Lec 2 Slides
Lec 2 Slides
Lec 2 Slides
R 摋r2 r1 摋 o
o free space permittivity,
[ o ] farad / m F / m
109 Q1Q 2
o 8.85 1012 F / m, F2 F1 a
36 4o R 2 R
k = 9 109 m / F
Dr Alaa K. Abdelmageed Eng. Math & Phy Dep., Cairo U Elect/1
Electrostatic Fields - Coulomb’ Law - 2
F2 Force on Q 2 due to Q1
F2 Force directed along R r 2 r1
F2
Q1Q 2
aR R r 2 r1
4 o R aR
r 2 r1
2
R
Q1Q 2R Q1
R r2 r1
Q2
F2 F2
4o R 3 F1
aR
Q1Q 2 r 2 r1 r1
F2 3 r2
4 o r 2 r1
o
Dr Alaa K. Abdelmageed Eng. Math & Phy Dep., Cairo U Elect/2
Coulomb’ Law - Superposition Principle
Q Q1 R1 Q Q2 R2
F 3 3
4 o R1 4 o R 2
QQN RN
3
4 o R N
QQ1 r r1 QQ 2 r r2
F 3 3
4 o r r1 4 o r r2
QQ N r rN
3
4 o r rN
Q Q i r ri
F
N
4 o i 1
r ri
3
qo
F 1 qoQ Q R F
E = lim lim a
qo 0 q qo 0 q 4 R 2 R aR
o o o
Q
E= aR
4 o R 2
Unit:
Dr Alaa K. Abdelmageed Eng. Math & Phy Dep., Cairo U Elect/4
Electric Field intensity - 2
For single charge:
Q Q r r '
E aR
4 o R 2
4 o r r '
3
Field lines
The charge on the right is twice the magnitude of the charge on the left (and
opposite in sign), so there are twice as many field lines, and they point towards
the charge rather than away from it.
R R
dQ l dl ' dQ S dS '
dQ v dv '
Q l dl ' Q v dv
'
Q S dS '
[ l ] C / m [s ] C / m 2 [ v ] C / m3
Solution:
a 2
Q v dV o r 2 r 2 sin d d dr
V 0 0 0
2 z
o r 2 r 2
sin d d
a
dr
0
0 0
a
4 a
4o r 2 r 2 dr y
r
0
a5
x
4o
5
Dr Alaa K. Abdelmageed Eng. Math & Phy Dep., Cairo U Elect/8
Field from Line Charge
z
dQ
R dE a
4 0 R 2 R
dl
y
r ' x, y , z l r '
E (r ) a dl '
x l
4 0 R 2 R
dQ l r ' dl
l r ' R
dl '
R r r' 4 0 R 3
l
( x x ') a x ( y y ') a y ( z z ') a z
l r ' (r - r' )
R r r' dl '
aR l
4 0 摋 r - r' 摋 3
R 摋 r r '摋
Dr Alaa K. Abdelmageed Eng. Math & Phy Dep., Cairo U Elect/9
Field from Surface Charge
z
dQ
R dE a
4 0 R 2 R
s x, y , z dS '
aR
4 0 R 2
dSdS´ y
s r '
E (r ) a dS '
r ' x, y , z 4 0 R 2 R
dQ s r ' dS S
x s r ' R
R r r' dS '
S
4 0 R 3
dQ
dE a
R 4 0 R 2 R
dQ v r ' dV
v r '
y E (r ) a dV
V
4 0 R 2 R
x R r r' v r ' R
E (r ) dV
( x x ') a x ( y y ') a y ( z z ') a z V
4 0 R 3
aR
R
r r' v r ' (r - r' )
dV
R 摋 r r '摋 4 0 摋 r - r' 摋 3
V
Rectangular Coordinates:
r ax x a y y az z
Cylindrical Coordinates:
r a az z
Spherical Coordinates:
r ar r
s 2( x 2 y 2 9)3/2 nC / m2
E
1 b dy ' a dx ' s x 'ax y 'a y 3a z
Solution 4 o b a 3
x' y' 9
2 2
Solution: z
r a z zo
r zo a z R
r' a s = s0 [C/m2]
R r r' a
y
a a z zo b
a
x r' a
dS d d
R r r ' a az z o d
dS
R r r ' z o 2 2
x
E field equation:
s r r '
E dS ' 3
4 0 r r '
2 b
s 0 a a z zo
E a 4 0 3 d d
0 zo
2 2 2
Dr Alaa K. Abdelmageed Eng. Math & Phy Dep., Cairo U Elect/15
Example 2.3: ctd
function of
a a z zo
2 b
s0
E d d
4 0 0 a zo
2 2 2
3
2
Note that a
0
.... d 0 due to symmetry
2
s0 b
a z zo
E d d
4 0 0 a
3
2 zo 2 2
2
s 0 b
a z zo
E d d
4 0 0 a zo
2
3
2 2
2
s0 b
1
E a z zo d d
4 0
3
a zo
2 2 2
0
s 0 b
E a z zo d 2
4 0
3
a
2 z 2 2
Dr Alaa K. Abdelmageed Eng. Math & Phy Dep., Cairo U Elect/17
Example 2.3: ctd
s0 b
E 2 a z zo d
4 0
3
a
2 z o
2 2
b
1
E s 0 a z zo
2 0 2 zo 2
a
s0 1 1
E a z zo V/m
2 0 a zo b 2 zo 2
2 2
s0 1 1
E z o
a z V/m
a 2 zo 2 b 2 zo 2
2
0
z S 0 zo
E az
2 0 zo
E
S 0
E az V/m
s0
y 2 0
+ for
E
x - for
Dr Alaa K. Abdelmageed Eng. Math & Phy Dep., Cairo U Elect/19
z
Example2.4: Find at arbitrary point dQ l dz '
due to a finite wire along z (0, 0, z )
axis extending from to R =摋 r r' 摋
r
Solution: z y
r a z az r ' z 'az x a
r r '
l
E dl
L b L
3 ( z z ') a z
4 o r r ' dz '
4 o a 2 2 3/ 2
4
( z z ') o
E
L b a ( z z ') a z [
1 ( z z ')
a
1
a z ]ba
4 o dz ' 2 2 ( z z ') 2 2 ( z z ') 2
2 3/ 2
a 2 ( z z ')
if a , b
L b a
E dz ' 2 L
4 o E = a 2 a
L
2 3/ 2
a 2 ( z z ') 4 o o
Dr Alaa K. Abdelmageed Eng. Math & Phy Dep., Cairo U Elect/20
Electric Field for infinite Line/Sheet of charge
z
infinite sheet of charge
E
S
E az
2
0 y
E
x
L E
E= a
2 o