Formulas
Formulas
Formulas
1. dx
(ax )=a ∫ x dx= n+1
n
+C
1.
d n eax
( x )=nx n−1
2. dx ∫ e dx= a +C
ax
2.
d x
(a )=a x ln a ax
3. dx ∫ a dx =ln a +C
x
3.
d ax
(e )=aeax −cos ax
4. dx ∫ sin axdx = a +C
4.
d
(sin ax )=a cosax sin ax
5. dx ∫ cos axdx= a +C
5.
d
6. dx
(cos ax )=−asin ax
6. ∫ tan xdx=ln|sec x|+C
d
( tan ax )=a sec 2 ax 7. ∫ cot xdx=−ln|csc x|+C
7. dx
d
( tan x )=sec 2 x 8. ∫ sec xdx=ln|sec x+tan x|+C
8. dx
d 9. ∫ csc xdx=−ln|csc x+cot x|+C
(cot x )=−csc 2 x
9. dx 10. ∫ sec2 xdx=tan x+C
d
(sec x )=sec x tan x 11. ∫ csc2 xdx=−cot x+C
10. dx
d
(csc x )=−csc x cot x 12. ∫ sec x tan xdx=sec x+C
11. dx ∫ csc xcot xdx=−csc x+C
d 1 13.
( ln x )= 1
12. dx x ∫ x+ a dx =ln|x+ a|+C
(Note- 14.
d
log e x=ln x )
15.
∫ 2
1
x +a
2
1
dx= tan−1
a
x
a
+C ()
( sin−1 x )= 1 2
13. dx √ 1−x
d
( tan−1 x ) = 1 2 ∫ 1 2 2 dx =sin−1( ax )+C
14. dx 1+ x √ a −x
d
( sec−1 x ) = 12 16.
or =cos−1 ( xa )+C
15.
dx |x| √ x −1
1
∫ dx=sec−1 ( x )+C
17. |x|√ x 2−1
1|Page
1
∫ dx=ln|x + √ x 2 +a2|+c
18. √x +a2 2
dx v ( x ) [ ]
d u( x ) v ( x )u '( x )−u ( x ). v '( x )
=
[ v (x )]
2
8. sec x ± 2± =
20. b b e b2 e
sin x 22
tan x= π= =3. 14 28
9. cos x 21. 7
0
22. a =1 where a≠0
2|Page
cos x 23. ln 1=0
cot x=
10. sin x
1
tan x=
11. cot x
sin ( A+ B ) +sin ( A−B )
sin A cos B=
24. 2
sin ( A+B )−sin ( A−B )
cos A sin B=
25. 2
cos ( A + B ) +cos ( A−B )
cos A cos B=
26. 2
cos ( A−B )−cos ( A+ B )
sin A sin B=
27. 2
n
28. sin nπ =0 , cos nπ =(−1 )
0 π /6 π /4 π /3 π /2 π nπ
sin 0 1/2 1/ √2 √3 1 0 0
2
cos 1 √ 3/2 1/ √2 1/2 0 -1 (-1)n
tan 0 1/ √3 1 √3 ∞ 0 0
3|Page