Nothing Special   »   [go: up one dir, main page]

Science - Abm8868 SM

Download as pdf or txt
Download as pdf or txt
You are on page 1of 154

Supplementary Materials for

Low-temperature mineralization of perfluorocarboxylic acids

Brittany Trang et al.

Corresponding authors: K. N. Houk, houk@chem.ucla.edu; William R. Dichtel, wdichtel@northwestern.edu

Science 377, 839 (2022)


DOI: 10.1126/science.abm8868

The PDF file includes:

Materials and Methods


Supplementary Text
Figs. S1 to S66
Tables S1 to S4
Data S1
References
Materials and Methods
Materials
Reagents were purchased in reagent grade from commercial suppliers and used without
further purification, unless otherwise described. Anhydrous DMSO was obtained by drying with
activated 4Å molecular sieves. Reagents were purchased from Fisher or Sigma unless specified.
4,4′-difluorobenzophenone NMR standard (Merck) was prepared by diluting to 0.095 M in
DMSO-d6 and adding 60–80 µL of solution to a coaxial NMR tube insert (Wilmad-Lab Glass,
WGS-5BL). Each 19F NMR sample was referenced to 4,4′-difluorobenzophenone (-106.5 ppm)
by inserting the coaxial tubes containing the external NMR standard into the NMR sample tube
before NMR analysis. 13C NMR samples were quantified using a sodium acetate standard in D2O
(50 µL, 5.33 M). 1H NMR samples were quantified using 4,4′-dihydroxybiphenyl dissolved in
DMSO-d6 (0.68 M). Quantification of samples was conducted by integrating each NMR peak
and normalizing with the external standard peak integration, then converting to molar
concentration using the known molar amount of the external standard. 25 mL PTFE round
bottom flasks were purchased from Ace Glass (United States, 13438-16).
PFCA degradation reactions were conducted on 0.5 mmol or 1 mmol scales.

Instruments
Proton nuclear magnetic resonance (1H NMR) spectra and fluorine nuclear magnetic
resonance (19F NMR) spectra were recorded at 25 °C on a 400 MHz Bruker Avance III HD
Nanobay equipped with a BBFO Smart probe w/ Z-Gradient (unless stated otherwise). Fluorine-
decoupled carbon nuclear magnetic resonance (13C NMR) spectra and two-dimensional C–F
spectra were recorded on a Bruker Neo 600 MHz system with a QCI-F cryoprobe w/ Z-Gradient.
Quantitative 13C NMR spectra were recorded on a Bruker Avance III 500 MHz system equipped
with a 5mm DCH CryoProbe w/Z-Gradient using a 40 second D1 delay. Other spectra were
recorded on a Bruker Avance III 600 MHz with a BBFO Smart Probe w/ Z-Gradient. Experiments
used pulse programs adapted from standard Bruker pulses library.
Ion chromatography was performed using a Thermo Scientific Dionex ICS-5000+
equipped with a Dionex AS-DV autosampler and using a Dionex IonPac AS22 column (Product
No. 064141, Thermo Scientific, California, USA). The analysis was run using an eluent of 4.5 mM
sodium carbonate and 1.4 mM sodium bicarbonate (Product No. 063965 from Thermo Scientific,
California, USA) and a Dionex AERS 500 Carbonate 4 mm Electrolytically Regenerated
Suppressor (Product No 085029 from Thermo Scientific, California, USA). A flow rate of 1.2
mL/min was used, giving the following retention times: fluoride = 3.3 min; formate = 3.8 min.
Elemental standards containing 1000 µg/mL F-, and 1000 ug/mL HCOO- (ICF1, ICHCO1,
respectively, from Inorganic Ventures, Christiansburg, VA, USA) were mixed to make
quantitative standards consisting of 50, 25, 12.5, 6.25, 3.125, 1.56, 0.78 ug/mL of each anion in
ultra-pure H2O (18.2 MΩ∙cm). Ultra pure H2O was used as the calibration blank. Validation
experiments indicated an error of approximately 10% for ion chromatography results.
APCI-MS was collected on an Agilent 6545 QTOF Mass Spectrometer equipped with
Atmospheric Pressure Chemical Ionization (APCI) source coupled with Agilent 1200 series LC
running in direct injection mode. Data acquisition and analysis were done on Agilent Mass Hunter
software.
GC/MS analysis was performed in the Reactor Engineering and Catalyst Testing (REACT)
core facility at Northwestern University using an Agilent 6850 GC system coupled to an Agilent
5975C MS system. Helium (Airgas, 99.999%) was purified using an Agilent “Big Universal Trap”

2
(Model RMSH-2) and used as a carrier gas. Gas separation was performed using a HP-Plot Q
column (19091P-Q04E, 30m x 0.320 mm x 20 um) starting at 50 °C for 4 minutes. The temperature
was then ramped to 220 °C at 30 °C/min and held for 3 minutes. The flow rate of He was
maintained at 1.2 mL/min (inlet split ratio of 10:1). The MS was operated in scan mode (Gain
factor = 1, EM voltage = 2518, MS Source = 250 °C, MS Quad = 150 °C) from m/z = 5 to m/z =
300. A solvent delay was not used.
Kinetic traces for PFOA degradation at different temperatures were fitted to the equation
y = ae-x/b + c in MATLAB using the Curve Fitting application.
Geometry optimizations, frequency analyses, and single-point energies were calculated at
the theoretical M06-2X/6-311+G(2d,p)-SMD-(DMSO) level (36, 37) using the Gaussian 16
package (38) with default convergence criteria. M06-2X functional gives refined energies for
organic systems (39). Frequency outcomes were examined to confirm stationary points as minima
(no imaginary frequencies) or transition states (only one imaginary frequency). Paton’s GoodVibes
(40) was used to correct entropy and enthalpy by Grimme’s quasi-harmonic approximation (41)
and Head-Gordon’s method (42). 3D structures of molecules were generated by CYL view (43).
All energies are in kcal/mol if not labeled otherwise. All bond lengths are in Angstroms (Å).

3
Synthetic Procedures and NMR Characterization of Synthesized Compounds
General PFCA Destruction Procedure: Perfluorooctanoic acid (207 mg, 0.500 mmol) and sodium
hydroxide (0.600 g, 15.0 mmol) were added to a 25 mL PTFE round bottom flask along with a
PTFE-coated magnetic stirbar. 5 mL DMSO was added to the reaction vessel, followed by 0.625
mL distilled or de-ionized water. The vessel was sonicated for approximately 15 seconds, then the
t = 0 aliquot was taken by diluting a 50 µL aliquot into 500 µL of deuterated solvent. The vessels
were sealed with a rubber septum and pierced with a needle that was left in the septum to prevent
overpressure. The vented vessels were then added to an oil bath preheated to 120 °C and stirred at
500 RPM for the specified time, usually 24 hours. Liquid aliquots for reactions monitored over
time were taken using a syringe inserted through the rubber septum and diluted as above with
solids removed by centrifugation if necessary. The reactions were removed from the heat and
cooled for at least 40 minutes before workup. The entire contents of the reaction were diluted with
distilled or deionized water until the solids at the bottom were completely dissolved (typically 20–
40 mL water added) and were transferred to a polypropylene centrifuge tube. The resulting
fluoride- and formate- containing solution was further diluted in water 100x–500x for ion
chromatography analysis. For carbonaceous products quantification, the contents of the reaction
were added to a 15 mL polypropylene centrifuge tube, centrifuged, and the DMSO solvent was
decanted. The remaining solids were rinsed and centrifuged 2x with dichloromethane, then dried
overnight at 120 °C on high vac. A portion of the solids (~30 mg) was dissolved (750 µL D2O +
50 µL NaOAc standard in D2O) for quantitative 13C NMR analysis.

Scheme S1

General procedure to decarboxylate perfluorocarboxylic acids and synthesis of perfluoro-1H-


heptane (2). PFOA (1.035 g, 2.500 mmol) was added to a glass pressure vessel with PTFE screw-
top and PTFE-coated magnetic stirbar and dissolved in a mixture of DMSO (5.00 mL) and
deionized H2O (0.625 mL). The solution was heated to 120 °C for 41 h, then was removed from
heat and allowed to cool to room temperature for 2 h. The product phase-separated as a clear liquid
on the bottom of the vessel and was decanted via micropipette to provide 2 as a colorless oil (0.703
g, 76% yield). 19F NMR (564 MHz, DMSO) δ -83.614, -123.990, -124.648, -125.218, -128.289, -
131.643, -140.332. 13C NMR (151 MHz, DMSO) δ 116.223, 109.800, 109.315, 109.196, 109.152
(d, J2CH = 7.5 Hz), 107.548, 107.498, 106.194 (d, J1CH = 197.7 Hz). 1H NMR (400 MHz, DMSO)
δ 5.94 (tt, J = 51.4, 5.1 Hz, 1H).

