Nothing Special   »   [go: up one dir, main page]

GTM 49 Key

Download as pdf or txt
Download as pdf or txt
You are on page 1of 18

Sri Chaitanya IIT Academy., India.

A.P, TELANGANA, KARNATAKA, TAMILNADU, MAHARASHTRA, DELHI, RANCHI

A right Choice for the Real Aspirant


ICON Central Office – Madhapur – Hyderabad
Sec: Sr.Super-60 & All Jee-Main Date:26-08-2021
Time: 02.30Pm to 05.30 GTM-49 Max.Marks:300
Key Sheet
PHYSICS
1 4 2 4 3 1 4 1 5 2
6 3 7 3 8 2 9 4 10 3
11 1 12 2 13 3 14 3 15 3
16 3 17 3 18 3 19 2 20 2
21 9 22 0.57 23 12 24 1.36 25 1
26 101 27 476 28 51 29 10 30 3

CHEMISTRY
31 2 32 1 33 3 34 4 35 3
36 4 37 1 38 3 39 3 40 4
41 4 42 1 43 4 44 4 45 4
46 2 47 2 48 4 49 2 50 1
51 20.00 52 4.80 to 5.00 53 0.33 to 0.34 54 0.16 to 0.17 55 4.00
56 5.00 57 1.00 58 3.00 59 2.50 60 4

MATHEMATICS
61 3 62 4 63 1 64 1 65 1
66 2 67 1 68 4 69 3 70 2
71 1 72 3 73 4 74 3 75 2
76 4 77 4 78 2 79 3 80 4
81 7.00 82 1.00 83 3.00 84 78.00 85 18
86 4 87 2 88 10 89 130.00 90 2.00
Sri Chaitanya IIT Academy 26-08-2021_Sr.Super60 & ICON All_Jee-Main_GTM-49_Key & Sol’s

SOLUTIONS
PHYSICS
1. Use the formula for angular magnification.
2. Use the formula for fringe width  D
d
3. T  m 2
v N
4. Use 1  1
v2 N 2
2  x   10
5.  and 
x 100   2 90  
 90   90
So      45 cm
100     10 110
h
6.  Since v is increasing in case (i), but is it is not changing in case (ii). Hence, in
mv
the first case de-Broglie wavelength will change, but it second case, it remain the same
N Pb 1
7. 
N Ur 2
N Ur
2
N Pb
NUr 2

N0 3
2 1

3 2n
3
 2n
2
3
n    n n 2
2
3 t
n    n 2
2 T
n  3 / 2 
tT
n  2 
8. Photons per area per second at a distance r are 5.00 1018 / 4 r 2 . Photons per second
entering the eye, radius R is then this times R 2 . Set this product equal to 500 per
second and solve for r. The result is [B].
9. The P-N junctions will conduct only when it is forward biased i.e. when – 5V is fed
to it, so it will conduct only for 3rd quarter part of signal shown and when it conducts
potential drop 5 volt will be across both the resistors, so output voltage across R 2 is
2.5 V.
 V0  2.5V
10.

Sec: Sr.Super-60 & All Page 2


Sri Chaitanya IIT Academy 26-08-2021_Sr.Super60 & ICON All_Jee-Main_GTM-49_Key & Sol’s

200  T T  20

R 2R
400  2T  T  20
T  140C
11. BH  Bcentre
 0 Ni 4107 100  2
 
2r 2  0.1
 4 10 4 T
12. Speed max  7  105 m / s

Kinetic energy of e   1 mv 2  1 m   7  105 


2

2 2
1 31 10 21
  9.1 10  49  10  9.1 10  49  0.5 J
2
Given incident frequency  8 1014 Hz
 From photoelectric equation k max  h  h 0
 h 0  h  k max
 6.6 1034  8 1014  91 49  5 1023
  6.6  8 1020  91 49  5 1023 
 1021  66  8  91 49  5 102 
 528  223 1021  6.6 1034  0
305 30.5
0   1021  1034   1014   0
6.6 6.6
 4.64  1014 Hz
k
13. As we know,  
I
3k  1 
 2 
 I rod  m 2 
m  3 

