exchangers
bundles • Other sources of thermal nergy

12
 

6.82 The plant desgne should take nto consid pemance unde vaious opeating conditions
eation the pacement of addtonal souces of Ths typcally involves
themal enegy with espect to the locaton of • Singe-speed motos  Swtchng ns on/o
the A CC aong with
with th e pevaling
pevaling summe wnd • Tos
Tospeed
peed motos
motos  witc
witcng
ng betwee
between
n  l
condtions. sped/patial spee/o
• Vaiablespeed moto
motoss  ncemental
6.9 Auxiiay Powe
Powerr Consumptio adjustment

6.91 Typicaly, when evaluating ACC designs, The vaous contol scenaos wl povde very
the ACC n dve motos ae the ony loads to dieent auxiliary powe consumption poles
be consideed when evauated on an annual basis and shoud
be consideed withn the ACC speccation.
6.92 In additon to the A an moto powe,
the llo win
wingg additional system loads may exst: 61 0 Cold Weahe Pe
Pefformance
• Geabox ol pumps and heates
• Vacuum pumps 60 As the a tempeatue deceases, the
• Dan pot pumps capability of the ACC nceases based on a
• Condensate wadng pumps constant condensing pessue Howeve, it is
• Conde nsate ank heates qute common to allow the steam tubine back
• Moto opeated valves pessue to uctuate wth the ai tempeatue
• nstumentation within ceain lmtations
• Space heaters • ACC manuctue ow pessue lmit
• Heat tacing • St eam tubn e manuctue ow pessue
• Lighting lmit
• Cabe osses, vaiable equency dives etc. • Min
Minimum
imum opeating pessue
pessue of the
aiemoval system
69.3 The auxilay powe consumption should • Steam Velocities
be evaluated at the an moto nput temnals
consideng
consid eng speed educe eciency
eciency (96 to 98%) 6102 Once one of the low pessue li mitatons
and moto ecency (91 o 95%) This can cause has been acheved, uthe a tempeatue
the electical powe consumption to exceed the eductions must be accomodated with a contol
n sha powe by geate than 10% ote that step Typcally this is achieved by educing an
an
smalle moto
motos
s (< 50 hp) and V-belt
V-belt dves
dves may speeds
have lowe ecencis
603 If the ai tmatue contnues to
694 The auxil a
ay
y powe consumption wl vay decease so that al  ns ae o, the
the contol
cons ideabl
conside ablyy due to the eect
eectss of mpatue on steps wll
w ll be equed to educe ai ow
ow (inle t o
a densty. As the ai tempeatue inceases, ext louves) o emove heat exchange suce
auxiliay powe will decease, and as the a om opeation (sectonazing valves) Highe
mpeatuee deceases, the auxilary powe will
mpeatu powe density designs (highe an pow e
incease ased on constant n speed I is unitt of heat tansfe
uni tansfe suce aea) wl incease
consideed pudent to have a powe magn (5 the ambent ar tempeatue ange that an
to 10%)condition.
sign
design
de o the instaed moto
Howeve, it iscapabilty at the
not necessary speed contol can acommodae
to spec that this margin be avalable
avala ble ove the 60. It is vey impotant to ensue that theACC
entie ange of ambient condtions. Since most has the capabl ity to opeate eliably and sa sae
ey
y
ced da ACC desigs place the moto in the thoughout the ange of specied tempeatues
dischage steam of the n, the electic moto and  in paticula, tempeatues below
below eezing
w ll benet om
om a cooe opeating envionment Although conto phi losophes va
vayy between the
as the air tempeatue deceases. t s not manuctues, it is impotant to ensue that
unusual to obtan an ambient ar tempeatue steps ae taken to avoid the mation of dead
coection cto om the moto manuctues zones (noncondensable accumulaton) Dead
that will povde nameplate powe correctons zone maton duing eezng conditions will
based on coole opeating
opeating envionments esult n depessed condensae tempeatues
If ths condton is not coected
coected eezing of the
695 The ACC contol logc adusts n condensate withn the tubes and manent
speed(s) in ode to achieve the desied them
thema
a damage of th ACC may esult.

13
 

6.1 1 Low Load Opera


Operation
tion 6 132 f specid by the purchaser the ACC
manufcturer shall includ the necessary
6111 Low load operation is dened as a provisions within the ACC supply so that test
conditon in which the ACC is operated at less instrumentation can be installed on the ACC to
than the design steam load I is important that conduct the spcied perrmance tst
the low load and the corrsponding minium
air temperature are clearly identied r the 614 E
Eects of Win on ACC errmance
errmanc e
approval
approval of the
the ACC manucturer.
6.141 There are 2 primay eects that wind
6112 Low load operation presents similar
can have on the perrmance
perrmance of an ACC
challenges as the low temerature operation
described in 6.10. The rsulting situation is
6.14.1.1 (Warm air) recir
recirculati
culation
on - Wil
that more hea
heatt transr · surce is avail
available
able
occur if th wind sped and direction are
than what is required At air inle t te mper
mperatur
atures
es
such that the ACC discharge air stream
abov zing
abov zing this is not a signic
s ignicant
ant conce.
is brought within cose proximity of the
Dead zone rmation
rmation under these conditions wil
air inlet whereby the two air streams
only aect the ACC operating eciency along
mx. This wil cause an increase in the
with an increas in DO potential
air inlet temperature and a rduction in
the peromance of the ACC. The level of
61 13 Low load operation with air inlet
permance degradation will be nction
temperatures
temperatu res below
belo w eezing wll have he same
of the quantity and temperature of the
concerns
conce rns as described in 61 0 However the low
recrclated air stream Recirculatng air
load opration w ill cause the conces to develop
can also cause an imbalance in condensing
more quckly or at higher temperatures.
load om one section to another within the
611.4 The duration of the low load operation ACC Windwalls reduce this phenomenon by
separating the discharge air stream of the
is important. What should be evaluated is
inlet air stream Also design practices such
the minimum load uner sustained operation
as keeping the ar inlet velocity lower than
(greater
(greater than
than 4 to 6 hours) at the minimu
mi nimu m air
the discharge velocity are oen employed
inlet temperature ACC sectionalizing louvers
to mitigate the potential r recirculation
or enhanced contro algrithms may be required
The placement of the ACC relative to other
in order to provide sa nd reliable
reli able operation
large structures or ow disturbances should
be evaluated in order to understand their
6.12 Performance Curves
inuence on the potential r recirculation
612.1 Pe
Peormance
ormance cures shal b e provided by
AC with
the ACC manucturer in accordance with the Recrulao.
specied perrmance test code

6.122 errmance cues shall be generated


with all ns running at the design an speed.
Supplemental curves may be generated r
partial n speed operation; however such
curves are generally not guaranted

6123 errmance cues


cues shall
s hall clearly identi
the minimum operating pressure of the ACC Figre 7
and shall identi
i denti
 when the cuves are subject
subject to  IH RIRUIN
eeze protection control austments.
6.1412 Dynamic eects on the air ow 
6.13 erormance Testing Elevated wind speeds can disturb the ar
ow of the ACC inlet ans and ACC outlet
6131 For contractual compliance, th ACC • ACC air inlet and outlet  High wind
should b tested in
i n accordance
accordance with a specied speeds around the ACC structure and
i ndustryrecognized perrmance test code such other plant structures or obstacles can
as ASME
ASME PTC
PTC 30.1 or VGB
VGB 13 1Me cause localized vortices and ow distur
bances that can reduce the air ow

14
 

through portios of the heat exchager 6.14.2 As a geera


geer a rue, the higher the absoute
budes This wil cause a reductio i vu e of
vue o f the pressure marg of a , the ess
perrmace
perr mace of the
the ACC Reduced
Reduced air susceptbe to wid eects the ACC w e.This
ow through the s ca aso cause is why ower oise ACCs with slow turig ow
a imbalace  codesig oad om pressure s) are geeray more sestive to
o secto to aother withi the ACC wid eects
Depedig o the svrity of the ow
disturbace, ths may cause uexpectd 6 5 Eec
Eecs
s of Slar Radiatin
Radiatin
spikes i back pressure that coud resut
 steam turbie back pressure alams 6 5  The amout of soar radatio icidet
or trips o a ACC is detemied by the maximum solar
• Fans  High wid speedsspeeds wll cause
cause a ux r a give
give  ocatio A vaue o the order of
icrease
icrea se i the veoc
v eocty
ty pressure
press ure of
o f the 0 0 0 W/m2
W/m2 is typica
typica r areas
areas ofcocer
ofcocer which
et air stream of the ACC. This wil are coser to the equator or i a desert cmate
crease the static pressure loadig o Ts soar ux s appied to the pot aea ofthe
of the
the  causg the s duty pot to ACC, ot the heat trasfer surcsurcee area. f a
shi
shi The resut wi be a higher
high er operatg ACC wer to absorb 100% of the soa eergy eerg y
statc pressure at a reduced ar ow rate, cidet upo its pot area it woud equate
reducig
reduc ig the perormace
p erormace of the ACC to less tha 15% of the ACC's heat rjecto
Typicay the s that are subectd to capacityAthough
capacity Athough the mssvity ofthe
ofthe tub ad
the greaest degadatio i perrmace  materias varies betwee AC manuctur-
are those o the eadig ce (upwid) of ers, whe it is cosidered, the maximum impact
th ACC Widscrees or other devices due to soar radtio habe caculated to be
may be empoyed to mitgate these eects ess tha 05% o a istata
istataeous
eous basis If
Ifths
ths
eect is itegated over the dayight hours, the
ACC w Inlt Air �
pact s cosidered egigibe.
Fo Reduc

'   652 Operators of ACC
ACCss have obsered back
pressure reductios as age couds bock so
\ I\ I \ I radiatio It is beieved that ths has more to
do with the reductio i air iet temperature
rather than the temporary bockage of soar
radiatio o the ACC heat trasr suace

Figre 8
ACC WTH INLET AR FLOW REDUCTIO

7.0 INS
INSTRUM
TRUM ENT
ENTA
ATON AND CONTROL
CONTROL

7. Recomnded Instumenn 7  1  1   Back pressure ad correspodig


steam temperature: At east oe pressure
7. The ACC shal be equipped wth suce
sucett trasmiter ad oe temperature eemet
istrumetatio to motor the process should be istaled ear the steam turbe
coditios Both oca strumetatio ad exhaust terce or other prscrbed
trasmitters, swithes, ad other devices sha ocatio
be icuded Some of the istrumetatio wil
be ivoved i the cotrol ad protectio of ..2 Codesate temperature i the
the ACC over the
th e speced rage of operatig codesate tak At east oe temperature
coditos The owg process coditios elemet shoud be istalled beow the owest
shal be moitored as a miimum operatig codesate eve