4
Scheme S2

Perfluoro-1H-hexane (S1). S1 was obtained using the above procedure as a colorless oil (0.654
g, 84% yield). 19F NMR (564 MHz, DMSO) δ -83.73 (tt, J = 10.4, 2.4 Hz), -124.955, -125.559, -
128.487, -131.875, -140.31 (d, J = 51.7 Hz). 13C NMR (151 MHz, DMSO) δ 116.282, 109.757,
109.340, 109.13 (d, J = 6.6 Hz), 107.560, 106.81 (d, J = 195.8 Hz). 1H NMR (600 MHz, DMSO)
δ 5.85 (tt, J = 51.7, 5.1 Hz, 1H).

5
Supplementary Text
Experimental Determination of ΔG‡
Using the Eyring equation:
𝜅𝜅𝑘𝑘𝐵𝐵 𝑇𝑇 −∆𝐺𝐺‡
𝑘𝑘 = 𝑒𝑒 𝑅𝑅𝑅𝑅

where
κ is the transmission coefficient, assumed to be 1 in this case
kB is the Boltzmann constant (1.38 x 10-23 J/K)
T is the temperature in Kelvin
h is Planck’s constant (6.626 x 10-34 J•s)
ΔG‡ is the Gibbs energy of activation
R is the gas constant (8.3145 J/mol•K, or 1.987 cal/mol•K)

ΔG‡393 = 30.0 kcal/mol

6
Quantification of Carbon-Containing Byproducts
Quantitative 13C NMR spectroscopy of the precipitate accounted for almost all of the
carbon-containing species generated by the PFOA degradation reaction, none of which contain C–
F bonds besides trifluoroacetate ions (Table S4). The byproducts were identified as a distribution
of one-carbon (carbonate, formate), two-carbon (oxalate, glycolate, trifluoroacetate), and three-
carbon products (tartronate). Quantification by 13C NMR spectroscopy of the precipitate and 1H
NMR spectroscopy of the reaction solution indicated 2.5 ± 0.3 equivalents of formate per mol of
PFOA starting material (Table S4). The formate ions were independently quantified by ion
chromatography and corresponded to 2.1 ± 0.2 equivalents of formate per mol of PFOA starting
material (Figure 2D). There are several potential pathways for the generation of some of these
carbon-containing products that are not further explored in this work. However, the formation of
non-fluorinated, relatively oxidized 1–3 carbon products is generally consistent with the proposed
mechanism, while accounting for all of the carbon balance of the PFOA degradation reaction.
One Carbon Products: Under the basic reaction conditions, the carbon dioxide reacts with
excess hydroxide ions to provide sodium carbonate within the precipitate. 2.1 ± 0.3 equivalents of
carbonate ions per mol of PFOA were detected by quantitative 13C NMR spectroscopy. 2.5 ± 0.3
equivalents of formate per mol PFOA were detected, as measured by 1H NMR spectroscopy of the
liquid reaction mixture and 13C NMR spectroscopy of the precipitate. It should be noted that the
carbonate ion concentration could not be independently measured by ion chromatography because
available IC capabilities were run in carbonate-based buffers, precluding the detection of this ion.
Two Carbon Products: 0.32 ± 0.04 mols of trifluoroacetate per mol of PFOA were
detected by 19F NMR spectroscopy of the reaction solution at 24 h reaction time; only trace
CF3CO2– was found in the precipitate by 19F NMR spectroscopy. 0.6 ± 0.1 mols of glycolate ions
per mol of PFOA were detected, some of which might be formed from the degradation of
fluoroacetic acid, which was observed in low-temperature experiments (see main text). Oxalate
ions were detected at concentrations corresponding to 0.7 ± 0.1 mols per mol of PFOA.
Three Carbon Products: We assign another carbon-containing product as sodium
tartronate (0.2 ± 0.1 equiv per mol PFOA) based on its 13C NMR resonance at 177 ppm, which
correlates with a 1H NMR resonance at 4.2 ppm (Fig. S32). These chemical shifts match literature
reports (29, 44), and the correlation is consistent with an intermediate we propose in the
mechanism (Figure 3). We propose that tartronate is formed in pathway D because it was observed
in greater amounts in the degradation of PFBA (C = 4), likely from hydrolysis of INT8 (Figure
3).
Unidentified Product: An unidentified product (4.9 ± 2.4 mol% C) is likely derived from
the reaction of glycolic acid with another intermediate in the pathway, as it was formed in higher
concentration when glycolic acid and PFOA were subjected to the degradation conditions together.
However, the unknown product did not form when glycolic acid was subjected to the degradation
conditions in the absence of PFOA. The unidentified compound has two 13C NMR resonances,
one at 177.9 ppm and one at 69.4 ppm (Fig. S30). The two resonances integrate 1:1 with each
other, making it likely that it contains either two or four carbons.
Further analysis of the reaction precipitates from degrading the C = 2, 4, 5, and 6 acids
(Fig. S30) showed that the presence of oxalate was correlated with the presence of TFA, but it is
not a direct degradation product of TFA, whose only carbon-containing degradation products were
carbonate ions. The amount of oxalate appeared to increase slightly for PFCA with longer
perfluoroalkyl chains, such that we speculate that it is formed, at least in part, within the B/C
pathways, as are formate ions. Once the fluorocarbon intermediate is protonated, though, as in

7
INT31 (Figure 3), it is difficult to get the correct oxidation state for oxalate except through
Cannizzaro reactivity or disproportionation, which could be possible under the extremely basic
reaction conditions. We think it is likely that the oxalate either originates from a process in the B
pathway preceding INT31 or from further degradation of carbonaceous byproducts.

8
Computational Mechanistic Investigations of PFCA Degradation
As shown in Fig. S44, decarboxylation is the rate-determining step of thermolysis with
an energy barrier of 27.7 kcal/mol. This is also consistent with the experimental conditions that
decarboxylation requires 120°C to initiate. Relaxed-scan comparisons of the decarboxylation
energy profiles in both gas and liquid phase show that the solvent effect plays a significant role
(Fig. S45). The energy profile in the liquid phase has a maximum value, while the energy profile
in the gas phase keeps rising, indicating that in the gas phase, the products formed by
decarboxylation will return to the reactant with a very low energy barrier. Hydroxide in the
solvent may play a significant role in promoting decarboxylation.
Perfluoroanion INT1 can eliminate a fluoride to become a perfluoroalkene INT2 or be
protonated by water to become a polyfluoroalkane. Since SN2 reactions on saturated fluoroalkane
carbons require a high energy barrier (Fig. S46), INT1 is more likely to generate perfluoroalkene
INT2.
The resulting alkene INT2 is easily hydroxylated; our calculations also suggest that the
hydroxylation is specifically favored at the terminal position, As shown in Fig. S47, the relaxed-
scan addition energy profiles on the internal side and the terminal side show that the addition on
the internal side of the alkene has a barrier of 8.9 kcal/mol, whereas addition on the terminal side
does not have an enthalpic barrier.
After the formation of hydroxylated perfluoroanion INT3, two consecutive fluoride ion
eliminations produce α,β-unsaturated acyl fluoride INT6. The carbon–oxygen bond length
scanning coordinates of INT7 and INT13 do not have inflection points but continuously rise,
showing that neither 1,2-addition nor 1,4-addition have enthalpic barriers (Fig. S48).
1,4-addition produces 1,3-diketone compound INT8. Fig. S49 shows that subsequent
hydroxide addition is favored to occur on the ketone carboxyl side of INT8 rather than the acyl
fluoride side.
While 1,4-addition leads to the formation of shorter PFCAs such as CF3CO2- (Fig. S44),
1,2-addition can lead to the eventual formation of byproduct HCOOH. The 1,2-hydroxylation
produces α,β unsaturated perfluorocarboxylic acid INT14 (Fig. S51), then generates an alkene
anion INT30. Several pathways for generating INT30 from INT14 exist (Fig. S50).
We propose two possible pathways for the transformation of INT14 to INT30 (Fig. S50).
In Pathway B″ (Fig. S54), hydroxide addition to the alpha carbon allows an acid fluoride
equivalent of oxalate to be generated, eliminating a fluoroalkene anion five carbons in length (for
PFOA; generalized to other PFCAs, the alkene is three carbons shorter than the original PFCA
length) with a barrier of 24.8 kcal/mol. In Pathway B′ (Fig. S51, Fig. S52), 1,4 addition of the
hydroxide to INT14 leads to a Darzens-type decarboxylation through an epoxide intermediate
INT19 via TS11 with a barrier of 19.4 kcal/mol. Interestingly, though carbonate INT18 has a
similar structure to acid fluoride INT9, they have different reactivity (Fig. S53). INT9 tends to
fragment, while INT18 tends to form the epoxide because it cannot form a dianion through
fragmentation. For longer PFCAs (original PFCA C > 6), the unsaturated aldehyde intermediate
can eliminate a fluoride and pass through a Pathway C-like process (Pathway C′; Fig. S52) where
hydroxide adds to the carbonyl and eliminates off an alkene four carbons shorter than the original
PFCA (for PFOA, four carbons in length) and an equivalent of glyoxylate, which can
disproportionate into an equivalent of oxalate and an equivalent of glycolate (45).
The mechanisms explicitly proposed in Fig. S50 and its supporting figures show many
classes of reactivity at the possible bifurcation points. For example, the C and C′ reactivity modes
are the same, even though the resulting byproducts are different; similarly, pathway D-type retro-