Tension when it passes through the mean position,

Sec: Sr.Super-60 & All Page 3


Sri Chaitanya IIT Academy 26-08-2021_Sr.Super60 & ICON All_Jee-Main_GTM-49_Key & Sol’s
 3k  k2
 m220  m 2 20  0
3 m 3 
vu 1
14. Using equation, a  and S  ut  at 2
t 2
1  45  2
Distance travelled by car in 15 sec  15
2 15
675
 m
2
Distance travelled by scooter in 15 seconds  30 15  450
( distance = speed  time)
Difference between distance travelled by car and scooter
in 15 sec, 450 – 337.5 = 112.5 m
675
Let car catches scooter in time t ;  45  t  15   30 t
2
337.5  45t  675  30 t  15t  337.5
 t  22.5 sec
lateral strain   
15. Poisson’s ratio,  
longitudinal strain   
For material like copper,   0.33
And, Y  3k 1  2  
9 1 3
Also,  
Y k 
Y  2 1   
Hence,   Y  k
16. For minimum density of liquid, solid sphere has to float (completely immersed) in
the liquid.
mg  FB  also Vimmersed  Vtotal 
4
or  dV  R 3
3
  r2  
   r    0 1  2 
0  r  R given 
  R  
R 2
 r  4
   0 4 1  2   r 2 dr  R 3
0  R  3
R
 r3 r5  4
 4 0   2   R 3 
 3 5R  0 3
3
40 R 2 4 3
  R 
3 5 3
2 0
  
5
1
17. Velocity of EM wave is given by v 


Velocity in air  C
k

Sec: Sr.Super-60 & All Page 4


Sri Chaitanya IIT Academy 26-08-2021_Sr.Super60 & ICON All_Jee-Main_GTM-49_Key & Sol’s

Velocity in medium  C
2
Here, 1   2  1 as medium is non-magnetic
1
r1 C r1 1
  2  
1 C r2 4
 
r 2
2

18. Ratio of AM signal Bandwidths


15200  200 15000
  6.
2700  200 2500
19. i DC   / R
i AC   / Z
KP sin 45 4K p
20. E0  3
2 
 a  a3
 
 2
EA  E 2
KP
 2 2
a
E0 4
  2 2
EA 2

21.

 q1 max  1 6  6
 q 2 max  2  4  8
q   q1  max ,  q 2  max
 q6
q 6
V   9 KV
Ceq 2
3

Sec: Sr.Super-60 & All Page 5


Sri Chaitanya IIT Academy 26-08-2021_Sr.Super60 & ICON All_Jee-Main_GTM-49_Key & Sol’s

I
22. T  2
B
23. Pv  nRT
2  P / nT  Constant
P2 / n 2T2  P1 / n1T1
P2  P2 n 2 T2 / n1T1
If initial no of moles = 1  final no of moles = 0.5
T1  27C  273  27  300 k
T2  300  50  350 k
put in above eq n
P2  20  0.5  350 / 1 300 
 11.66 atm
h
24. r
2
, d  2r
r d  1

25. See figure. Potential difference across R L

 8V  VCE
 8V  4V  4V
Now IC R L  4V
4
RL   103   1k 
4 103
26. Given : Radius of capillary tube, r  0.015 cm  15 10 5 mm
h  15 cm  15  10 2 mm
2T cos 
Using, h  cos   cos 0  1
gr
rhg 15 105 15 102  900 10
Surface tension, T    101 milli newton m 1
2 2
27. Given,
Distance between an object and screen, D = 100 cm
Distance between the two position of lens, d = 40 cm
Focal length of lens,

Sec: Sr.Super-60 & All Page 6


Sri Chaitanya IIT Academy 26-08-2021_Sr.Super60 & ICON All_Jee-Main_GTM-49_Key & Sol’s
D2  d 2 1002  40 2 100  40 100  40 
f    21 cm
4D 4 100  4 100 

Power, P  1  100  N
f 21 100
 N  476.19 .
28.

From linear momentum conservation, Li  Lf


v
mV  0  0  5mV '  V ' 
5
2
1 1 v
Loss of KE  KE i  KE f  mv 2   5m   
2 2 5
2
1  1  4  mv 
 mv 2 1     
2  5 5 2 
4
 KE i  10.2 eV
5
[ Energy in first excited state of atom = 10.2 eV]
N
KE i  12.75 eV   N  51
4
The value of N = 51.
Li 80
w  100 
cw 1  10C
29.  mix  
2 2
30. He should move away from 224 Hz and towards 220 Hz.

CHEMISTRY
31. Stability of carbocation Aromatic > non aromatic > Anti aromatic

32.

33. Conjugation is preferred & Benzyl carbanion is stable

Sec: Sr.Super-60 & All Page 7


Sri Chaitanya IIT Academy 26-08-2021_Sr.Super60 & ICON All_Jee-Main_GTM-49_Key & Sol’s

H    
H2 O 
O Et   O  Et O Et   O  C2 H 5OH 2
  

C2 H 5OH  H 
34.