15
 

7113 Codesate temperature i of air ow cotrol steps avalable is oly a


the coesate heaers At least oe ctio of the umbe
um be ACC as
as ad the type
temperature eemet should be istalle o motor cotrol (sgle, two speed or variable
 each coesate heaer. It is importat spee)
that these thermowells are istalle • For exaple,
exaple, a 100-cll ACC with sigle speed
properly such that the temperature s ca provide up to 00 airow cotrol
of the codesate owig i the bottom steps, which, i may cases
cases will be sucet
sucet
of the heaer is measure ad ot the r proper ACC operatio However a 4cell
steam space temperature Where ezig ACC may require VFDs i order to provide
coitios exist temperature elemets may suciet air ow cotrol
be istalled to measure temperature o both • The rage of steam ow rate a ilet ar
sides of the codesate header drai pipe tmperatures will determie th quatity ad
magntude o cotro
cotro steps required
r equired
7114 Temperature of the ocodes
ables At least oe temperature elemet 722
72 2 ACC Freeze Protec
Protection
tion
shoud be istalled i each air removal lie Considerations
per row
t is very importat to esure that the ACC
7115 Ilet air temperature: At east o has the capability to operate reliably ad saly
temperature elemet should be istalled i throughout the rage of specied temera
the air ilet stream
stream othe
o the ACC ad shielde tures a, i partcuar, temratures below
om solar radatio. eezig Although cotrol a eeze protectio
philosophis vary g maucturers, it is
7116 Level of coesate i the tak: importat to esure that steps are take to
At least i
istalled oe
thelevel trsmitter
codesate tak should be
codesate reduce the riskrofeezig
ad potetial low coesate temperatures
• Ehaced moitorig of process coditios
7117 Leve of codesate i the rai a cotrol
pot: At least oe level trasmitter shoul be • Modie air ow cotrol (an spee louvers
istalled i the dra pot. cotrolled recirculatio, etc.)
• Reuce heat trasr area (use of sectioal
7118 Gearbox ol pressure or ow: Oe izig valves)
pressure or ow switch per gearbox is the
staard. 7.3 See
Seectio
ction
n o Numb
Number
er of Iso lati
lation
on Valves

7119 Fa speed: Fa motor speed status 731 I the ACC must be operate at low
shall be moitore r each idividual  stam ow rates at air ilet temperatures below
via fedback
fedback om the Motor Cotrol Ceter
Ceter  eezig a the suctio pressure at the vacuum
equipmet is too low whe all  cotrol steps
71110 Valve positios ofautomatd
ofautomatd valves are exhausted, the heat trasr area of the
The vave positio of each automated valve ACC must be reduce This ca be achieved by
withi the ACC should be moitord
moitord via the rmovig heat transr surce om operatio
lilimit
mit switches or valve ositioers sig sectioalizig valves
71111 Vibratio of airmovig equipmet: 7 32 The umber of sectioaizig valves is
At least oe vibratio switch or trasducer etermie by th amout of heat trasfer
should be istalld r each  rive surce that must be isolated i order to
assembly. maitai a sucietly high suctio pressure at
the air-removal ski at the miimum sustaid
72 ACC Control and Freeze Protect
Protection
ion steam ow rat a coiciet miimum design
onsiderations air ilet temperatur The miimum sustaie
steam ow rate ad coicidet mimum desig
721
72 1 General conrol concepts air ilet temperature shall be specied by the
 The back pressure ca be cotrolled
cotr olled by purchaser.
modifyig the air ow rate of the ACC
achieved by austig a speeds uless air
ileoutlet louvers are supplie. he umber

16
 

74 Drain Pot Capacity 75 Condensate Tank Capacit

741 The capacty ofo f the drai pot  s a fu


fuctio
ctio
 751 The codesate tak is typcay a
o the quaity o the steam
steam eterg the ACC the horzo
ho rzotal
tal cyldrical tak
tak sied usg
us g the design
umberr ofdrais
umbe ofdrais eterig the dra pot ad the steam turbie exhaust steam ow rate, uless
stea duct codesig capacity The dra pot secied othese by the purchaser Typical
capacity shal be szed r at least ve miutes codesate
co desate tak capacty is the volum
volumee sucet
sucet
betwee the ow ad hgh opeatig level usig to cota a of the codesate
codesate produced   the
the maximum cotuous codesate ow  ACC  a period o ve miutes betwee ormal
rate eterg
e terg the drai pot
pot f the codesate
c odesate operatig leve ad low operatig level at the
colected i the steam duct is
is draied
draie d by gravy design steam turbie exhaust steam ow rate
to the codesate retu sysem, a drai pot s Norma opeatg level is
Norma is typcally 5 0% of
o f the
ot requred tak diameter.

8.0 SERV
SERVICE
ICE CONECTIONS

81 Genera Consideations o the acceptable locato ad orietatio of


co ecto
ectos
sco
correct
rrect or icomplete irmato
81.1 Ths sectio sees as a guide to provde cn result  mproper locatio,
locatio, orietatio ad
rmatio o the locatio ad dsig of the possible operatioal issu esSimilarly codtio
co dtioss
variouss types of coectios o a ACC to
variou o serce
se rce (e.g, start-up coti
c otiuous
uous)) shall be
permit the dispersio of uid eergies
eergi es at
a t seady specied because probems may occur if i f actual
state operatio without causig detrimetal servce diers om that orgially specied.
eects o the teas, steam duct, dra pot
ad codesate tak. 822  All thermal ad hydraui
hydrauicc des
desg
g
coditos o the coectios provided to the
8.12 Specic recommedatos are provided, mnucturer shall be at the coectio o the
sce each coecto w have dieret ows  ACC (ot upstrea ofcotrol
of cotrol valve, etc.)
ad uid eergies  ord
order
er to acheve the most
eectve
e ectve dspersio
dspersio
 Required coec to seice
seic e 8 Conection Locations
wll rage om higheergy arge volume steam
dumps (i some cases requirig multistage 831 Lcatig coectios o the steam duct,
breakdows ad desuperheatg) to relativey drai pot codesate tank, ad/or ash tak
ow ow ad low eer level coectos must be give high priorty ad be itegrated
to the plat ayout durg preparatio o
813  A AC
ACCC is sigicantly di
d ieret
eret om a the speccatios to avod compromisig ACC
steam surce codeser ad requires uiqu perrmace. t s recommeded that hgh
design cosdeatios Coectos o the ACC eergy
e ergy or ashig drais be routed to a separate
separate
ae typically at a signicat dstace om ash tak as to coditio the uds to an
ash
the heat exchage surac Due to omial acceptable
veted ethapy
to the ACC steamThespace
ash ad
takdraed
sha be
to
steam duct system expaso desgn provsos,
the design temp
temperature
erature of the AC C system the ACC codesate
code sate retur system.
is typcaly 25 0 F 121 C) The ethapies of
typcaly °

the varous ilet coectio ows, particuarly 832  order o esure that all coectos o
steam turbe bypass ow shall be lmited to the ACC are located so that the itegrity ad
approxi
ap proximate
matey
y ,  7 0 Btu
Btu/lb
/lb  27 20 kJ/
kJ/kg)
kg) operato of the ACC is ot  ot compromsed ad
a d
to esure that requred deaeratio s obtaied,
82 Flow Daa
the lowg requremets o the placemet of
co ectios ad accepabe
accepabe coditios o fows 
the co
c oectios
ectios shall be provided
prov ided
 The lowg
821 It is imperative that the ACC manucturer
manucturer tabe idicates the prerred locatos r some
is ushed with reiabe ow data requred r categor ies
ies of coectios usually istad o 
desgig the coectios ad iterals The the ACC system Numbers dica the order of
er eves ad ows wll have a bearig pref
pre fere
erece
ce


 

Table 3
PRR RD LOCATIONS
LOCATIONS OF CONNCONS
USUALY INSAL
INSAL D ON THE ACC SYSM

I Steam Duct I Drain Pot I Condensate Tak I Oeaeato I F Tank


o  s R No NR NR 1 NR
o Ro
(NR
NR))
o  s No R 2 2 1 NR 2
o
M 3 3 2 1 NR
os  Ro NR NR  NR NR
 o  Ro NR 1 NR NR NR
o    Es  NR NR NR NR
G   2 NR NR NR 1

   s 2 N R NR NR 1

  



 
  s 2 NR NR NR 1

  ss s 1 NR NR NR NR


oos 

  s 2 NR NR NR 1

Msos s  s  oo s o s o o
'1 = Bst choi, 2  God, 3 = Aceptbl

846 t is rcommdd that dras rqurg

84 Connect
Connection
ion Design
Design Guidelines darato
dar
bar) ato hav
gatr thaath
prssur ofat lastprssur.
ofat
ACC opratig 5 ps (034
8.41 Complt dsign coditos (prssur
tmpratur thalpy ad ow)
ow ) must b prodd 84  Dsign o ACC coctos
coct os ad/or latos
at ach co ct
ctio
ioI addito sic codtos should b such that th stam rlas volums
shal b suppld (i, cotiuous itrmittt om th additioal stam loadig wll ot rsult
startu
star tup
p tc).
tc).  steam vlocts i xss ofthos
ofthos idicatd 
Sctio 66.
842 Lmt th thalpy of trg stam to
 1 1 7 0 Btu/
Btu/lb
lb ( 27 20 kJ/
kJ/kg).
kg). Accptac of ows 848 Thrma sl should b provdd o
wth thalpy
thalpy grat
gratrr tha   7 0 Btu/
Btu/lb
lb ( 27 20 procss coctos dsgd r tempraturs
kJ/g) may b cosdrd ddg o spcc  xcss of 450 F (232
°
(232C)
C)
coditios o src
849 Udr o crcumstcs should stam
8.43 Lmt coctio prssurs to a maximum ashg dras b admittd to th ACC ulss
of 50 psa (3.44 bara) Prssurs should b lor
lo r coolg air ow s stablshd ad o-cods
whr possbl spcaly r liqud owsSpcal
owsSpcal abl gas rmoval qupmt s i opratio
cosidratos r hghr prssurs should b
rvwd wth dvdual maucturrs 8410 Coectos as dcatd  th abov
tabl shoud ot b locatd blow th watr
844 Vtlator val (and othr hgh rgy vl ar ld wld lis itral brcg
short durato sourcs) dschargs should b to corrs or ar ay xpaso jots ruptur
th atmosphr; howvr f thy ar drctd dscs strumts or tral apparatus.
to th ACC lmtato as dscribd abo wil
apply. 841 D o ot loca
locat
t a sr
srs
s o f coc
cocto
tos
s
xcpt gaug ad cotrol,  clos proxmty so
845 Wr coditios xcd th abo that high ow coctratos aor itrr
rqurmts xtral dsuprhatg must b cs om dischargs
disch args om all o th cocto
co ctoss
prodd by th purchasr r all coctos wll rsut Hgh rgy drai
dra i ut
u t ls must
that ar i oprato wh xhaust stam ow b kpt away om lqud rtur ls to prt
s abst. Dsup
Dsuprhat
rhatg
g shall b accomplshd droplt trasport ad assocatd rosio
 a mr such that th abov thalpy imts
ar ot xcdd

8
 

2 I ucient ow re  not vlbe


8.4.2
8.4. o te tem turbne exut nterce to
wtn te te duct r te introducton o te ACC T nvolve degnng te te
tem turbine byp prger(), ntegrl bel turbne undton urrounding equpent
oung() locted on te tem duct ould be nd tructure to ccopi tee requr
condered ent.