9
aldol reactions could occur at other 1,3-dicarbonyl intermediates to create a PFCA + carboxylic
acid byproduct equivalent. We expect that the reactivity motifs we have explored through
computation may be active at intermediates in the mechanism other than what we have explicitly
shown.
Calculation results show that protonating the alkene anion INT30 is more favorable than
eliminating a fluoride to generate the alkyne, the hydroxide addition is more likely to happen on
the terminal side of INT31 (Fig. S56) as it was for the fully fluorinated INT2, and solvent effects
can reduce the energy barrier for protonation (Fig. S58). Likewise, two consecutive eliminations
of fluoride ions generates α,β-unsaturated aldehyde INT35, an analogue to the α,β-unsaturated
acid fluoride INT6. The scanning coordinates of carbon–oxygen bonds length of INT36 and
INT37 show that neither 1,2-addition or 1,4-addition to INT35 have enthalpic barriers (Fig.
S57). The 1,2-addition leads to the production of formate through elimination (Fig. S55), while
the 1,4-addition can exit the cycle and generate shorter PFCAs through pathway D (Figure 3,
S59). As with analogue INT8, hydroxide addition is more favorable on the ketone carboxyl side
of 1,3-diketone compound INT38 (Fig. S60).

10
Computational Investigations Into Alternate Mechanisms
Finally, to show that the mechanism we proposed is the most reasonable at present, we
calculated the α-lactone mechanism proposed by Pellerite (33) and a difluorocarbene mechanism
we proposed. Selecting some intermediates to calculate the energy, we found that neither of these
hypothetical mechanisms are feasible for our system (Fig. S61 and Fig. S62).

11
Computational Mechanistic Investigations of PFECA Degradation

We also used computational tools to investigate the GenX degradation pathway. GenX
goes through a mechanism much like Pathway A for PFCAs before forming INT45 (Fig. S63).
However, INT45 cannot eliminate a fluoride like PFCAs. Instead, sequential hydrolysis reactions
generate 5, which was experimentally observed.
5 does not easily decarboxylate (Fig. S65). Instead, it is attacked by hydroxide and
eliminates a perfluoroether tail, which can be transformed into a corresponding PFCA through
hydrolysis in pathway F (Fig. S64). Fig. S66 shows which side of 5 hydroxide more easily
attacks.

12
Fig. S1. 19F NMR spectra of PFOA (top, DMSO-d6, 400 MHz) and 2 (bottom, DMSO-d6, 600
MHz). 2 is insoluble in DMSO, so it was analyzed as a neat oil in an inner coaxial insert tube
with a solution of a 4,4′-difluorobenzophenone standard (-106.5 ppm) dissolved in DMSO-d6 in
an outer tube.

13
Fig. S2. Fluorine-decoupled 13C NMR spectrum of perfluoro-1H-heptane, calibrated to DMSO-
d6 (39.52 ppm). 2 is insoluble in DMSO, and so it was analyzed as a neat oil in an inner coaxial
insert tube with a solution of a 4,4′-difluorobenzophenone standard (-106.5 ppm) dissolved in
DMSO-d6 in an outer tube.

14
Fig. S3. 1H NMR spectrum of perfluoro-1H-heptane (DMSO-d6, 600 MHz). 2 is insoluble in
DMSO, so it was analyzed as a neat oil in an inner coaxial insert tube with a solution of a 4,4′-
difluorobenzophenone standard (7.3–7.8 ppm, marked with X) dissolved in DMSO-d6 in an outer
tube.

15
Fig. S4. 19F–13C HSQC spectrum of perfluoro-1H-heptane used to assign the 13C resonances. The
19
F resonances were assigned by comparison to PFOA.

16
Fig. S5. 19F NMR spectra of perfluoro-1H-hexane (DMSO-d6, 600 MHz). S1 is insoluble in
DMSO, and so it was analyzed as a neat oil in an inner coaxial insert tube with a solution of a
4,4′-difluorobenzophenone standard (-106.5 ppm) dissolved in DMSO-d6 in an outer tube.

17
Fig. S6. Fluorine-decoupled 13C NMR spectrum of perfluoro-1H-hexane, calibrated to DMSO-d6
(39.52 ppm). S1 neat in coaxial insert tube with 4,4′-difluorobenzophenone standard dissolved in
DMSO-d6 in outer tube.

18
Fig. S7. 1H NMR spectrum of perfluoro-1H-hexane (DMSO-d6, 600 MHz). S1 is insoluble in
DMSO, so it was analyzed as a neat oil in an inner coaxial insert tube with a solution of a 4,4′-
difluorobenzophenone standard (7.3–7.8 ppm, marked with X) dissolved in DMSO-d6 in an outer
tube.

19
Fig. S8. 19F–13C HSQC of perfluoro-1H-hexane used to assign carbon peaks. Fluorine peaks
assigned based on PFOA and literature.

20
Fig. S9. 1H NMR spectra to monitor formate ion formation at 120°C as a function of reaction
time. Peaks highlighted in gray correspond to the 4,4′-difluorobenzophenone external standard,
and peaks highlighted red correspond to formate ions. A) PFOA degradation reaction: the
formate ion concentration increases steadily over the course of the reaction, even after all PFOA
has been degraded (24 h) and only TFA remains. B) Control reaction of water, DMSO, and
NaOH in the absence of PFOA demonstrates a slower background reaction that also produces a
small amount of formate, presumably from the degradation of the DMSO solvent. In both cases,
formate production was confirmed by ion chromatography. However, 1H NMR spectroscopy is
not sufficient for formate quantification, as much of the formate precipitates out of the reaction
and cannot be detected in solution.

21
Fig. S10. Appearance and disappearance of perfluoropropionic acid (PFPrA) during the
degradation of PFOA at 120°C as a function of reaction time. Bottom spectrum: authentic
sample of PFPrA and NaOH heated to 120°C for 1 h. Blue highlighted peaks correspond to
trifluoroacetate (TFA), green highlighted peaks correspond to PFOA, and yellow highlighted
peaks correspond to PFPrA. PFPrA is observed as a trace byproduct (in the 10 h spectrum, its
concentration is approximately 1–2% of the initial PFOA concentration) that subsequently
degrades between reaction times of 24–57 h.

22
Fig. S11. 19F NMR (565 MHz, DMSO) spectrum of concentrated aliquot of PFPrA degradation
reaction (30 equiv NaOH in 8:1 DMSO:H2O). The degradation of PFPrA provides evidence for
the formation of a volatile protodecarboxylated fluorocarbon CF3CF2H, along with
difluoroacetate ions.
CF2HCOO- Actual: -121.66 (d, J = 53.5 Hz)
Literature (46): (solvent not specified): -123.63 d, J = 56.5 Hz.