35. Electron with drawing groups increases reactivity but electron donating groups
decreases reactivity
36.  -Keto acids undergo decarboxylation simply by heating.
37. In basic medium O is stronger donar than  NH 2
38. Acidic amino acids will have low Isoelectric points. at pH=7 it exists as anion
39.

2
2

40. This is an example of Azeotrope


41. Rentadine is also anti histamine in stomach wall.
42.
N0
N N  final amount
2n
N0  initial amount
n  no of half lifes

43. Molar conductance of NO3 = molar conductance of Cl 


As long as reaction takes place Cl  is replaced by NO3 . Hence conductance remains
unchanged .
After completion of reaction Ag  also present in solution
Hence conductance increases
 RT wt 1000
44.      RT
 C  GMwt gMwt  vol of solution in ml
1000
 C  RT
GMwt
Slope 1000 RT  4.65  103
GMwt
1000 RT
GMwt 
4.65  10 3

Sec: Sr.Super-60 & All Page 8


Sri Chaitanya IIT Academy 26-08-2021_Sr.Super60 & ICON All_Jee-Main_GTM-49_Key & Sol’s
0.0821 293 1000

4.65 10 3
82.1  293  1000

4.65
 5.17  106
45. Zn  OH  2  NH 4 OH   Zn  NH 3  4   OH 2
Zn  OH 2 is soluble in alkali ( NaOH ) as well as in ammonia
46. NO is paramagnetic.
47.
G 0  nFE
G 0  G products  Greac tan ts
48. When electron density is pushed from metal atom into  -bond, the CO bond is
weaken as electrons enter into anti bonding orbital of CO. With 2 unit negative charge
on metal atom  -back bonding from metal to CO increases maximum electron
density.
49. Syn addition of H2 takes place. Hence (b) is only optically active
50. Marconicovs addition of water
51. H   103 M
1
So Ca 2    103 M
2
103
wt.of Ca 2   40
2
1
 103  40  106
So, weight of Ca 2 6
ions in 10 mL hard water  2  20
103
52. work done = ng RT
53. x millimoles of Na2CO3 and y millimoles of NaOH are present in initial mixture
x  y  20 x 5
2 x  y  25 y  15
x 1
 
y 3
54. It will undergo disproportionation
55. Pb, Sn, Al , Zn
56.  N 2( g )  3H 2( g )
2 NH 3( g ) 
 3
1
2 2
Totalmoles  1  
PV  nRT
20V 1 R 300

50V n R 600
n 1.25
  0.25

Sec: Sr.Super-60 & All Page 9


Sri Chaitanya IIT Academy 26-08-2021_Sr.Super60 & ICON All_Jee-Main_GTM-49_Key & Sol’s
%  25 i.e. x  5
57. Normality = 10 1.78
5.6
Milii equivalents of H 2O2 = milliequivalents of KMnO4
1.78x 112 = 0.04 x 5 x volume in ml
58.

2-D or sheet Silicate

59. Na2 S 4O6


60. 4.00

MATHEMATICS
61. Ans: 3
cos x  sin x
Sol:  dx
8  sin 2x
cos x  sin x
 dx
2
9   sin x  cos x 
Let sin x  cos x  t
dt 1 t
 9  t 2  sin 3  c
 sin x  cos x 
 sin 1  c
 3 
So a = 1, b = 3.
62. Ans: 4
Sol: (i)  2  i  z   2  i  z
x
y
2
(ii)  2  i  z   i  z  z  4i  0
x  2y  2
(iii) iz  z  1  i  0
Equation of tangent x  y  1  0
Solving (i) and (ii)
1
x  1, y 
2
1
1 1
Now, p  r  2 r
2

Sec: Sr.Super-60 & All Page 10


Sri Chaitanya IIT Academy 26-08-2021_Sr.Super60 & ICON All_Jee-Main_GTM-49_Key & Sol’s
3
r
2 2
63. Ans: 1
1 n n n 
Sol: lim   2
 2
 ...  2
n  n
  n  1  n  2   2n  1 
n 1 n 1
n n
 lim  2
 lim  2 2
r 0  n  r  r 0 n  2nr  r
n  n 

1 n 1 1
 lim
n  n
 2
r 0  r / n   2  r / n   1

1 1
dx  1  1
 2
  
0  x  1   x  1  0 2
64. Ans: 1
2 7 12 17
Sol: S  1      ....
3 32 33 34
S 1 2 7 12 17
      ....
3 3 32 33 34 35
2S 1 5 5 5
 1   2  3  4  .... 
3 3 3 3 3
13
S
4
65. Ans: 1
Sol:

6
sin 30   x  12
x
66. Ans: 2
10!
Sol: Total number of arrangements =
3!2!
The number of arrangements in which two
9!
L’s appear adjacently =
3!
 Total number of arrangements
10! 9!
 