84.3 Te ue o extern  tnk  8.5.2 Conectio Types


recoended
preure r g
drn ow temperture
pror to beng dmttedg
to 8521 The two (2) mn type o tem
te ACC T would uuly pply to yte turbine nterce connecton re welded nd
were  lrge number o l connecton wt bolted. Te purcer
purce r 
l
l provde ucent
g energ eve ext. Minor tem dn detl depctng te interce o tt te
or vent my exceed peced condton n ACC mnucturer cn develop nd ngneer
prgrp
prg rp 84.2 nd 8
8
3,
3, prov
provded
ded ow om nterce connecton detl.
the in tem turbine
turbine ext nd te octon
re cceptble o te mnucturer 852.2 A weded connecton  prrred
over  bolted connecton to mtgte r
8.4.14 Ppng uptre oll owng connecton
connecton ekg nto te ACC. A lndng br weded
hl be propery
prope ry trpped nd drned to prevnt connecton  recommended,  t low
dgng wter lugs beng ntroduced nto r djutment durng ntton to
connectons conte r nucturng nd ntll
ton tolernce
t olernce Weldng etod,
et od, cce,
 cce, nd
845 Te externl locton l be uc tt · detl  be condered wen deveopng
reroutng o nternl ppng  not requred, te equpent rrngeent
nce ntel ppng y nteere
nteere wt norl
tem ow wtn te ACC 8.52.3 Bolted nge connecton l be o
the O-rng or gket type T connecton
5 S
Sea
ea Turbi
Turbie
e Exhaus
Exhaus Ierface l be properly ntled nd mntned
to provid e  lek-ee el. el. Appropr
Approprte
te
8.5 1 Oienaion, Loca
Locaion
ion ad tolernce
toler nce in ti connecton
c onnecton l be pecfd
pecfd
Diesios Metltometa nterce ll be voded
• Flnged te turbne connecton l
8.5. Te purcer l
lll provde ucent be ced nd drlled per te te turbine
detl depctng te over te turbne uppler gudelne
rrngeent, pticurly te orentton • Expected nge ce c e ne ll be
nd locton o te te turbne nterce indcted.
reltve to te ACC Addtonlly interce • Ct ron nge connecton ll be t
denon nd hpe det ll be ced
provded o tt te ACC nucturer cn • Gener geo etr etrcc dimenionng nd
deveop nd engneer nterce connecton toernce ould be reonble nd tte
detl te ncton requreent.
• Crel degn nd plnnng re eenti

85.2 Typicl
orentton ncludete turbne
bottom exut
exut, xl nd cutoer
outne peccton
l expected ut
dmenion, clrly
tol ernce,
tolernce,
exut, lter/ide exut nd top nd fne
exut Mutple exut openng my
ext 8.5.3 is
islacemes
lacemes a Selemen
Selemen

8.5.13 Locton nd orentton o te Stem turbne exut inerce dplce
te turbne nterce() ut be gven ent nd derentl ettement between
hg pro
p rort
rt y nd be ntegrted into te pnt te te turbne nterce, te te duct
yout durng preprton o te pecic upport, nd te ACC tructur uppot
ton to vod comprong te mn temtem due to y ctor h be pecfed by te
duct degn nd perrnce o the ACC purc
pur cer
er nd l be le tn 0
012 5 nc
Te locton nd oienttion l ciltte ( m), une oterwe cceptble by the
the ecent nterconnecton, ntllton, ACC nucturer
upport nd routng o te n te duct

19
 

It is imperative tat te purcaser specied, then atrnate expansion joint


cooperates wit the ACC manucturer to types, materials and arrangements may
ensure tat all conditions ae examined be considered I this event it is incumbent
prior to the ACC initial design Care upon te purchaser to advise the ACC
design and planning are essentia, and manucturer so tat alternate desgn
customer specications must cearly outline considerations can be explored
all expected settlement and displacements

85 It F  Mt 856 St


St  E D
D

8541 Considera
Consideration
tion o the interaction
interaction 85 61 Te main steam duct is a thin-waled
8561
o rces and moments at the stam externaly pressurized vesse Accordingy
turbine exaust interce are o paramount externa and/or interna stieners are
importance Te purcaser must speciy required to provide te necessary structural
reasonabe allowabe external rces and integrity Te purchasers design o its
moments at te interce location turbine support structure internal piping
and components shall consider the ACC
8542 In no case shal the
t he ACC
AC C steam duct manucturer'
manuc turer'ss stiening
sti ening requirement
requir ement
be required to support te steam turbine
8562 Unless specied otherwise, support
support
853 It is imperativ
imperativee tat the purchase
purchaserr o the purchasers components (edwaer
cooperates wit te ACC manucturer to heaters, pping spargers, patrms, etc) is
assure all conditions ae examined prior to not consideed
consideed Isupport
I support osuch
osuch components
the ACC initial design Car design and is required then it is incumbent
incu mbent upon te
planning are essential and cusomer speci purcaser to advise te ACC manucturer
cations must cearly outline all expected o suc details tat may be required r te
rces and moments ACC manucturer to consider in i n it desi

854  Unless specied otherwise, te


854 857 S
S 
 E
purchaser understands that te steam S  P
turbine is capabe o accepting te internal
vacuum rces associated with te incorpo nless scied otheise it is assumed tat
ration of an unrestrained expansion joint the steam ow velocity, pressure and density
near the steam turbine interce Te prole exiting the steam turbine ae unirm
intenal vacuum rce is in
i n addition o those in nature Tis assumption shall be considered
rces and moments specied under 1 by te ACC manucturer in its structural
Te purcasers seam turbine undation ydrauic designs
design shall consider te resutant vacuum
rces and moments n te event tat the 86 S
S
  B
B
 G
steam turbine is not abe to accept vacuum
rces it is incumbent upon te purcaser 861 G
to advise the ACC manucturer so that
alternate design considerations should be 861.1 Comple
Complee
e evauation o t
tee design
explored parameters r main steam bypass ines
is important  te sa operation o te
855 Se  E
E
 ACC Operating requirements and speca
E
E  Jt
Jt customer requirements could aect the ACC
desig t is imperative that te purcaser
855 1 In order to accommod
8551 accommodateate te cooperates with the ACC manucturer to
alowable external rces and moments assure al conditions ae examined prior to
loads) and displacements at te steam the a design
turbine interce an expansion joint is
routnely required Usu
Usuay
ay an
a n unrestrained 861 2
8612 Operation o steam turbine
expansion
expansio n oint is
i s utiized bypass sould occur wit all ACC systems
capable to operate at ll capacity or
855 2 I unusua
8552 unusuall design temperature
temperature,, startup conditions, to acieve maxmum
displacement or load conditions are condensing capacity a non-condensable

20
 

ust be extracted om te ACC system. I i s mprative that the purchaser cooperates
Durng sustaned steam turbine bypass wt t ACC manucturer to assure all
operation noncondnsabe xtraction sall condtons are examined prior to te ACC
be mantained at the requred holding rate. nta design. Carel design and planning
Carel design and pannng are essential are essentia, and customer speccatons
and customer speccatons must clearly must cearly outlne all expected rces and
outlne al expected operational modes. moments.
86.13 The total amount o condtoned If unusual desgn temperature dispace
bypass steam admtted to the ACC can ment, or oad conditons are speced, then
vary over a wde range. ACC manuctur- aternate connecton types materals and
ers do not guarant
guarantee
ee perormance r steam arrangements may be consdered. n ths
turne bypass srvce ut rather make event t is incumbent upon te purcaser
accommodatons
accommodat ons r te condensaton o the to advse th ACC manucturer so that
bypass steam ow. aternate desgn consderatons can be
expored
8614 Noise abatement measures such as
the use o specal nose attenuatng valves 62
6 2 Bypa
Bypass
ss S
Seam
eam Condt
Condtionng
ionng
spargers or nose attenuatng nsulaton,
should be consdered by plant degners 862. ACC bypass steam nlet enthalpy
n accordance wth spced noise requre values shal not eced
values eced 111 1 70 Btu/lb
Btu/lb  27 20
ments. ACC manucturers shal not be kJ/kg)
kJ /kg) and 5 0 psa ( 34
444 ara) to ensure the
the
required to provide noise guaran
guarantees
tees dung dscarge des not exceed the ACC den
steam turbne bypass operatons. temperature. External desuperheating
devces tat reduce enthalpy to 1,170 Bt/
86
86  5 Bpass Connect
Connecton
on lb ( 27 20 kJ/
kJ/kg)
kg) must be located sucenty
suce nty
Alowable Loads: upstream o te ACC to ensure adequate
mxng and evaporaton o te attempera
Location and orientaton o the steam ton ud
turbne bypass nterce(s) must be gven
hg prority and be ntegrated nto the plant 8622 e steam turbine manucturers
layout durng preparation o te specca- may set specic gudelnes r maxmum
tons to avoid compromisng th main steam temperature at te nterce o te steam
duct desig and perrmance o te ACC. turbne wit the ACC. Man steam turbine
The locaton and orentaton shall clitate exaust expanson jont supplers aso
the ecent nterconnecton installation have temperature mts that need to be
support, ad routng o the man steam duct consdered When such lmitatons are
om the steam turbne east inteace to encountred a coong water spray curtan
te ACC.
ACC. Ts nvolves desgnng te steam may be required near the steam tubne
turbne bass surroundng equpment and exhaust duct transiton area to reduce local
structures to accomplis tese requre- temperature excursons. Te purcaser
ments. sall design and supply the spray curtain
Consderaton on the interacton o components
within whcturbne
te steam shall exaust
be ntegrated
duct.
rces and moments at the steam turbine Water loading pressure connecton sze
exaust duct nterces are o paramount and components shal be speced by the
mportance. Te purcaser must specy the purcasr.
purcas r. Carel dsgn
d sgn and planning are
external rces and moments at te nterce essentiall and must
essentia mus t b coordinated
coordinated wt te
location. he rces and moments sal be ACC manuactuer. In no event sall te
reasonable, consdering te arrangement to ACC manucturer be requred to provde
the steam turbne exaust duct. garantees wit regard to te spray curtain
perrmance.