CF3CF2H Actual: δ -85.00 (s, 3F), -139.44 (d, J = 51.4 Hz, 2F).
Literature (47): (CD3)2SO: −139.5 (2F, dq, 2JHF = 51.1, 3JFF = 3.0 Hz, HCF2), −85.1 (3F,
dt, 3JHF = 3JFF = 3.0 Hz, CF3).

Unidentified peaks at -85.04 (s), -140.07 (s)

23
Fig. S12. 1H NMR (600 MHz, DMSO) spectrum of concentrated aliquot of PFPrA degradation
reaction (30 eq. NaOH in 8:1 DMSO:H2O). The degradation of PFPrA provides evidence for the
formation of a volatile protodecarboxylated fluorocarbon CF3CF2H, along with difluoroacetate
ions.

CF2HCOO- Actual: δ 6.92 (t, J = 50.8 Hz)


Literature (48): (CF2HCOOH, 299.949 MHz, solvent not specified): 1H spectrum: 6.13 ppm,
2
JH,F = 53.10 Hz.

CF3CF2H Actual: δ 5.56 (t, J = 55.8 Hz)


Literature (49): (neat, referenced to DMSO in D2O) 5.80 (1H, tq, J = 52.31, 2.55 Hz)

24
Fig. S13. 19F NMR spectra (600 MHz) of aliquots from the 40°C degradation of PFHp-1H.
When the degradation is run at this lower temperature, various fluorinated intermediates
(fluoroacetic acid, INT8/9, perfluoropentanoic acid) are observed that are not seen in the spectra
of degradation reactions run at higher temperatures. These intermediates are shown in greater
detail below. TFA = trifluoroacetate, ES = external standard (4,4′-difluorobenzophenone), FAA
= fluoroacetic acid.

25
Fig. S14. Partial 19F NMR spectra (600 MHz) of the 40°C degradation of 2. In the first few hours
of reaction, an intermediate with 3 CF2 groups is observed (purple). We hypothesize that this
intermediate is INT8 or 9; see Fig. S15 for further assignment of these peaks. In spectra obtained
at 24 h, 77 h, and 142 h, resonances corresponding to five-carbon PFPeA are observed (orange),
in accordance with the three-carbon shortening process proposed in Figure 3 Pathways A + D.

26
Fig. S15. Proposed assignment of 19F NMR peaks corresponding to proposed intermediates INT8
or 9 from the 19F NMR spectrum of 1 h aliquot of 40°C degradation of 2. TFA = trifluoroacetate,
x = 4,4′-difluorobenzophenone standard. Peak assignments marked with colored dots based on
the spectrum of PFPeA and the assignment of enol fluorine (50). While the relative peak
positions are relatively consistent with the proposed structures, the peak integrations and
couplings are potentially inconsistent with these structures.

27
Fig. S16. 19F NMR spectra (600 MHz) of aliquots from the 40 °C degradation of S1. When the
degradation is run at this lower temperature, various fluorinated intermediates (fluoroacetic acid,
INT8/9, perfluorobutanoic acid) are observed that are not seen in the spectra of degradation
reactions run at higher temperatures. These intermediates are shown in greater detail below. TFA
= trifluoroacetate, ES = external standard (4,4′-difluorobenzophenone), FAA = fluoroacetic acid.

28
Fig. S17. Partial 19F NMR spectra (600 MHz) degradation of S1 performed at 40°C. In the first
few hours of reaction, an intermediate with 3 CF2 groups is observed (purple). We hypothesize
that this intermediate is INT8 or 9; see Fig. S18 for further assignment of these peaks. In spectra
obtained at 24 h, 77 h, and 142 h, resonances corresponding to four-carbon PFBA are observed
(blue), in accordance with the three-carbon shortening process proposed in Figure 3 Pathways A
+ D. A peak corresponding to perfluoropropionic acid (PFPrA) is highlighted in yellow.

29
Fig. S18. Proposed assignment of 19F NMR peaks corresponding to proposed intermediates INT8
or 9 from the 19F NMR spectrum of 1 h aliquot of 40°C degradation of S1. TFA =
trifluoroacetate, x = 4,4′-difluorobenzophenone standard. Peak assignments marked with colored
dots based on the spectrum of PFBA and the assignment of enol fluorine (50). While the relative
peak positions are relatively consistent with the proposed structures, the peak integrations and
couplings are potentially inconsistent with these structures.

30
Fig. S19. 19F NMR spectra of aliquots of perfluorooctanesulfonic acid potassium salt (PFOSK,
0.089 M) in DMSO:H2O (8:1) in the presence of NaOH (30 equiv) and heated to 120°C. 4,4′-
difluorobenzophenone was used as an external standard (X). No degradation of PFOSK is
observed, implicating decarboxylation as the first step of PFCA degradation under these
conditions.

31
Fig. S20. 19F NMR spectra of 0.089 M perfluorooctanoic acid (PFOA) in water with 30 equiv
NaOH heated to 120°C. No change in the spectra over time shows that this decarboxylation
needs polar aprotic solvent to occur. 4,4’-difluorobenzophenone standard is crossed out.

32
Fig. S21. Disappearance of PFOA over time at three different reaction temperatures as measured
by 19F NMR. [PFOA] = 0 mmol at < 24 h at 120°C (average of triplicates), 100 h at 100°C
(average of triplicates), and >290 h for 80°C, showing the high temperature-dependence of the
rate-limiting step.

33
Fig. S22. Rates of PFCA degradation, as measured by 19F NMR integration of the respective
alpha-carbon fluorine resonances of each PFCA.

34
Fig. S23. Kinetic trace of mols of trifluoroacetate per mol of reactant PFCA, as measured by 19F
NMR spectroscopy. For TFA itself, the plot indicates its degradation rate. For PFPrA and PFBA,
little or no TFA is formed. For PFCAs with five or more carbons, approximately 0.3 mol
TFA/mol PFCA are formed in the early stages of the degradation reaction.

35
Fig. S24. Kinetic trace of the degradation of CF3CO2Na over time as calculated by NMR
concentration. CF3CO2Na (0.089 M in DMSO) was degraded at 120°C with 30 equiv NaOH in
8:1 DMSO:H2O.

36
Fig. S25. Fitted curve for degradation of PFOA at 120°C as calculated from the integral of F2 in
the 19F NMR over time. Data is average of triplicate runs (see Fig. S21).

37
Fig. S26. Fitted curve for degradation of PFOA at 100°C as calculated from the integral of F2 in
the 19F NMR over time. Data is average of triplicate runs (see Fig. S21).

38
Fig. S27. Fitted curve for degradation of PFOA at 90°C as calculated from the integral of F2 in
the 19F NMR over time. Data is average of duplicate runs.

39
Fig. S28. Fitted curve for degradation of PFOA at 80°C as calculated from the integral of F2 in
the 19F NMR over time. Data from single trial.

40
Fig. S29. Fluorine balance of PFOA degradation performed at 120°C at different reaction times.
Organofluorine content (black dashed line) was measured by integrating all 19F NMR peaks; the
fluoride ion (black solid line) were measured by ion chromatography of entire reaction solution.
The total fluorine (gray line) is calculated by adding the organofluorine and fluoride ion amounts
and remains close to unity throughout the PFOA degradation reaction, indicating little to no loss
of volatile organofluorine products.

41
Fig. S30. Quantitative 13C NMR of isolated reaction precipitate dissolved in D2O [sodium acetate
was used as an internal standard, (50 µL of a 0.68 M solution in D2O). The PFOA sample was
recorded with 900 scans at 40 s delay. Samples other than PFOA were recorded with 300 scans at
40 s delay and have imperfect proton decoupling from the extreme pH sample conditions. Sodium
trifluoroacetate (TFA) shows only carbonate (168 ppm) as reaction byproduct. PFBA shows
carbonate, trace oxalate ion formation, and enhanced tartronate ion formation compared to other
samples. PFPeA shows glycolate (180 ppm, 61 ppm), tartronate, oxalate, and carbonate ion
formation. PFHxA shows glycolate, oxalate, formate (present in proton NMR, ion
chromatography, hard to see here due to proton coupling), and carbonate. PFOA shows glycolate,
tartronate, oxalate, formate, carbonate, and two trace unknown peaks at 178 and 69 ppm.
*Tartronate assigned based on literature references (29, 44).