3!2! 3!

Sec: Sr.Super-60 & All Page 11


Sri Chaitanya IIT Academy 26-08-2021_Sr.Super60 & ICON All_Jee-Main_GTM-49_Key & Sol’s
9!
  4  6  8!
3!
67. Ans: 1
x 3   sin   x 2   cos   x  1
  x    x    x   
put x = 1
2   sin   cos    1   1   1   
max = 2  2
68. Ans: 4
 sin x   1 and  cos y   1
sin x  1 of cos y  1
 
x  ,  and y  0, 
2 2

69. Ans: 3
D  0  m2  3

 m ,  3    3,  ……(1) 
b
1  2  m  1,2  ……(2)
2a
f 1  0  m  2 and f  2   0
7
m ……(3)
4
 7
from (1), (2), (3) m   3, 
 4
70. Ans: 2
6x 8  5x 6  3x 2
Sol:  dx
x6  x4  1
1 12x11  10x 9  6x 5
  dx
2 x12  x10  x 6
1

2
2 x12  x10  x 6  c 
 x3 x 6  x 4  1  c

Sec: Sr.Super-60 & All Page 12


Sri Chaitanya IIT Academy 26-08-2021_Sr.Super60 & ICON All_Jee-Main_GTM-49_Key & Sol’s
71. Ans: 1

p q pq p ~ q  p  q    p ~ q  ~ pq
(1)  (2) pq
(1) (2)
T T T T T T T T
T F F T T F F F
F T F F F T F F
F F F T T T T T

72. Ans: 3
Sol:  A,A   R because it is not necessary that each matrix is inverse of itself.
Let  A,A   R  A & B are inverse of each other.
 AB  I  BA
 BA  AB   B,A   R
Now Let  A, B  R  AB  I  BA ….. (1)
 B,C   R  BC  I  CB …..(2)
From (1) & (2) (AB) (BC) = I
AB2C  I
It is clear that AB2C  I is AC  I if, B2  I
which not possible of each matrix.
73. Ans: 4
Sol: x 6  6x  8 is non differentiable at x = 2, 4
at x = 2,
at x = 2, sin   x  2     0
x  4sin   x  2     0
So x 2  6x  8 sin   x  2    is differentiable everywhere
Similarly, ex  1 sin x is differentiable every where and x 2 is differentiable
everywhere
74. Ans: 3
1
8

1 cos  x  5x  dx
1 5
Sol:

8
1
8

2I  1  dx I 
8

8
75. Ans: 2
Sol: Let A = (2, 3, 4) and B = (5, 6, 7).
Then AB = 3 3 .
Sec: Sr.Super-60 & All Page 13
Sri Chaitanya IIT Academy 26-08-2021_Sr.Super60 & ICON All_Jee-Main_GTM-49_Key & Sol’s

Plane : 2x + y + z = 1
Projection of AB on vector 2iˆ  ˆj  kˆ which is normal to plane.
Normal to plane,

B
 
3iˆ  3jˆ  3kˆ . 2iˆ  ˆj  kˆ
12
2 6
6 6
 Projection of AB on plane,
2 2
AC  3 3    2 6   3
76. Ans: 4
Sol: Area of parallelogram formed by line y  m1x  c1 , y  m1x  c 2 , y  m 2 x  d1 ,
y  m 2 x  d 2 is given by

Area of parallelogram = 1 2
 c  c    d1  d 2 
m1  m 2
x 5 x 15 c
For the given lines y    ; y    and y  3x  10; y  3x  ,
2 2 2 2 2
c
5.  10
2
Area of parallelogram = 1
5
2
(Given)
 c  20  1  21 or c  19
77. Ans: 4
 
Sol: Image of  2 ,2 in the line mirror x  y  1  0 is
2

h   2 k  2 2   2  1
 

1 1 2

Sec: Sr.Super-60 & All Page 14


Sri Chaitanya IIT Academy 26-08-2021_Sr.Super60 & ICON All_Jee-Main_GTM-49_Key & Sol’s

 h  1  2 …….(1)
and k   2  1 ……(2)
2
 h 1
Putting value of  from (1) and (2), we get k  1   
 2 
2
or 4  y  1   x  1 , which is the required locus
78. Ans: 2
 1 
  1   r  1  r
Sol: Tr  tan 1  2   tan   tan 1  