21
 

Table 4
TYPICAL ALLOWABLE NOZZLE LOADS

SIZE Forces (N) Momets (Wm


NPS ON FX FY FZ MX MY MZ
2 50 800 800 800 160 160 160
3 80 1 800 1800 1 800 540 540 540
4 100 3200 3200 3200 180 180 180
6 150 72 700 7200 430 430 430
8 200 1800. 1800 1 2800 10240 1 04
040
0 10240
10 0 14000 14000 14000 1 1000 1 1 00
000
0 1 100
1000
0
12 ad over 3 14000 14000 14000 1 100
1000
0 11000 1 000

SZE Forces (lbf M omens (f*b


NPS ON FX FY FZ MX MY MZ
 50 180 180 180 10 120 120
3 80 405 405 405 4 4 400
4 1 00 720 70 720 945 945  945
6 150 1620 1620 1 62
620
0 3185 3185 3185
8 00 2880 2880 880 7550 7550 7550
10 50 3145 3145 3145 8110 8110 8110
1 ad oer 300 3145 3145 3145 8110 8110 8110

87
8 7 F
F
 H 




8711 Th nstallaio


87 nstallaion
n of edwate
edwate heae
heaer(s)
r(s)
wthin the ACC steam duct wi aect the
perormance of the ACC. As such, the incusion
of feedwatr heater(s) requres the purchaser
to speci the location, orientation, dmensions,
pipe routing, and quanti
quan ti
 If all of th above
inrmation is not provided, the guaranteed
back prssure shall be measured downsteam of
the feedwater heaters)

872 Addit
Additiona
iona thermal
thermal loads if any are not
considered by the ACC manucurer uness
specied otherwise by the purchase

22
 

9. 0 VENTING EQU IPM ENT CAPACITIES

9.  Vent
Ventng
ng eq
eq
reme
remens
ns 9. Pmps compressors, and
a nd other mechanical
mechanical
drives  The venting
venting equipment design
design sction
sction
9.1.1 Venting equipment mst be capable of pressure is that r whch the ACC is desgned
removing all noncondensables and associated minus 10 inch Hg or the lowest reqired sction
water vapor om the ACC to produce the pressure. Minimm shall be .0 inch HgA
minimum steam condensing pressure consistent
with physical dimensions and heat transr The 9.3 Desgn Sucion Temperare
sources of the noncondensables to be removed
include bt are not limited to . 9.3 The temperature ofthe
ofthe gas vapor mixtre
• Low pressure steam turbine·casng, seals and shall be considerd as 7.5  F below the steam
°

associated drains saturation temperate at the eective sucton


• Air leakage nto all system components
components pressure.
oprating
oprat ing at sbatmospheric pressre.
• Gases released om
om edwater drans and
and 932 The 75  F temperature dierential is

vents admitted to the ACC a design vale tlized to physically size the
• Gases released om makeup admitted to the ventng qipment The actua temperatre of
 ACC. the vapor at the vent otlet dring operation is
• Con
Conddensate surge and ash tans when inuenced by the operating characteristics the
vented or drained to the ACC noncondensable load, and the capacity charac
• Disassocation of ed
edwatr
watr nto oxygen, teristcs of the ventng quipm
quipmnt
nt nd may
may not
hydrogen and other noncondensables in necessarily be equal
equal to the 75  F ierential
°

certain tyes ofnuclear


ofnuclear eed cycles. 9.4 Caclaio
Cacl aion
n of Waer
Waer Vapor
92 Unless specied by the purchaser and Load Componen
accepted by the ACC manucturer the ACC
manctrer shal no be responsible r the The amount of water vapor to satrat the
eect that additiona sources of noncondens non-condensables can be caculated om the
ables have on ACC perormane. llowing rmla
9.1.3 n addition to non-condensables,
non-condensab les, a qantity
of associated water vapor will also be vented.
This qantity wll e a unction ofthe
ofthe qantity,
temperature, and pressure
pr essure of the noncondens
noncondens Wen the non-conden
non-condensable
sable s dry ar (MWNC= 29),
able ow. the weight of the water vapor can be obtaned om
the above eqaton PW is the satration pressure
92 es
esgn
gn Sc
Scon
on Pressre of steam at the mixture tmperature and PT is the
total pressure of the mixture.
n orer
ore r to coordinate
coo rdinate the perrmance of the
venting equipment to be installed with an ACC 9.5 Mni
Mnimm
mm Recom
Recommended
mended Capac
Ca paci
ies
es
seing a trbine,beitinis accordance
sction prssure recommendedwithtat
thethe design
llowing: t is recommnd
recommndeded that the capacity
capaci ty of th
thee venting
equipment not be less than the values shown in
9.2.1 Eecric generaing service  The Tables 5 thr 7 at the design sucton pressure to
venting eqipment design sucton presse is insure adeqate removal capacity nder commercial
.0 nch HgA or the mnmum sction pressure operating conditons
(as measured at the inlet to the air removal
equipment) based on the specied range of 95
9 511 Pocedre r S
Sz
zng
ng
operating conditions
c onditions r the ACC Fnal selection Venng Eqpmen
should consider compatible operaton ofthe
ofthe ACC
and its vntng equipment over th ll range of 95. Determine the total steam ow of
anticipated operating pressures and loads In the unt by adding the main trbine exhast
addition, the physical location of the eqipment ow and any auxiliary trbine exhast
shoul be considered when the design sction ows entering all main ducts ofthe ACC.
pressure is selected

23
 

1 Determine the tota number of


ofLP
LP Entr Table 5 and a nd se the row listed r the
trbne exhaust openings Do not ncde Eective Steam Fow Each LP Exhast Openng
axilary trbine exhaust openings of1,5
of 1,5 0 0, 0 01 to 2, 0 0 0, 0 0 0 lb/hr

 13 ivide ow obtai


13 obtained
ned n 95 1
11
1 The total nmber of exhaust openings
openi ngs s one
by exhast openng nmber obtaned  This
(1)
(1) This is determned by the sum of the tota
 n 95
51
12
2
 Th
Thee resultant nmber s the nmber main exaust openngs and axiiry
eectve steam ow r each Ip trbine trbne openings
exhaust opening
opening

The ntersecton ofths
ofths column and row reslts in
1 Enter the
the appropriat
appropriatee secton of
of a venti
ve nting
ng capacity
capac ity of 225 SCFM
Tabe 5 and ocate the ow obtaind n
Step 9513 Example o. 2: The cond condense
enserr design parameters
are the owing
   Determin
Determinee total
total number
number ofexhaust
ofexhaust • One L P Exhaust Casing Casing
openings by adding the toal number of • Total steam ows om LP turbne exhasts 
LP turbine exhaust openings to the total  9 5 0 0 0 0 lb/h
lb/hrr
nmber of auxliay turbines exhasting • Total steam ows o omm auxl
a uxlary
ary turbne
into the ACC. exhau
exh auststss = 20 0, 0 0 0 lb
lb/h
/hrr
• umbr ofLP ofLP trbn
trbn exhaust
exhaust openings = Four
 Determine the recommended (4)
capacty by sing the number obaned in • mber of axiliary trbine exhast openngs
 95
 951
15  Two (2)

 If the ACC is separated nto indivdua The tota stea


steam
m ow of the nt is the sm of the
block s or split congurat
blocks co ngurations
ions (i.e
(i.e parael
para el main turbine exhast and axiliary exhausts
condensers) so that the sction pressres at Th
Thss va
vae
e s 115 0, 0 0 0 lb/
lb/rr]
ll perormance can be derent, then the
venting system capacty of each block shall be The number ofLP main trbne
t rbne openings s ur
 ur
per Table 5 (4).

The llowing s
 s an example of
o f sizi
sizing
ng the Dvidee 1,15 0 0 0 0 b/
Dvid b/rr by r (4) The rest
rest is
ventng eqipment:  28 7 5 0 0 b
b/hr
/hr which is the eect
eective
ive steam ow
r each man exhaust opening
Example o 1: The condenser desgn
paameters are the llowing Enter Table 5 and se the row lsted r the
• One LP Exhast Casing eective
eective steam ow r each LP exhast openng
open ng
• Tota stea o ows
ws om LP trbine exhasts o 25
25 0, 0 01 to 5 0 0, 0 0 0 lb/r
 1
1 6 0 0, 0 0 0 lb
lbr
• Total steam
ste am ows om axiliary
axiliar y turbine The totatota number of exhast openings s six
exhausts = 0 lb/ lb/hr
hr ( 6 ) This is determined by t he sm of the total
• umber of LP turbne exhaust openngs = number LP exhast openings and auxiary

• One (1)
Number
Num ber of axiliar trbine exhaust turbine openngs
openings  Zero
Zero ( 0) The intersection ofthis
ofthis colmn and row resuts in
a ventng capacity of 25 SCFM
SCFM..
The total steam ow of the nt is the sm of
the LP trbine exhast and axliay exhasts 3   (B)  t
t 
[This
[This val
valee is 1 6 0 0 0 0 0 lb/
lb/hr When sustaned steam dmp operation is requred
ventng equpment must also be suitable to
The number ofLP
ofLP turbine openngs is one (1) handl the desgn quanttes ofnon-con
non-condensable
densabless
satraed at a temperature 7.5  F beow that
°

Dvid
D videe 1 6 0 0 0 0 0 lb/
lb/hr
hr by one
one (1)
(1) Th
Thee resut
resut corresponding to the satraton steam pressures
is 1 6 0 0, 0 0 0 lb/h
lb/hr
r whch
whch s the
the e
eect
ective
ive stea
steam
m at the highest condensing pressure liely to occur
ow r each L P exhast openngopenng ith ll steam dmp load with all or a partial
nmber of ns orating at the maximum nlet
air dry bb temperature

24
 

9.6 Rapd Evacaton


Evacaton (Hoggg) Equipment wel as the time desired r such reduction. Where
specc vaues are not listed the industy standard
When staring the steam turbine it is desirable to has een estabished at O"HgA (0338 ara) in 30
reduce te ACC pressure om atmospheric to some minutes based on a xed voume Depending on
lower value. This can be done by means o snge overa plant design, bypass stea ow rates may
stage ejector or mchanical vacuum pump The require moduation in order to pevnt pressure
capacity of the device is dependent on the eective- spikes that may burst rupture discs Therere
ness o the turbine gland seals, the voue of the owe evacuation pressures or longe evacuation
ACC turbine casings and associated ducting as perids may b dsired.