42
Fig. S31. HSQC of isolated PFOA reaction precipitate dissolved in D2O with 30 µL DMSO
standard allows for identification of some carbonaceous byproducts

43
Fig. S32. HMBC of isolated PFOA reaction precipitate dissolved in D2O with 30 µL DMSO
standard allows for identification of some carbonaceous byproducts.

44
Fig. S33. 19F NMR spectra of GenX degradation reaction at 120°C. The starting material (added
as GenX ammonium salt) quickly decarboxylates and proto-de-trifluoromethylates to
intermediate 5, which was also detected by ESI-MS (Fig. S42). Over the course of several hours,
5 degrades to PFPrA, which subsequently degrades further, mainly to CF3CF2H, as described for
the degradation of PFPrA (Figure 2, Fig. S37).

45
Fig. S34. 19F NMR spectra of 4 degradation reaction at 120°C. The starting material (added as 4
ammonium salt) quickly decarboxylates and proto-de-trifluoromethylates to intermediate S2,
which was also detected by APCI-MS (Fig. S43). Over the course of several hours, S2 degrades
to PFPeA, which subsequently degrades further, mainly to fluoride and CF3CO2-, as described
for the degradation of PFPeA (Figure 2).

46
Fig. S35. 19F NMR spectra of degradation of GenX over time at increasing temperature stages.
Starting material for GenX (top, shaded dots) disappear as GenX is converted to compound 5 and
falls out of solution, presumably because of an insoluble intermediate that is converted to
intermediate 5 over time, causing 5 to slowly increase in concentration (brightly colored dots,
until 120 h). When the temperature is increased to 80°C (121 h), peaks corresponding to PFPrA
(brown dots) appear from 5 degradation as predicted, then disappear more quickly after the
temperature is increased to 120°C (289 h).

47
Fig. S36. 19F NMR spectra of degradation of 4 over time at increasing temperature stages.
Starting material for 4 (top, shaded dots) disappear as 4 is converted to intermediate S2 and falls
out of solution, presumably because of an insoluble intermediate that is converted to intermediate
S2 over time, causing S2 to slowly increase in concentration (brightly colored dots, until 120 h).
When the temperature is increased to 80°C (121 h), peaks corresponding to PFPeA (brown dots)
and trifluoroacetate appear from S2 degradation as predicted, then disappear more quickly after
the temperature is increased to 120 °C (289 h).

48
Fig. S37. 19F NMR spectra of the degradation of perfluoropropionic acid (top) after 22 hours and
GenX (bottom) after 24 hours at 120°C. Peaks corresponding to the same compounds appear in
the degradation of each, indicating that GenX degrades to PFPrA and then follows the PFPrA
degradation pathway, including producing CF3CF2H, which volatilizes and does not defluorinate,
resulting in a lower fluoride recovery than for longer-chain analogues. Identity of CF3CF2D
hypothesized.

49
Fig. S38. APCI-MS spectrum of an aliquot of PFOA degradation reaction diluted in acetonitrile
after 4 hours of heating at 120°C.

50
Fig. S39. APCI-MS spectrum of an aliquot of PFPrA degradation reaction diluted in acetonitrile
after 4 hours of heating at 120°C. The prominent 118.9930 m/z peak identified in this reaction
-
mixture is consistent with the proposed reaction mechanism as it corresponds to CF3CF2 , which
-
either comes from the decarboxylation of CF3CF2CO2 or the deprotonation of CF3CF2H.

51
Fig. S40. GCMS-headspace total ion chromatograms after 4 hours of reaction for GenX (top),
perfluoropropionic acid (second from top), 4 (second from bottom), perfluoropentanoic acid
(bottom). Both PFPrA and GenX show evidence of CF3CF2+• gas fragments, presumably derived
from CF3CF2H, whereas PFPeA and 4 show only CF3+• fragments, presumably from an
equilibrium between CF3COOH and CF3H.

52
Fig. S41. APCI-MS spectrum of an aliquot of GenX degradation reaction diluted in acetonitrile
after 7 hours of heating at 120°C. Molecular species identified from this reaction mixture are
consistent with the proposed reaction mechanism, especially the prominent 118.9930 m/z peak
corresponding to CF3CF2-, which either comes from the decarboxylation of CF3CF2CO2- or the
deprotonation of CF3CF2H.

53
Fig. S42. ESI-MS of spectrum of an aliquot of GenX degradation reaction diluted in acetonitrile
after 2 hours of heating at 120°C. Molecular species identified from this reaction mixture are
consistent with the proposed reaction mechanism, especially the 5 and 5 dimer at 260.71 m/z and
522.91 m/z.

54
Fig. S43. APCI-MS spectrum of an aliquot of 4 degradation reaction diluted in acetonitrile after
4 hours of heating at 120°C. Molecular species identified from this reaction mixture are
consistent with the proposed reaction mechanism, especially the S2 and S2 dimer peaks at
360.9746 m/z and 722.9564 m/z.

55
Fig. S44. Gibbs free energy profile for pathways A and D, X = F.

56
Fig. S45. A) The scanning coordinates of C–C bond length to show solvent effect in
decarboxylation. The bond is colored pink. B) 3D structure of TS1.

57
Fig. S46. A) Comparison of β-elimination and protonation of INT1. An SN2 reaction on a
saturated fluoroalkane carbon requires a high energy barrier (29.7 kcal/mol). B) 3D structures of
TS7 and TS2.

58
Fig. S47. A) Comparison of hydroxide addition on the internal side and the external side of the
alkene. While hydroxide addition on the terminal side has a inflection point, addition on the
internal side has no enthalpic barrier. B) 3D structure of TS8.

59
Fig. S48. The scanning coordinates of the carbon–oxygen bonds of INT7 and INT13. When
gradually increasing the carbon–oxygen bond length, the energy does not have an inflection
point but continuously rises, indicating that 1,2-addition and 1,4-addition both do not have
enthalpic barriers.

60
Fig. S49. A) Comparison of hydroxide addition on the acyl fluoride side and the ketone carbonyl
side of INT8. B) 3D structures of TS9 and TS5.

61
Fig. S50. Proposed pathways for converting INT14 to INT30 and forming carbon byproducts.

62
Fig. S51. Gibbs free energy profile for pathway B′ (Ⅰ), ending with decarboxylation.

63
Fig. S52. Gibbs free energy profile for pathways B′ (Ⅱ) + pathway C′.

64
Fig. S53. A) Comparison of epoxide formation and the fragmentation of INT9 (acid fluoride). B)
Comparison of epoxide formation and the fragmentation of INT18 (carboxylate). C) 3D
structures of TS6, TS17, TS11, TS18.

65
Fig. S54. Gibbs free energy profile for pathway B″.

66
Fig. S55. Gibbs free energy profile for pathway C.

67
Fig. S56. A) Comparison of β-elimination and protonation of INT30. B) Comparison of
hydroxide addition on the internal side and the terminal side. C) 3D structures of TS26, TS27
and TS22.

68
Fig. S57. The scanning coordinates of carbon–oxygen bond of INT36 and INT37, also indicating
that 1,2-addition and 1,4-addition both have no enthalpic barrier.

69
Fig. S58. Comparison of protonation in solvent and in gas phase (energy in the blue
parentheses).

70
Fig. S59. Gibbs free energy profile for pathway D, X=H.

71
Fig. S60. A) Comparison of hydroxide addition on the aldehyde side and the ketone carbonyl
side of INT38. B) 3D structures of TS30 and TS28.

72
Fig. S61. A) α-lactone mechanism proposed by Pellerite (33) and calculated by Ge et al. (34). B)
The Gibbs free energy change for selected intermediate indicates that this mechanism is not
feasible.

73
Fig. S62. A) Mechanism proposed previously assuming that difluorocarbene is the key
intermediate. B) The Gibbs free energy change for selected intermediate indicates that this
mechanism is not feasible.

74
Fig. S63. Gibbs free energy profile for pathways A and E for GenX.

75
Fig. S64. Gibbs free energy profile for pathway F for GenX.

76
Fig. S65. Comparison of hydroxide attack vs. decarboxylation of 5. The transition state for the
transformation of 5 to INT51 will be higher than the energy of INT51, which is already 33.8
higher than 5, disfavoring the reaction compared to TS37 (21.9 kcal/mol relative to 5) and INT48
(-61.8 kcal/mol relative to 5).