 1  r  r  1   2  2
 2 2 
 1
S   tan 1  
2 2
79. Ans: 3
Sol: Normal vector:
ˆi ˆj kˆ
3 1 2  11iˆ  ˆj  17kˆ
2 5 1
So drs of normal to the required plane is <11, 1, 17>
Plane passes through (1, 2, -3)
So equation of plane :
11 x  1  1 y  2   17  z  3  0
11x  y  17z  38  0
80. Key 4
3 2 k
Sol:   2 4 2  0
1 2 1
 24  2  0   k  8  0  k  3
10 2 3
 x  6 4 2
5m 2 1
 10  8  2  10m  6   312  20m 
Sec: Sr.Super-60 & All Page 15
Sri Chaitanya IIT Academy 26-08-2021_Sr.Super60 & ICON All_Jee-Main_GTM-49_Key & Sol’s

 8  4  5m 
3 10 3
y  2 6 2
1 5m 1
 3  6  10m   10  0   3 10m  6 
=0
3 2 10
 z  2 4 6
1 2 5m
 3  20m  12   2  6  10m   10 8 
 40m  32  8  5m  4 
For inconsistent
4
k  2&m 
5
81. Ans: 7.00
2
Sol: Parabola is  x  2   8  y  1
1
Now equation of normal having slope  is
2
1  2 
 y  1    x  2   4   
2  1 / 4  
 x  2y  28
82 Ans: 1.00

Minimum value of z  i = distance of point (0, 1) from the line y – x = 0


1

2
83. Ans: 3.00

Sol. a  k

b  2k

c  3k
  
a  2b  3c  21
     
a 2  4b 2  9c2  2  2a  b  6b  c  3c  a   21
Sec: Sr.Super-60 & All Page 16
Sri Chaitanya IIT Academy 26-08-2021_Sr.Super60 & ICON All_Jee-Main_GTM-49_Key & Sol’s

2 2  4k 2 36k 2 9k 2 
2
k  16k  81k  2      21
 2 2 2 
1
147k 2  21  k  
7
3
c  3k  [magnitude is always +ve]
7
84. Ans: 78.00

A  5  3,7  , 2   
B  3  3,3  2,6  4 
direction of
AB  2  3  3, 4    2,  8    4 
AB is perpendicular to L 2
11  29  18  0 …..(1)
2  3  3 4    2 8    4
Also  
2 7 5
   m  2  0 …..(2)
from (1) and (2)   1
  1
 A(2,8, -3) and B(0, 1, 2)
2
 AB  4  49  25  78
85. Ans: 18
f x

 4t 3dt
6 0 
Sol: lim  form 
x 2 x  2  0 
D’L rule
3
4  f  x    f ' x   0
lim
x 2 1
1
 4.63   18
48
86. Ans: 4
1 9 1 1
Sol: 1  n    n
2 10 10 2
n
 2  10  n = 4
87. Ans: 2
Sec: Sr.Super-60 & All Page 17
Sri Chaitanya IIT Academy 26-08-2021_Sr.Super60 & ICON All_Jee-Main_GTM-49_Key & Sol’s
2
Sol:  2  2        2
2
 3     2 2   
  2  9  6  4  2
  2  4  5  For least value   2
88. Ans: 10
5
Sol: 4x 2  9x  5  0  x  1,
4
5 t t
Now given  p q , t  t p t q where
4 2
 1
r 1
5  1 p1  1 q 1 
t r  16    so  8        
 2 4  2   2  
pq 2
 1 pq2 8
1  256     2 pq2   1 2
 2
hence p + q = 10
89. Ans: 130.00
P(B) = 1 if the event ‘A’ occurs atleast twice
P(B) = 0 if the event ‘A’ does not occurs
1
P(B) = if ‘A’ occurs once
2
3 2 2 3 1 4
4  1  2   1   4  1   2  4  1   2  4  1  
P  B   C1        C2      C3      C4    1
 3  3   2   3  3 3  3  3  
49
=
81
90. Ans: 2.00
3  10  10  4  7  10  5
Sol: x  7
7
xi d1  x i  x
3 4
10 3
10 3
4 3
7 0
10 3
5 2
18
18
MD   2.57
7

Sec: Sr.Super-60 & All Page 18

You might also like