Table 5
ONE LP EXHAUST CASING

I
Eecve Seam Fow Each
Ma has Openg bshr Toal Nmber of xas Opes
 2 3 4 5 6 7 8
Up o 250 ·SCFM 30 4.0 5 5 7. 5 7.5 7. 5   
Dr Ar bs 13.5 18 22 22 33.8 33.8 338 45.0 

Waer Vapo bs 297 396 49  5 49 74.3 743 .3  


74.3
74 99
Toal Mixte bs 432 76 720 72 8.0 080 080 1 44
44 0
21 o 00 •CFM 40 50 7.5   7.5  00 10. 100 25
Dr Ai bs 18 225 338 338 40 4 40 63
Wa Vapo, bs/ 39.6 49.5 74.3 74.3 99.0 99.0 99 1238

Toa Mix bs/r 76 720 108.0 8 1440 1 44


44 0 1440 18
0 o 1000 FM . 7 .5   00 1 25 125 15 175
Dr Ai bsh 225 338 45 45 563 563 67 788
Wae Vapo lbs 495 7 4.3
.3   990 990 1 23.8 238 1485 1733
Toa Mre lbsh 720 08.0 1440 1440 1800 80 260 220
1000 o 20 FM 75 12.5 25 0 17 200 200 20
Dr A, bsr 338 63 56.3
56 .3   675 788 900 9.0 112
Waer Vapo bsh 74..3
74 1238 1238 48 733 1980 980 2475
Toal Mx bshr 18 1800 80 216 2520 2880 288. 3600
20 o 500, *SCFM 10. . 17.5 20 2.0 2. 30.0 300
Dr A, bs/ 45.0 67.5 788  25 1 2.5 30 1350
Waer Vapo,
Vapo, b 99 1485 733 198. 2475 2475 2970 2970
oal Mixte, b 144.0 216.0 2520 288 36.0 360.0 432.0 432
0 o 750,0 SCM 125 20 20.0 2 3.0 30 350 400
Dr Air bsr 56.3 90.0 9 2. 13.0 35.0 157 1800
Wa Vapor, bs/r 23.8 98.0 198 247 297.0 297. 346. 3960
Toal Mxue, bs/r 80.0 2880 288 3600 432.0 432.0 04. 5760
7000 o 1 0,0 *SCFM 50 22.5 22.5 27. 32 35 4 45.0
.0  

Dr Ar bs 675 03 101.3 238 146.3 575 8. 225
Wae Vapor lbsh 485 2228 2228 272.3 3218 3465 396 44
4
  

Toal Mi lbs 26.0 3240 324 396. 4680 040 76 6480
100,001 o 1,2500 SCFM 7. 20 27 32. 37.
7. 400 45 00
Dr Ar lbsr 788 112 1238 1463 1625 8. 225 220
Wae Vapor lbsh 173.3 2475 2723 328 375 396 44.5 490
Toa Mxe lbsh 252 36 3 468 20 576 648 720
1,2,01 o 150000 ·FM 200 275 30 35 40 40 45 00
Dr Ar lbsh 90 23.8 13.0 575 800 225 225 225.0
Wae Vapor lbsh 198 2723 297 3465 396 445 4455 49
Toa Mix lbshr 288 3960 432 540 76 648 648 72.

25
 

I
Efectve Stem Fow Each
an Ehaus Openg bh Tota Nube of Exas Oes
1 500001 to 2,000000 •FM
•FM 225 300 350 37.5  
37.5 450 500 500 550
Dy A lbs/hr 0.3 1350 575 1625 2025 2250 2250 2475
Water Vapo lbs/hr 2228 2970 346.5 3575 445.
45.55  495. 0  4950 545
Tota Mite lbs/hr 324.0 4320 5040 5200 6480 720.0
.0   720.0 7920
2,00000 to 2500000 *SCFM 25.0 325 3 7.5   400 50.0 55.0 .0  
55.0
55 600
Dry Air bs/hr 125 1463 1625 800 225.0 247.5 2475 2700
Water Vapo /r 247.5 32.8 35 7.5   3960 4950 544
44..5 544.
54 5 
4.5 5940
Tota Mte bs/hr 3600 4680 5200 5760 7200 7920 7920 8640
2500001 to 3,000,000 SCFM 27.5 35.0 40 0   450 50 .0   550 600 65.0
D  bs/hr 238 1575 800 2025 2250 247  5 2700 292.5
Water Vapor, bs/hr 2723 3465 3960 4455 4950 54.5 594.0 635
Tota Mixre lbsr 396.0 5040 576.0 6 4 8 0   720.0 792.0 860 9360
3,000001 to 3 5000
500000
00 SCFM 300 400 45.0 500 550 600 650 700
Dy Ai lbs/h 350 180.0 2025 2250 2475 2 7 0 .0   2925 35.0
Wate Vapo bs/h 2970 396.0 445.5  
445.5 4950 54.5
54 .5   5940 3.5  
643.5
64 6930

Tota Mixr e bs/h 4320 5760 68 ' 7200 7920 860 936.0  008.0
3500001 to 4000000 SCFM 325 450 500 55.0 600 65.0 700 75.0

Dy ir lbs/hr 146.3 2025 2250 2475 270.0 292.5 3150 3375
Wate Vapor lbs/hr 328 4455 495.0 5445 5940 6435 6930 7425
ota Miue lbs/hr 4680 6480 720.0 792.0 864.0 9360 10080 080.0
•14_7 psia at 70F
Noe:: These tls
Noe tls r ba d o  kge ony ad  r vapor mxur   c HgA ad .5 
°

26
 

Table 6
TWO LP EXHAUST CASINGS

I
Efectve Stea low Each
Man Exhast Openng bsh Tota Nmbe of haust Openngs
2 3 4 5 6 7 8
10000 to 250,000 •CFM 150 200 20 225 250 275 300
Dr Ar lbsr 675 90 90 103 1125 1238 350
Wate Vapo bs/hr  48  5 198 1980 2228 2475 2723 2970
otal Mixture, bs/hr 26.0 2880 288 3240 3600 3960 4320
25001 to 5000 SCM 200 225 250 30.0 325 375 400
Dr A
A bs/hr 90.0 1013 125 1350 46.3 1625 800
Waer Vapor
Vapor lbs/h 1980 2228 2475 2970 328 3575 396.0
Total Mxte lbsh 2880 3240 360 4320 468.0 5200 5760
500001 to 750000 SCFM 250 275 32.5 375 40.0 45  0 500
Dr Ar, bs/h 1125 238 463 1625 1800 2025 2250
Water Vapor bs/h 247  5 2723 3218 3575 3960 445
44 5 5 4950
otal Mte bs/h 3600 30 4680 5200 5760 648.0 7200
750,0 to 1 000,0
000,000
00 SCFM 275 30.0 350 400 450 500 550
Dr Air lbsh 23.8 135.0 1575 180.0 2025 225.0 2475
Water Vapo, lbs/h 272.3 2970 365 30 4455 4950 5445
Tota Mxture, lbsh 3960 4320 500 5760 6480 7200 792.0
1 0000 to  250000
0 00 'SCFM 325 350 40 450 500 550 600
Dr Ai, lbs/h 1463 1575 180 2025 2250 2475 2700
Water Vapor bs/h 32.8 3465 30 45.5 4950 5445 5940
Total Mixte bs/hr 4680 5040 5760 6480 720.0 7920 860
 2500 to 1 500,000 *SCFM 350 3 7 .5   450 500 55.0 600 650
Dr A lbs/hr 1575 625 2025 225.0 2475 2700 2925
Wate Vapo lbs/hr 3465 3575 4455 4950 54
4 5 594.0 643.5
Total Mxte lbs/hr 5040 5200 6480 7200 7920 8640 9360
 500
500
 to 2,000 SCFM 37.5 400 5.0 550 600 65.0 700
Dr Ar lbs/hr 1625 1800 2250 2475 2700 2925 315.0
Waer Vapor lbs/hr 357.5 3960 4950 544
44 5 5940 6435 6930
Tota Mxte lbsh 5200 5760 7200 7920 8640 9360 008 0
008
2,00000 to 2,500000 FM 400 450 550 60 65.0 700 750
Dr Ar lbs/h
lbs/hrr 800 2025 247.5 270.0 2925 350 3375
Wate Vapor bs/hr 3960 5.5  
445.5 5445 5940 643.5 6930 742.5

ota Mixture bshr 5760 648.0 7920 8640 936.0 0080 1800
2,50000 to 3000,000 SCFM 450 50.0 550 650 70.0 750 800
Dr Ai bshr 2025 2250 2475 292.5 350 7.5  
337.5
33 00
Wate Vapo bshr 4455 4950 5445 643.5 6930 7425 7920
oal Mxture bshr 6480 7200 792.0 936.0 10080 0800 152.0
3,0001 to 3,500000 ·FM 500 55.0 60 700 750 800 85.0
Dr Air bs/hr 2250 2475 270 350 3375 3600 3825
Water Vapor bsh 495:0 445 590 693.0 7425 7920 845
Total Mixture bs/h 7200 792.0 860 10080 080  152
1520
0 224.0
3500,0 to 4,00000 SCFM 550 600 65.0 700 800 850 900
Dr Ai bs/h 2475 2700 2925 350 3600 3825 4050
Water Vapo bs/hr 544.5
544.5 5940 643.5 6930 7920 845 8910
ota Mxte, lbs/h 7920 8640 9360 10080 152 12240 20
"14.7 psia t 0•F
No e: Ths ables r bsed on ai akag y a d h  vao mxtur t 1 ich HgA a  F
oe °

27
 

Table 7
THREE LP EXHAUST CASINGS

I
ectve Steam Fow Each
Ma Exaust Openg lbs/hr Total Nmber of xhaust Oe
3 4 5 6 7 8
25000 to 500000 ·FM 30.0 325 375 40.0 450 50.0

D A, lbsh 350 463 625 800 2025 2250


Wae Vapo lbs 2970 32.8 3575 396.0 4455 4950
Tota Mxt ue lbsr
Tota 4320 4680 5200 5760 648.0 7200
500001 to 750000 ·FM 325 75  
375 450 500 550 600
D  lbs 1463 625 202.5 225.0 2475 2700
Wate Vapor, lbs 321 .8 3575 4455 495
95.. 0 5445 594.0
Total Mxte bs 468.0 5200 80 7200 792.0 8640
750001
750001 to  000000 •SCFM 375 450 500 550 65.0 700
Dy Ai, lbs/r 1625 202.5 2250 2475 2925 3150
Water Vapor, lbs
lbs 3575 445.5 4950 544.5 6435 6930
Total Mxtue bs 5200 6480 7200 7920 9360 0080
1 ,000,00 to 1 250000 CF
CFM
M 400 500 550 650 700 750
D Air, bs/ 1800 225.0 2475 2925 350 3375
Water Vapor lbs/
lbs/rr 30 4950 5445 6435 6930 7425
Total Mxture lbr 5760 7200 7920 936.0 008.. 0
008 10800