77
Fig. S66. Comparison of hydroxide attack on different sides of compound 5.

78
Table S1. Emerging PFAS Destruction Methods.

Time,
Ref. Matrix/ Related
Technique Substrates (Temp, Conc Result Specific Drawbacks Proposed Mechanism Evidence for Mechanism See Overall Drawbacks
No. Reagents publications
Press.)
"Designing an effective ultrasound reactor
has proven to be one of the most
5 ppm Desulfonylation > alkene > challenging aspects for the application of
PFOA, 120–180 PFOS, 5 CF3 radical, sonolysis in water treatment due to
(9) Sonication MQ > 90% F- - GC-MS headspace Figure 3 (10)
PFOS min ppm difluorocarbene, CF > CO, challenges in the optimization of operating
PFOA CO2, F- conditions and parameters such as
frequency and power"; matrix components
may also reduce efficiency (20)
5 mg/L F- per 8.3 mg/L PFAS adsorbed to the reactor
NaCl, PFOA,
(11) Plasma 120 min 8.3 ppm orig PFOA (60%); 4.4 (~20–40%), many short-chain DHEH None Figure 7 - -
aqueous PFOS
mg/L F- for PFOS (53%) PFAS byproducts formed
Quantifying the removal of
PFOA due to electrochemical
100 mg.L -
Electrochemical, PFOA, 98% F for PFOS, 58% treatment versus sorption Section
(12) NaCl, 1500 6h 5 ppm None N/A -
Ti/RuO2 PFOS F- for PFOA difficult to determine; PFOA 3.3
mg/L Na2SO4
sorption in zero-current control
= 67%
63.8% F-, observation High energy consumption; DHEH, O2 generation from Mostly proposed, water as O source
Electrochemical, 1.4 g/L
(21) PFOA 3h 50 ppm of distribution of smaller oxidation of other matrix two perfluoroalcohol [C4F9(18O)]- supported by 18O tests, - -
Ti/SnO2-Sb-Bi NaClO4
PFCAs components radicals one MS peak. Energy consumption, the formation of
toxic by-products, electrode issues such
2.9 ppm as mass transfer and fouling, and the lack
PFBS, 45% PFBS, 91% of cost-effective and scalable electrode
PFBS,
Electrochemical, DI water, 0.1 11 ppm PFHxS, 98% PFOS materials. (51, 52)
(13) PFHxS, 43 h
BDD M Na2SO4 PFHxS, decrease, overall 66% Complete oxidation of bromide
PFOS
15 ppm F- and chloride at 120 h
PFOS groundwater treatment and
PFBA, production of toxic byproducts, PFSA > shorter-chain
Literature - -
PFPeA, Decrease of PFBS elevated short-chain PFCAs
PFHxA, (83%), PFHxS (92%), concentrations after treatment,
PFHpA, PFOS (96%) and 6:2 inefficient defluorination,
Electrochemical, Concentrated 0.02-20 optimization needed
(13) PFOA, 18 h FTSA (60%). PFBA,
BDD groundwater ppm
PFBS, PFPeA, PFHxA and
PFHxS, PFHpA increased. 42%
PFOS and F-
6:2 FTSA
F- ratios of 98.2–49.1%
10 mM
for PFCAs, 81.4-63.2%
Na2SO3, and
PFCAs, for diPFCAs, 0.71– MS of intermediates, monitored
UV-sulfite / 5 mM 10 ppm Generation of shorter-chain
PFSAs, 33.4% for telomeric degradation of alternate/proposed
(16) hydrated NaHCO3 (pH 48 h (relative to PFAS, generation of H- DHEH, H/F exchange - (15, 17)
diPFCAs, PFCAs, 0.94-57.0% for intermediates, DFT calculations of
electrons 9.5, adjusted PFOA) substituted PFAS
FTCAs PFSAs, smaller-chain BDE of intermediates
by 1 M Hydrated electron processes can require
PFAS generated during
NaOH) extreme operating conditions, such as
degradation
high temperature, high reductant dosage,
and high solution pH. Needs testing in
Aqueous. Ox: complex matrices. (20)
Oxidation- K2S2O8 at pH Literature, study of SO4- radical vs
97–103% F- except for
reduction- ≥ 12, Red: PFCAs, 207-10 OH radical, characterization of
40 min– n = 7, 8 fluorotelomers
oxidation (basic 10 mM of PFSAs, ppm Detailed mechanism intermediate distribution,
(53) 24 h per (85–89%), n = 4 PFSA Complicated treatment train - -
persulfate Na2SO3 and 5 FTCAs, (relative to proposal, see paper stoichiometry of reactants
step (94%), and n = 4 FTSA
oxidation, UV- mM of FTSAs PFOA) consumed, DFT calculations of BDE
(93%)
sulfite reduction) NaHCO3 at of intermediates
pH 12.

79
disappearance of PFOA
pH 3.0-3.1, "Generally, higher doses of persulfate,
after 4 h, production of
K2S2O8 (6.4- high temperature, or creating extreme pH
F- after PFOA Formation of shorter-chains
(18) Persulfate-UV 50.0 mM), PFOA 12 h 559 ppm DHEH Observations and literature Figure 2 - conditions are necessary to achieve an
disappeared; 73.8% F- PFCAs
aqueous effective degradation of PFOA"; not
plus shorter-chain
solution effective for PFOS (20)
PFCAs
34% F-, shorter PFCAs 18 Table 1 PFOA does not absorb at wavelengths
(22) UV photolysis aqueous PFOA 72 h 559 ppm Low defluorination DHEH O experiments -
formed Entry 2 >220 nm (20)

Proposed catalyst
aqueous, 88% F-, suppressed coordination and
Catalyst needs to be UV studies of catalyst under
UV, tungstic 6.68 mM shorter-chain PFCA reoxidation steps,
(22) PFOA 24 h 559 ppm separated from reaction anaerobic conditions, 18O - - -
heteropolyacid tungstic generation compared to proposed photo-Kolbe
mixture experiments
polyacid direct photolysis decarboxylation cleavage,
hydrolysis downstream

Direct photolysis leading to


aqueous,
perfluoroalkyl radical,
FeCl3∙6H2O
hydrolysis to shorter-chain
(20 µM), 100% F-, shorter Interference from matrix
(19) VUV-Fe PFOA 72 h 15 ppm PFCA; Fe3+ complex with Literature, none Figure 1 - -
various PFCAs formed constituents
PFOA leading to PFOA
additives
radical, hydrolysis to
tested
shorter-chain PFCA

PFAS destroyed on surface of


GAC at 700 °C and destroyed
- in gas phase at 1000 °C but in
~27–76% F at 700 °C,
Thermal PFOA, equilibrium with volatilizing at
Activated 10 mg ~80% F- at 1000 °C. Figures
(54) treatment of AC PFHxA, 10 min temperatures between 700– None N/A (55) -
carbon PFAS/g Volatile organic fluorine 2, 3, 4
in N2 gas stream PFOS 1000 °C, which gives
found at 800–900 °C.
incomplete destruction.
Fluorine mass balance difficult
to quantify; error is 20–30%.

PFAS Thermal degradation of


adsorbed to 10 PFAS from 150–600 °C
Thermal 7 PFCAs, 3
granulated °C/min not for PFOA, 450–600 °C Radical and alkene-based Organofluorine species identified by
(56) treatment of PFSAs, High temperature Figure 4 - -
activated ramp, 30 specified for PFOS; 80–90% F- mechanism TD−Pyr− GC−MS
GAC HFPO-DA
carbon with min hold for PFOA and PFOS at
surface water temperatures ≥700 °C

8 h, 350 Nucleophilic hydroxide


Low concentrations of
Hydrothermal 1-5 M NaOH, °C, 2– substitution of sulfonic acid Observation of shorter-chain
(23) PFOS 50 ppm PFHpA, PFHxA and High temperature, pressure Figure 2 (57) -
Alkaline aqueous 16.5 head group, subsequent intermediates, literature
PFPeA, 80–90% F-
MPa DHEH

DFT calculations of activation


Basic polar 8:1 energies, explanation of byproducts,
This 24 h, 36,800 80–100 F-, TFA, Detailed mechanism
aprotic solvent- DMSO:H2O, PFCAs Organic solvent NMR of intermediates, explanation of - - -
Study 120 °C ppm formate formed proposal, see paper
assisted 2.67 M NaOH chain-length patterns, monitored
degradation of intermediates

Summary of emerging PFAS degradation methods and their major drawbacks. DHEH = decarboxylation–hydroxylation–elimination–
hydrolysis (16).