1 25000 to  ,500000 *SCF


*SCFM
M 45.0 55.0 600 700 750 800
D Air, bs 2025 2475 2700 350 3375 0.0
Wate Vapor b  445.5  54 4 . 5  5940 6930 7425 7920
Total Mxe bs 680 7920 8640 1008.0  080
0800
0 1520
1 500,00 to 2000000
2000000 FM
FM 500 60.0 650 75.0 80.0 90.0
D Air bs
bsh
h 225.0 2700 2925 7.5  
337.5
33 60.0 405.0
Wae Vapor bsh 4950 5940 643.5 7425 792.0 890
Total Mxue lbshr 7200 864.0 936.0
936.0  080
0800
0   520 20
2,00000 t o 2,5000 FM 55.0 65.0 700 800 85.0 950
Dy Ai bs 2475 292.5 3150 3600 3825 4275
Wate Vapo bs 5 4 .5  643 .5  
43.5 6930 792.0 8415 9405
Tota Mxure bsh 792.0 936.0 0080 520 2240 3680
2500,00 to 3,000000 FM 60.0 700 75.0 850 900 1000
Dy A lbsr 270.0 315.0 3375 382.5 4050 450.0
Wate Vapo lbs 594.0 6930 7425 8415 890 9900
Tota Mxue bshr 8640 10080 0800 12240 2960 1440.0
300000 to 3500,000 FM 65.0 750 800 900 950 1050
Dry A bshr 2925 3375 3600 4050 427.5 4725
Water Vapo bs/h 6435 742.5 7920 89.0 940.5 1039.5
Total Mxre bs/h 9360 080.0  52
520
0 296.0 13680 1520
3500001 to 4000000 FM 700 800 850 95.0 1000 00
Dry A b
bhr
hr 35.0 360.0 3825 4275 4500 4950
Water Vapor lbs/r 6930 7920 8415 940.5 990.0 0890
Total Mixtue br 10080 1520 12240 13680 1 44
4400
00 5840
"14.7 psia at 0F
Ne: Ths abls
abl s a s on ar akg  ad
a d  a vapo mxur a  c HgA ad    5 
°

28
 

1 0.0 ATM
ATMOSPHER
OSPHER C RELIEF DEVCE
DEVCES
S

0.1 Gneal  the


the syst
syst volu
volue e excee
exceedsds  4 5 000000  then
3

ultple devices oo  the


the sae
sae size
si ze sho
should uld b used
used
,

0. The size o atospheric relie devices 10 3 Rupt ure Device

conditions
ois sucient
dependenttsizeisupon
tounderstood
passtheall specied
othatthe they operating
steaust
whichbe 0.3 A rupture disc is a non-reclosing
non-reclosing pressure
can be aditted to the ACC except o the relie diaphrag actuated by static pressure
lines that are alrealready ady protected by relie devices dierential and designed to nction by the
set to open at pressures not eceeding the ACC burstin
burs tingg o a pressurecontaining
pressurecontaining nonagent
relie pressre Typically th! axiu stea ing disc
ow rate is dened by a stea turbine bypass
condition 032 Every ruptre disc shall have its burst
pressre tagged in accordance with the design
0..2 The size
siz e and location o at atospheic
ospheic relie reqireents
reqi reents The
The selected brst
b rst pressure shall
devices should be based on th llowing criteria: take into account anufcturing tolerances
• elie device size and associated piping should Underr no circustances
Unde circustances shall the burst pressure
e selected to prevent pressure in ACC o plus all associated tolerances xceed the ACC
eceeding the ACC design pressure design pressure
• elie
so theydevices should rbe inspection
are accessible located andandinstaled
repair 03.3 Thee total installed ptue disc capacity
Th
The protective devices need not be directly shal be sucient to reieve the axiu
axiu ACC
installed
the
are stea onturbine
properly thesizedACC
exhaust
but ayhoodbeprovided
installedtheyon stea owTheatllowing
0.3.4
or belowequation
the ACC
ACC design
ay bepressure
used to
• Exhaust o al reliedeices ustbe properly estiate the size o the rupture disc based on
vented by the purchaser to avoid injuy to dr and saturated stem
personnel or daage to eipent
0 .2 Vacuum Breake
Breaker
r Valves

seiceValves
10.2.1
A watershallsealbeay
designed r llovacuu
be required aple Where,
depth around the valve disc to ensure proper A  Miniu required ow rea in 2

sealing o the seat with provision r adequate W = Discharge


Di scharge ow rate lb/hr
ll and dranage K  Flow coecient use value
5
value o 0
06
6 2
 = Reievin
4
Re ievingg pressure psi a
suggestedThe lowing
breaertable
sizes rprsents the A

1022
vacuu r ACCs This 0.3.5 I the required rupture disc diaeter
ethodolog
atospheric
at
six ospheric pressure
inuts considers
Purchaser(0( 0breaing
0shallbaraconr
toll1.0vacuu
1scope
3 aa)
aa)andtoin sizsize
exceds
e shall30"be then
utilied.
ultiple ruptre discs o eqal
sizing criteria
cr iteria 1036 upture discs are usually located on the
Tb 8 ACC ain duct or distibution header Location
VACUUM B REAKER SIZE FOR ACCS
r ease o replaceent as well as
protection and the avoidanc o accidental dsc personnel
daage should be considered
considered
o ' e   Bee Se 
oeSe-S Rupture discsandshall
 o 
  o  
4 037
opeate satisfctorily withoutbeleaage
designed
leaa ge underto
  o 9 8 ll vacuu
9 o  10

 o 88 
88 o 8
 8 14

 o   
29
 

 1. 0 INS
INSPECT
PECTION,
ION, QU ALT
ALTY
Y AND FIEL
FIELD
D INSTALLATIN
INSTALLATIN

1 1 1 Lea
Leakag
kage
e Testin
Testing
g 1121 Suppemental nondestructive
xamination (ie, dyepenetrant, magnetic
11.11 A pneumatic leak test is perormed to partice testing radiography, etc is typically
veri the
th e leak tightness o the n tube bundes, not required
steam distrbution headers and miscelaneous
pipin gTypicaly testing o the main
main steam duct 1122 The welding shal be perrmed using
is optional r muti-row ACCs hn the main welders and writtn wed procedures, which
steam duct is tested, the main steam duct and have been quaied in a manner comparable to
the tube bundle drain nozzes must be banked that dened in Section X o the ASM Unred
Unred
an engineered blankin plate must be used to Pressure Vessel Code
blank the main steam duct  the main steam
duct is aso tested, the duct blanking plate 1123  All wl ds sha
shall
ll be examin
examined
ed in the "as
" as
is instaled as close as possible to the steam welded condition preceded ony by normal
turbine exhaust interfce. ceaning

1112  An ar compessor is used to put the 1124 Weld inspection methods and
system under pressure; a typica testing pressure equipment
is 435 psig ( 0.3 barg The acceptance criterion • Personnel perrming visual inspections shall
r the pressure test is to imit the air leakage be qualied to eye examinations in accordance
expressed in lbr (khr ) to 2 % o the holding with SME or AWS.
AWS.
capacity o the airremoval system associated • Al measuring equipment shall be maintained
maintained
with the tested section Th pressure and the and calibrated i n accordance wth the manufc
temperature oo  the air inside
in side the ACC should be turer's approved quality contro manuals and
montord on an houry basis The duration o prcdures
the test should
shoul d be up to 24 hours
hours or as
as required
to demonstrate leak tightness 1 125 Wed Cae ores  Th
Caeores Thee lo
lowi
wing
ng
categories are estabished considering the
1113  A temporary pressurerelie devic devicee seice requirements o specic typs o welds
should be installed to prevent overpressur These criteria appy to shop welds and to eld
ization o the ACC The capacity o the relie wlds in the apparatus except r pipe welds
device shall be at least equal to th capacity o made to connection stubs
the compressor utiized r the pressure test • Category  includes pressure bounda welds:
During the pressure test it is recommended to Those welds which provide a separation o
blank o the rupture disc to prevent accidental atmospheric pressure and ACC internal
activation pressure
• Category  includes structural welds Those
1 1 14  ACC structures are not designed o welds which are associated with the primary
withstand
withsta nd the oads associated with a hydrostatic
hydrostatic support structure o th ACC platrms,
test aer installation Terere, hydrostatic staiays ducting, vesses and piping
testingg shal n ot be prrm
testin prrmed
ed
 • Category  incudes
welds associated withalldirt
other weds vortex
collars, hose
1 1 2 Inspe
Inspecion
cion and
and Quay of Weldin breakers inteal
in teal shielding, lagging, personnl
grating, ladder rungs, grab bars instrument/
Tis section estabishes minimum standards r accessory support, temporary erection and
visual inspection o ACC weds perrmed in the shipping members nameplatesrackets etc
shop and eld The visual acceptance criteria are
devloped using recognized codes and standards 1 126 Accep ance evels  Acceptance eves
Accepance
such as ASM codes ANS standards, A A A r various types
typ es o weds in Categories  II, and
and AWS as a guide More stringent requirements  are to be identid
identi d by the equipment suppier
may be specied by the purchaser and wil take with SME used as a guide r Cat�gory  and
precedence  AWS
 A WS r Category .

30
 

 1 .3 Sfa
Sface
ce Preparation Rqirements surces need no be rmoved. Pre-cleaned
material such as prbasted plates ma b
1 1 .3 1 Geeral euiemets  Su Sur
rce
cess painted pror to brcaton. Al accessbl
shal be prepar b  the manucurer to assre pan scars and blemshes shall be rouced
that e equpment wl be accepable om te pror to shipment I must b recognzed
lowing
lowin g aspec s: tha some toucup wll be requred aer
unloading or nstaaion
3.. Surces o be coaed (paned
or gavanzed) wl be sutaby ee om   32 Gee
Geea
a Reireme
Reiremets
ts
deleterous materials that ma aec e
adeson of e coatngs. .32 Table 9 contans te recommended
accepable preparatons r varous areas
1312 n any case te suce preparaton and components of he ACC Eac area
sall mee te requiremens of e coaing s evaluated on te bass of preparaton
ssem to e utzed. requred r coangs as wel as e ulmate
desinaton of he contaned
conta ned uds and any
.33 Loose scale wed spaer or oher partices ta ma be carred wi te ow
materals sall be removed by sutabe
meods. 1322 The requiremnts as wrten
appy o th preparaton
prepar aton of componens ad
34 Surces wll have a workmanke assembis as bult n the manucturer's
appearance and eedom om scars and clites
clit es Fna assembl o f te apparatus
protrusons that could cause bl njury y the ercton contractor sould met te
applicabe sectons of Table 9
113.5 Thebepreparatons
perred requred b hs 3 The purchaser should assure tha
scton ma a any i in  132.
132.3
te manuctu
man ucturng
rng cycl
cycle
eRust ta develo
develops
ps parts of te componens
compo nens suppled
suppl ed b oter
durng manucure sall be removed pror tan te condenser manucturer but
to pantg f t would be detrimenta to wch are conneced to or nsaled in the
te pant applcaton. us on nonpaned condensr, are prepare n smlar son

Table 9
R ECOMMENDED ACCEPTABLE PREPARATONS OF COMPONENTS
AND ASSEMBES BUILT IN
IN MANU FACTURER'S FACLITIES

Chaacteistic I Bundles  Ducng I Tanks  P1png  Axliay Equpment


Pe te
te appca ble weldng pode Pe Manuaces
Wed Suraces Per Manufactes sandad
sandad
Ineal suace per SSPCSP2 o
General Sace Pe Manactes
Per Manuactu
Manuactues
es sandad better
Condton tena sa pe SSPC-SP6 standard

Mno  ue ndentatons


ndentatons and
n deomaton s aeptale. Dep to be e smalle o Per Manacues
Indenatons be ndentons sold not
02*ckness o /8" (3mm) standard
compromse te pesse
bonda
Resda Wed Max. egt =  8
8 (3mm;
(3mm; Dess
Dess
Pe Mauacures
Metal and Per Manuacurers sandad as nessa to assure good pant
sandad
Protsons coveage
Arc Srkes Remove al Ac Stkes
Pe Man uacter
uacter's
's
Wed Spater Remove spatte pe SSPCSP2 o beter
sandard

Remove spatte pe SSPC-SP2 o bete Pe Manuacters


Ml Sle sandad
Genea Condon Loose d, paces ecessv
ecessvee ust, os and genera contamnans sal be emoved
emoved b bsng
bsng ar
o Compone ts or blowng and o wae
wae o poduce a wokmanke
wokmanke appearan (pe SSPC2
Sb-Assembles

31
 

1  .3.3 Specal Requr


Requremen ts The require
ements  .5 Quaty Assur
Assurance
ance
mnts o this section represent good practices
recommnde by the ACC manufcturer, the The manucturer shal have a Qualty Assurance
paincoating manucturers appicators and program r ACCs This program
prog ram shal be outlned
in general mt the intent o specications n a Quaty Assurance manual which wl be
by engneering frms owners and prchasers available to the purchaser and hs representatves
o this equpment However there may be upon request. The system shall provide fr control
xceptions requiring
There are two special
basic groups preparation
o special require- o
thatquaity
o anyinsubcontractor
both the manucturers plantFeld
fbrcatng parts and
ments Qualty Assurance is the responsbilty o the
purchaser anor installing contractor The party
.3.3 Purchaserspecied requiremnts responsible r the fd instalation should have
  the
the purcha
p urchaer
er or his agent desire
desire any a quality assurance program comparabe to that
preparation more stringnt (ie abrasive o the ACC manufcturer Review o this quaity
blastng) than this Standard it must assurance program shall be the responsibilty o
be clearly stated n the procurement the purchaser
documents.
The Quality Assurance progam shall provide r
 .3.3.2 anucturerspecfed requre
.3.3.2 assurance o compliance with but not limited to
mens  The manuctur
mens manucturer er may
may at any the manucturers and HE Standards which
time prepare the equipment n a manner provide as a mnimum
superior to the requirements o Table 9 • Proj
Projct
ct contro
c ontros
s (i
(iee engi
engineer
neer procurement
Ths improvemet is discretonary and instalation
could be done to suit the manucturer's • Materal controls
economic evaluation andand/or
/or his processing • Fabrication controls
equipment and schedules. As a minimum • Quality control
the manufcturer is required to provide • Document control
preparation as dicated by the require • System r audit o contro o procedures
ments oo  the painting or coating process
process
 .6 Ere
Erecto
cton
n Advsor
Advsor Dutes
1  .4 Pat ng, Coatng ad
Corosio Protection The manuc
manucturer
turer may provide the servces
servces o an
erection advisor to counsel the purchaser n the
.4. External surfces o carbon steel ACC proper installation o the ACC and accessories n
components (steel structure ducting piping accordance with the erection drawings and nstal
ad vessels are to be cleaned and either hot atin procedures.
dip galvanzed or painted with one coat o
prmer Touchup o the prmer and applicaton n the event o any conct between the manuc
o the nish paint
pain t are
ar e perfrmed aer
aer fnal
fnal eld turer's requirements and site practice the erection
installation by the purchaser advisor wil bring such confcts to the attenton o
the purchasers designated representative
representative
1.4.2 Inteal ACC suraces do not rquire
prmer
shipmentpaint,
and orstorage
rust inhibitors
Oxidationronormal
these The erection advisor shal not be responsibe r
the lowing:
suces
suc es s acceptable and is to be epe
epected
cted Any • The supeision o the erecton crew
internal surce preparaton activties should • Fitup and weld quality
use frrous materials that are slica ee
ee • Lifing and riggng plans
• The heath and sa
saety
ety o
o  the
the erection
erectio n crew
.43 echaical eupment shal be provided • The schedule o erecton and work progress
with the manuct
man ucturers
urers standard ctory fnish
fnish
 7 Er
Erect
ecton
on Cleanlnes s
1.4.4 These Standards do not cover the
application o any coatings. All such appica 11.7.1 Due to the reativey large intenal
tions shal be done to the requirements o the voume and confned spaces within an ACC
appicable process
pr ocess t is mportant that the erection contractor
exercises a heghtened evel o housekeeping
eort s ACC row sections are completed

32
 

the erection contractor shall inspect the upper This is not detrimen
detrimenta
ta to the perra
perrance
nce o the
stea headers and reove al constructon ACC and s removed durng the hot comission
debris (i.e, tools, weld ods, sag too boxes, ing phas
lights, etc) so that it does not enter the n tubes
or other areas.   75 xterna
xternall debris and
and construction
construction ateia
ateials
ls
must be removed om al suraces o the ACC
11 72 The erection contractor shal sequn
1172 sequnce
ce
the installation o the ACC to provide opportu prior to This
procss the includes
start o but
the iscold
not coissioning
liited to the
nities to remove any debris prior to closure llowing
A practical approach to clean the interior o • Heat transr surce
surcess
the ACC
A CC om the top to the bottom shall be • Walkways and platrms
llowed In particuar, the conensate headers • echanical equipent (ns, otors, etc)
shal remain open r cleanout·until the stea • Fan guards and cabe trays
headers are copletely instaled and cleaned.
18
18 Pt-Et al
173 Other AC C co
coponen
ponents
ts (stea ducting,
drain pot, condensate tank, and piping systes) Upon completion o the eection activities, it is
shal be cleared o debris and broo cleaned recommended that a representative o the ACC
as each coponent is instaled or prior to nal anucturer
anuct urer and the purchaser (or
(o r purchasers
purchasers agent)
closure perr a posterection wakdown The llowing
activities shall be perrmed:
117 4 Appropriate clean
1174 cleanout
outss or ea
eans
ns o • Visually inspec all instaled ACC coponents
collecting debris within the condensate drain • Review inspection and testing records associated
syste shall be provided r during the hot wih the erection activities
commissioning
contractor. t is phase by thetocoissioning
very coon have surce • Review and modi punch list items as required
rust r on the internal surces o the carbon
stee aterials (ie ducting, piping, tubes, etc)

1 2.0 COMMISSIONNG

21  


• eri proper lubrica
lubrication
tion o al
Typical cold comissioning or "dry run" activities rotating equipent
are completed aer construction. Noral prerequi • Caibrate instruents and perr
sites incude that the ed pressure test is complete nctional check
and success, punch list items are satised, all • Megger all motors
electrical and instrumentation connections are • Remove blanking pate(s) and install
copleted and pow
powerer is availa
available
ble to an
an otors an
and
d rupture
rupture disks)
disk s)
• Remove shipping braces o all
other electrical components expansion joints
211 Typical prestart inspections include but
but
are not liited to the lowing: 2 1 
21 33 rceed with the cold coission
12  1 Conr thathatt the erec
erection
tion activities pe the ACC anucturers O&M
cleanliness requirents as described in manua, which include but ay not be
secton   are met limited to
• Bup
B up motors and chec k an
an
12 2 Conr
Con r that preoperational • err n run test and adust vibration
checks of all echanical equipment have switches and gearbox ow/pressure
been perred in accordance with the switches, as necessary
ACC anucturer's O&M anual which • Adjust an blade pitch as necessary
include but may not be liited to: • Note any unusu
unusual
al vibrations
vib rations  record
• Conr
Conr gearbox oi type and level i necessary) and noises om rotating
• nstal gearbox breathers equipent

3
 

• Test valve ncton (stroke valve and set Once seam cleaning has been competed the
or adjust limit swtches as necessary CC is ready r norma operaton and the
• Per
Perrm
rm vacuum equipment nctiona
nctiona  llowing hot commissioning activites should be
test conducted:
• Commissioning of CC Eectrcal System tun a s
• Veri pressure contro at CS and tun
• Commissioning of CC Instrumentation necessary verify vave control.
and Control systems • Veri ar remova system operation.
•• eat Tracing
Groundig Functional
System Checkheck
Functional • Verify
ambienteeze protection
temperature nctions subject
contions). subject t o
• Check and record the noncondensable gas
122 H 

 

 temperatures, condensate temperatures and
n tube bunde temperatures.
221
2 21 ot commis
commisoning
oning actvit
actvities
ies can • Perrm a vacuum decay test of the system
commence once steam becomes avaabl. It and check r CC system leaks as necessary
is recommended that all cold commssioning
activities be successlly compleed 23 D  


 A
A

222
2 22 The CC manuctu
manucturer's
rer's O&M Manua
Manuall  231 The manu
manuctur
cturer
er may provde the
shall be used in conunction with the llowing services of a commssonng advisor to counsel
chckst r reference the purchaser n the proper commissonng and
ntal operation of the CC and accessories n
22 3 Commissonin
Commissoningg activite
activitess r equi
equipment
pment accordance with the CC manucturers O&M
· suppled by others are not the responsbility anual
of the CC manucturer Some typcal hot
commissioning actvities include 1232 n the vent of any conict between the
• Conduct ineal steam cleaning of the CC manucturers requirements and site practic
until the purchaser's water chemistry require- the commissoning advisor will bring such
ments are met. The purchaser shall provide conicts to th attention of th purchasers
and install teporary provisions to collect desigated representatve
condition or dispose of the initial condensate
• urng the stea cleaning, inspect steam 2 33 The commissionin
233 commissioningg advsor
advsor shal
shal not be
duct hat exchanger, and piping movements responsible r the owing:
to conrm ee expansion • Te supesion of the commissionng crew or
plant orators
• nstallaton or removal of temporary
componens requred during the cold o hot
commissioning
• Th schedule of commis
commissoning
soning and work
progress.