80
Table S2. Summary of kinetic fitting parameters for degradation of PFOA at various
temperatures.
adjusted trial
°C a b c k
R 2 replicates
80 0.07476 2.90 x 105 0.02057 3.45 x 10-6 0.9466 single run
90 0.06934 8.62 x 10 4 0.01227 1.16 x 10 -5 0.9842 duplicate
100 0.07908 3.82 x 104 0.00953 2.62x 10-5 0.9813 triplicate
120 0.08268 6.32 x 10 3 0.00449 1.58 x 10 -4 0.9949 triplicate
Kinetic fitting parameters for PFOA degradation at different temperatures (Figures S25–S28) as
fitted to the equation y = ae-x/b + c in MATLAB using the Curve Fitting application.
Table S3. Defluorination of various PFAS substrates under varying conditions.

Temp
Compound Solvent Time F IC%a
(°C)
2 DMSO 40 25 min 4%
1 DMSO 40 25 min n.d.
2 DMSO 120 5 min 11%
1 DMSO 120 5 min n.d.
2 DMSO 40 48 h 57%
3 DMSO 40 48 h 70%
PFOS DMSO 120 150 h 0.3%
1 DMAcb 120 44 h 31%
1 sulfolaneb 120 44 h 38%
1 water 120 44 h 0.1%
controlc DMSO 120 24 h 0.2%

Defluorination of various PFAS substrates under varying conditions, as measured by fluoride ion
concentrations detected by ion chromatography. Perfluoro-1H-heptane (2) gives greater fluoride
recovery than PFOA at the same times and temperatures, suggesting that decarboxylation is the
rate-limiting step in this degradation. Even at low temperatures, 2 and perfluoro-1-heptene (3) both
give relatively efficient defluorination (>50%). PFOS does not react under these conditions, and
PFOA (1) does not defluorinate in pure water, only in polar aprotic solvents such as
dimethylacetaminde (DMAc) or sulfolane. Control experiments run without PFOA show that the
polytetrafluoroethylene reactor does not release fluoride into the reaction. a n.d. = not detected. b
Using standard conditions for DMSO; not optimized for other solvents. 100% degradation of
PFOA as all 19F NMR peaks disappeared. c Percent calculated relative to a 1 mmol PFOA
degradation reaction; average of triplicate reactions.

82
Table S4. Distribution of carbonaceous byproducts of the PFOA degradation reaction, as
measured by quantitative 13C NMR spectroscopy of the isolated reaction precipitate dissolved in
D2O.
Mol% C relative
Compound Mol/Mol PFOA
to PFOA
a
Formate 31.1 ± 4.0 2.5 ± 0.3
Carbonate 25.7 ± 3.1 2.1 ± 0.3
Oxalate 17.8 ± 3.0 0.7 ± 0.1
Glycolate 15.0 ± 1.4 0.6 ± 0.1c
b
Trifluoroacetate 8.0 ± 1.0 0.32 ± 0.04
c
Tartronate 4.3 ± 1.1 0.2 ± 0.1c
Unidentified 4.9 ± 2.4 0.4 ± 0.2c
d
Total 106.7 ± 8.3 8.5 ± 0.7

Unless noted, all errors reported as standard deviation of triplicate measurements. a Calculated by
adding the formate in the reaction solvent, as measured by 1H NMR, to the formate in the
reaction precipitate, as measured by 13C NMR. b Calculated via 19F NMR spectroscopy. c Error
estimated as 0.1 based on the signal-to-noise of NMR resonances for low-concentration species.
Errors for other products are given as the standard deviation of triplicate measurements. d
Calculated as mols of carbon per mol of PFOA; i.e., accounting for compounds that have
multiple carbons integrated in the analysis.

83
Data S1. XYZ Coordinates of Optimized DFT Structures and Corresponding Energies

PFPeA
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1239.739617 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.022082 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.07736 a.u.
G = E(DMSO) + Gcorr = -1239.717535 a.u.
H = E(DMSO) + Hcorr = -1239.662257 a.u.

C -2.84528300 -0.33932800 -0.18533300


C -1.55377900 0.39824300 0.31645700
F -1.54328100 0.49209200 1.66984500
O -3.49607300 0.26394200 -1.04186500
O -3.00368900 -1.43908200 0.36043000
F -1.45781900 1.66187500 -0.16328500
C -0.26921600 -0.34000300 -0.10458000
C 1.00501600 0.53627100 -0.05233700
C 2.31519100 -0.28067500 -0.03356500
F -0.07098200 -1.40637200 0.68731600
F -0.40887000 -0.77302200 -1.37142200
F 0.99094100 1.29891200 1.05060000
F 1.04349500 1.33001600 -1.12981000
F 2.50194900 -0.84839800 1.14819900
F 2.28377300 -1.22281200 -0.96805300
F 3.33707600 0.52927400 -0.27809800

Formate
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -189.762029 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.01005 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.038226 a.u.
G = E(DMSO) + Gcorr = -189.751979 a.u.
H = E(DMSO) + Hcorr = -189.723803 a.u.

C 0.13093100 0.40154300 0.00004400


H 0.11314100 1.49760800 0.00042000
O 1.12633900 -0.26600400 -0.00005000
O -1.10704000 -0.08963400 -0.00014700
H -1.05312400 -1.06176500 0.00089000

GenX
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -2028.356103 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.051716 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.126659 a.u.
G = E(DMSO) + Gcorr = -2028.304387 a.u.
H = E(DMSO) + Hcorr = -2028.229444 a.u.

84
C -4.44504000 0.10771900 -0.28358800
C -3.14109700 -0.51613800 0.26092700
C -1.88388600 0.33284700 -0.05068300
C -0.57724800 -0.49189500 0.06187600
C 0.68547400 0.38509600 0.23210000
F -4.50247900 1.39310600 0.03902600
F -4.50683600 -0.01506400 -1.59956600
F -5.48057000 -0.51918300 0.25314100
F -3.00816500 -1.73291400 -0.28124500
F -3.26176600 -0.63704300 1.58589100
F -1.98057500 0.81600900 -1.29620000
F -1.84742800 1.35907700 0.80758600
F -0.45118500 -1.22633500 -1.04767500
F -0.66606800 -1.31056800 1.11980400
F 0.61880300 1.39789200 -0.64747500
F 0.68221600 0.92261000 1.45818400
O 1.75341600 -0.41586800 0.02571000
C 3.04182000 0.08556100 0.30904600
F 3.23093000 0.02801100 1.65605900
C 3.33429100 1.53433000 -0.25749500
O 3.31654200 2.42905700 0.58914200
O 3.53674400 1.54111200 -1.47685400
C 3.98433000 -0.97672400 -0.27165200
F 5.24753400 -0.57037900 -0.14451800
F 3.86216300 -2.12392800 0.40834700
F 3.74726400 -1.24786900 -1.54549100

1
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1953.114266 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.04928 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.121697 a.u.
G = E(DMSO) + Gcorr= -1953.064986 a.u.
H = E(DMSO) + Hcorr= -1952.992569 a.u.

C 4.77319800 -0.14754100 -0.41572100


O 4.99396900 -1.35866900 -0.28532200
O 5.35808600 0.74082100 -1.03988300
C 3.49173700 0.31425800 0.36442500
C 2.21099300 -0.33527800 -0.19594800
C 0.90948200 0.41123100 0.19183200
C -0.35828100 -0.46657000 0.02986500
C -1.65660300 0.37668700 -0.05226800
C -2.92111200 -0.45864700 0.26857600

85
F 3.57861600 -0.01994200 1.67645900
F 3.30982400 1.65580900 0.31415800
F 2.10506900 -1.59966000 0.24397000
F 2.28513100 -0.35233000 -1.53930200
F 0.98404700 0.80155100 1.47151100
F 0.77205400 1.49476600 -0.58732000
F -0.45306600 -1.29427300 1.07907300
F -0.25547400 -1.19109700 -1.09131100
F -1.58565800 1.38571700 0.82494300
F -1.76838200 0.88147700 -1.28727300
F -3.02614600 -0.59122200 1.59351900
F -2.81202300 -1.67120500 -0.28803000
C -4.22286600 0.18965800 -0.25218100
F -5.26027900 -0.42597300 0.29344300
F -4.25502700 1.47277400 0.08319900
F -4.30487900 0.08027400 -1.56813100

5
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1691.303754 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.052111 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.119877 a.u.
G = E(DMSO) + Gcorr = -1691.251643 a.u.
H = E(DMSO) + Hcorr = -1691.183877 a.u.