34
 

APPENDX A

HE A R COOLED
COOLED STEAM
STEAM CONDENSER
CONDENSER DATASH EE
EET
T - M PERIAL UNTS

 Maufaer:
2 Cstome I Projec Name
3 Loction
4
5 Cstome RefRef
Maufacrer Dae
eson:
•   "'
"' , .-
6 Steam-side r-sde
 Steam ow ae b/hr oal air mass fow Ibs
8 Non-codesable ow ate b/hr Temperate n / o F
9 be exhast esse " HQ(A) dle ce veoc /s
10 le ehapy Btu/b Fa sac essure "H,O 
1 Seam quali Alow per an c
12 emerate  / o F otal motor nu owe
owe W
13 aometric pressure: ·s(a)
14  ea ase Daa
15 Heat trase ate: B/h'F xeded sufa 
16 Heat dut MMBtu/hr MTD F
17 Bde ace area f'   are tbe surface: f'
18 nde Desg Dt
9 Design pessure ps(g) Desg temeratre: F
20 est 
essue:
essue: ps(g) I
.  -
2221 Po areahegh
Oveal W x : ft X  Nmbe
Nmbe
frst  obe
stae ubeleh
rows: 
23 Ce arranet rows x (cells/
(cells/ow
ow secod stae tbe ength: 
24 Nmber of ls 1"2 stage
"
be dsions  x n
25 Ce size, W x  x  be ch 
26 Man d length ft be wal hckess n
27 Man d diameer
dia meer n be mateial
28 Dt cooson aowa n Fn mateal
29 Disrbto
Disrbto header
head er diamete
d iamete n Fi dnsons n x in
30 Bdes per cel Fi thickne
thi ckness
ss / fp
fp in / 
31  Tbes pe bnde:
32 Fans
33 Fas pe  Diamete 
34 Speed I RPM Nm o bades
Nm
35   Hb maeral:
35 lade materia
36 Fan shaft power hp  SPL@3 dBA
37 o
38 Type: Nm  e
Nm e :
39   Seed
39  RPM nclosee te
nclos te
40 Moto ratig h Vots / Phase / Cce
4 Seed Redcers
42 Typ:  Nm er
Nm er l:
43 Redo ratio: AGMA sei facto
44 Condensate Tank
45 Wa thckness: n Voume al
46 Normal eve n Normalal leve
Norm l eve ca
caac
act
t 
3

4 Max evel  Max eve


eve caact
caact 
48 Dienss dmeer x ength  Corrosion aow
aowa
a 
49 sellaneu
sellaneus s Equipen
50 Vacuum ssem te: oldinQ steam se b/h
5 Holdi capaty SCFM oging steam se b/h
52 og time to 1 0 HgA mn ubin
u binee expansio
expansi o oit
t te
te
53 Moive steam esse /  ps) / F
54 Wei ght
eightss 
55 Emt weight lbs  erag wegh bs
56  Noes:

35
 

APPENDIX A

H EI AIR
AIR COOLED SEAM
SEAM CONDENS
CONDENSER
ER DAT
DATAS
ASHEE
HEE - MERIC UN IS

1 Manufacer
2 Custome / ojec
ojec Name
3 Loton
4 Custome Ref Date
5 Manufacte Ref: Revison
1· e1n, •r
•ra
6 teamde
. Ade
7 Steam ow ate T/h Total a mass ow kg/s 
8 Noncondesable ow rate T/hr Tem
Tem eatu
eatuee in / ot C
9 Tubine exaust pessure barA) veocit:
Bunde ace veocit s
10 Inlet enthap kJ/k Fan static presure a
1 Steam qual Airfow e fan m3/s
12 Tem
Te merate
erate  n / out  C Total motor inut powe kW
13 Baotric ressue baa)
14 eat ae Daa
15 Heat ansfe ate W/m2 C Extended sa m'
16 Heat d u
u:: MW LMTD C
17 Bundle fa aea M2 Bae tube srface m
18 Bde De Daa
19 Desgn rese bar(g)  Degn temeratue C
20 Test pee bar() 
B· ' "•

2 ot area W x L: mxm Num o tube ows


22 Oveal heght m st stae tube length m
23  Cel aranement rows x (cell/ow condd stae
con stae tbe length
length m
24 Num of lls: 1"/ 2 stae
"
ube dimenson m m x mm
25 Cel sze,  X L  mxm ube ptch mm
26 Man duct enth m ube wal thcnes: mm
27 Man dct damete mm ube mateia
28 Duct rosion aowance: mm Fn mateal
al
29 Distrbuion
Distrbuion heade dameter mm Fn dinsons mm x mm
30 Bndes pe l Fn thicnes / m mm// -
mm
31 Tbes er bundle:
32 Fa
33 Fans er l Date m
3 Sed: RPM Nm of bades
35 Hb mateal Bade mateal
36 Fan sha
sha  owe
owe kW SL@  m dBA
37  oo
38 Type: Nm per l
39 Speed RPM Encosue pe
40 Moto ratin kW Vots / Pha / Cce
41
42  ed
Type:  Redce Nume  l
Nume
43  Reducton atio AGMA sei faor
44  
44 ond enae a
45 Wa thnes mm Volume m
46  Normal eve mm Noal
No al leve caa
caaty:
ty: m
47   Max evel mm Max eve ac m
48 Dmensions diamete x lenth m Coosion alowance: mm
49  ceaneo Ement
0 Vacum sstem tvo e: 
voe Hodn steam se kg/ hr
kg/
51 Hodn caacit: m/ Hn steam e: /hrr
kg/h
kg
52 Ho tme to 0.34 barA mn Tbne expansion ont type
53 Motve steam
st eam resse
resse / T barg / C
bar
54  eg
55  Emty
Em ty weht T Oatng
Oatng wet
wet  T
5 Note

36
 

APPENDIX B

CONVERSON FACTORS

Area  m' = 5500 i



07639 
ea ansfer rae 1W = 342 3 Bu/
Bu/
Hea x  W/2  0317 Bu/h•'
Hea ansfe ecet  W/m•K   76 
/•
/•
FF
Enapy  kJg  042995 Btu/b
Leg  m = 39.3701 .
 32808 
Mass 1 kg  22046 lb
Mass densiy 1 kg/ = 0062428 b3
Mass flow ae 1 kg/s = 79366 lb,/
Pressue an sress 1 Pa  1 45  10  bi
45 bi
 0197  10· aa
= 0197  10 g/c'
 405  10-  wate
 953 X 0- n Hg
1033 X 10 Pa  1 sanar amospee
5
1 X 1 0 Pa  1 bar
Specic ea 1 kJ/kg•K  023886 Bub•F
Teperaure  K  5/9)R
 (5/
(5/9•(+45967
9•(+45967
= C2735
Tepeaure ere  K  1C
= (9/5•R = (9/5)•
Vome  m  35.34 
 264 7 gal

Vume ow ae 1  /s  21 1 89  1 0 
m
m

  5850  10 gami
Veocity 1 ms   96.85 mi
mi
Power  W  341 p

Fouling faco 1 m K = 5678 hf/B
Norma  amospeic pressue
pressue 101 ,325 Pa
Pa

37
 

APPENDIX C

ACC TROUBLESHTNG GUDENES

Ths troubleshooting gude has been prepared to assst  perators of ar cooled condensers. Th gude pro
provdes
vdes
genea gudance, and opeators re advsed to consult wth the manucturer hen necessary r specc

nstuctons
mnucturer; regadng
hoeverther
theseequpment Many
tems do aect
a of the tems
ect operaton an lsted belo
must be are not by
consdered n opeatos
the scope of the condenser

Expansion jont ailue Repace


Repace o r eai expason joint
LP Turbne Chec all LP tbne seas
Weld aure ocate wed faue and epair
ube eak octe ad repa
eaks
eaks rom vet or drai conecion
conecions
s Check a potena sources connected to vaum
connected
space
srumentatio Check al isumeato coneons to vacum
spa

Condee
Chemsty
(Hgh Conduct1vty)
I Manhoe or bli d fange gases
Coroson produc
Coroson producs
s or wed sag i n censer
Repai gaset seatng sua
Check· and clean condesae heaes. deaeato
rays and cdesa:e an

Inmg dans Chec dain sources


Fae nstrument
Readg I
Instumes ou o cabron

Damage instrumens
mpror insallation
I Chec caibato

Repar o epa as nessay


Chec manuacues ecommedatons cludng
valve maniold and pigtai equrements
Irect age Che pocess equremens ad rect as
requied
Isoaed instrumen conecon Chec connecto

38
 

APPENDX C

ACC TROU
TROU B LESHOOTNG GU IDE
IDELN
LNES
ES

Hg Abste Bac


pesse
I A -eakage  See ar nl eakage sectn

Esse aiside olng


Esse Cea ext
exteal
eal eat transfer s a
ace
ce
Ar baketig wt te  tbe budles Cnst eqpment peas maal n
ecmme
ec mmeded
ded pu gn g actn
actnss
Ht a recrcatn Csu OEM s upper r ecmmeded
ecmmeded sltns
f pat secc arangemets
Ht air ingestn int ACC a  inet fm tsde sres Remve
Rem ve sield r redre t ar eent away
frm te
te ACC's ar in et
Hg wnds Cnslt OEM sppler f recm
recmmende
mendedd st is
 pant specic
c arangemets
Cndensate dp wti ACC Cea debs tat may be bstrug cndesate
danage (i.e, staners DA spray vaves
vaves etc)
Ct gic t pessre t
t  g Reduce set pressre
ase nstrmet eadgs See Fase nstrumeat Readig sect
Air-mvg system fare Cnsu O&M mana r OEM suppie
Vacm eqipment faie See HE Vacuum Eq ipment ublestg
Gude
g ssved  A I-eakage See A Ineaage sec

I I Cec et
Cndesate o,
Hig disslved 02 n prcess  pant dans et steam s s
Vacm eqpment ilre See HE Vacum Eqpment blestig
Gude
Ai ban ketng wtin te f tbes cas ng cdensate
cdensate t Csl eqpment peatns manua 
sbc ecmmended pging atns
Cnsut HE desgn sandards

I I
ca Overeating Opeaig cndtins exedig desgn parameters Ceck for pper dsperheatg f dran
cnec
Re-evauate ntea dsperi desig

I parameters I Expected at w ad/w back pesse Pssibly


w Htwe Make p t cdensate tak exceedg desgn Ceck ad adJust make  p fw
Tempeatues
Opeati  design/lw lad  peatin
aevated wit steam spagig 1 n cdesate tank
Tube aes
I be inet esn
Fze tubes
 Repacee  epa tb es ad cs
Repac
evsed
ev
csl
l OEM fo
sed pratng cndt s t av d r
reeng
eeng
Cnsl OEM f repar tecqes and apprv
apprvdd
metds fr sding
Maitena nce  cnstcn
cnstcn damage Repa  replace as equred

I I
g V1bran  Fa mbaace Ceck a baance  accdance w O&M
A1r-Mv1ng System manua
Ceck r brke/cracked blades
Ceck f ce   bades
Lst fa bade Repace accding  O&M manal
Essve ai-sde lng Cea n tube bndles

39
 

NOTES

40
 

NOTES

41
 

NOTES

42

You might also like