C 3.79738100 -0.15087900 -0.08148100


C 2.44682600 0.59677500 -0.14187700
C 1.23756200 -0.30397900 0.21000100
C -0.10203200 0.28641500 -0.29647900
C -1.34436800 -0.30439000 0.40558100
F 3.87583900 -0.85944500 1.03724900
F 3.92794500 -0.96050000 -1.11984900
F 4.78228400 0.73427000 -0.10222400
F 2.30069200 1.08363300 -1.38063100
F 2.49696600 1.61089100 0.72654100
F 1.41547700 -1.50785700 -0.35075000
F 1.19809100 -0.45108800 1.53952600
F -0.19056400 0.04419800 -1.60868200
F -0.09606100 1.61298900 -0.09771300
F -1.20350800 -1.64687500 0.46888800
F -1.36971600 0.13146100 1.68104800
O -2.42991200 0.07376500 -0.27711500
C -3.66695000 -0.48020200 0.16197400
H -3.60330300 -0.76457600 1.21183400
F -3.86427500 -1.61984700 -0.57082700
C -4.76725900 0.58770600 -0.07243200

86
O -5.58519100 0.35528900 -0.97191200
O -4.66766900 1.54962400 0.70818500

6
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1001.947909 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.012778 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.062475 a.u.
G = E(DMSO) + Gcorr = -1001.935131 a.u.
H = E(DMSO) + Hcorr = -1001.885434 a.u.

C 2.24000800 0.06429800 -0.17808200


C 0.83658100 -0.40555800 0.34174700
F 0.79646600 -0.41137000 1.69851400
O 2.79163100 -0.70284100 -0.97085400
O 2.57408400 1.16054900 0.29012700
F 0.52841500 -1.66309200 -0.05805000
C -0.29768000 0.51570100 -0.14278700
C -1.70529400 -0.11073000 -0.07743900
F -0.33175000 1.63232300 0.59753900
F -0.08060200 0.85792800 -1.42693200
F -1.90693700 -0.67229000 1.10971900
F -1.86822600 -1.02774200 -1.02093000
F -2.62263500 0.83491600 -0.25706100

S3
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -351.821033 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.000198 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.033629 a.u.
G = E(DMSO) + Gcorr = -351.820835 a.u.
H = E(DMSO) + Hcorr = -351.787404 a.u.

C -0.55908200 -0.15439300 0.00010700


C 0.66984400 -0.72503400 0.00079700
O -1.69780600 -0.61418500 -0.00045400
F -0.47296400 1.26951500 0.00024900
F 1.81257500 0.06099200 -0.00052400
H 0.86137900 -1.78451700 0.00068200

S4
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -401.887993 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = -0.004819 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.028553 a.u.
G = E(DMSO) + Gcorr= -401.892812 a.u.

87
H = E(DMSO) + Hcorr= -401.85944 a.u.

C 0.18741500 -0.84810300 0.00000000


O 1.37337200 -1.19037000 0.00000000
O -0.86421500 -1.49564100 0.00000000
C 0.00000000 0.71577900 0.00000000
O 0.82212800 1.56185900 0.00000000
F -1.30830700 1.08746100 0.00000000

S5
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1089.171999 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.013571 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.065611 a.u.
G = E(DMSO) + Gcorr = -1089.158428 a.u.
H = E(DMSO) + Hcorr = -1089.106388 a.u.

C 2.92762700 -0.46464300 -0.38160200


C 1.98371200 0.42757200 -0.07844400
C 0.63302400 0.27225600 0.54277300
C -0.47067800 -0.02507400 -0.49249000
F 2.52670000 -1.75334400 -0.00581600
F 2.19322300 1.73853600 -0.42822900
F 0.60875900 -0.73154600 1.44639500
F 0.26541700 1.40853900 1.19052700
F -0.19277200 -1.19371000 -1.09056600
F -0.46167100 0.94947000 -1.41858500
C -1.91233100 -0.12442300 0.04025700
F -2.01182900 -1.06635900 0.96819100
F -2.31352300 1.03096700 0.55148700
F -2.72187100 -0.43967800 -0.96706600

S6
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -252.545844 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.009188 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.040346 a.u.
G = E(DMSO) + Gcorr= -252.536656 a.u.
H = E(DMSO) + Hcorr= -252.505498 a.u.

C 0.63748200 -0.30665700 -0.00002100


C -0.48555700 0.45585800 0.00000000
O 1.85350600 0.07602900 0.00001000
F -1.73141200 -0.18215500 0.00000500

88
H -0.57475300 1.53297300 -0.00001300
H 0.41785800 -1.39701900 0.00001200

S7
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -237.693767 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = -0.016377 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.010922 a.u.
G = E(DMSO) + Gcorr = -237.710144 a.u.
H = E(DMSO) + Hcorr = -237.682845 a.u.

C 0.00000000 0.00000000 0.59047700


F 0.00000000 -1.02383600 -0.19682600
F 0.00000000 1.02383600 -0.19682600

S8
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -403.090969 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.018354 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.053756 a.u.
G = E(DMSO) + Gcorr = -403.072615 a.u.
H = E(DMSO) + Hcorr = -403.037213 a.u.

C -0.64585300 -0.20205800 0.39857500


F -1.12899900 -1.11853300 -0.56843200
C 0.84299700 0.05474500 0.04981700
O 1.63777500 -0.86051000 0.30158900
O 1.04997300 1.17568600 -0.47033200
H -0.79035100 -0.70028300 1.35655000
O -1.37053300 0.94731000 0.32246600
H -0.76924700 1.55106700 -0.16079500

INT1
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1764.479498 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.036801 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.103691 a.u.
G = E(DMSO) + Gcorr= -1764.442697 a.u.
H = E(DMSO) + Hcorr= -1764.375807 a.u.

C 4.20136300 -0.07233900 -0.00445300


C 2.83164800 0.42295900 0.43959700
C 1.56266200 -0.32894200 -0.04082800
C 0.25904600 0.50309200 0.07037800
C -1.02088600 -0.37158200 0.04869000
C -2.28678900 0.43862600 -0.32651600
F 4.20180200 0.13803900 -1.40261700

89
F 4.07114800 -1.48454600 0.08504900
F 2.69167500 1.71959800 0.05781800
F 2.78032500 0.38938100 1.79756900
F 1.69632200 -0.69296300 -1.32586500
F 1.39962300 -1.44348600 0.69838500
F 0.19948000 1.36368300 -0.95798200
F 0.26304700 1.19806300 1.21636300
F -0.87710200 -1.35619300 -0.84813800
F -1.19805000 -0.91422100 1.26125500
F -2.31609200 0.60691200 -1.65184500
F -2.25123800 1.63740100 0.26884200
C -3.59905800 -0.26008800 0.09090600
F -4.61837600 0.34692900 -0.49767100
F -3.57533800 -1.53125400 -0.28840900
F -3.76588300 -0.19849100 1.40206200

INT2
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1664.501639 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.036315 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.101983 a.u.
G = E(DMSO) + Gcorr= -1664.465324 a.u.
H = E(DMSO) + Hcorr= -1664.399656 a.u.

C 2.79182500 -1.38547500 -0.15575400


C 2.45240100 -0.25186600 0.43257700
C 1.88800700 0.96251700 -0.22925700
C 0.40364500 1.23924400 0.12607100
F 2.56932700 -0.13964300 1.75793600
F 0.33995200 1.62953200 1.40445800
F -0.03546800 2.23586700 -0.65506900
F 3.25921700 -2.40255900 0.50943700
C -0.51469100 0.00787700 -0.05549400
F -0.33791600 -0.80537500 0.99625400
F -0.16178700 -0.64954300 -1.16842500
C -2.01171900 0.38408000 -0.16098700
F -2.29093800 1.35645800 0.71527300
F -2.25885700 0.82167300 -1.39836100
C -2.95589200 -0.80551200 0.12330600
F -2.97440500 -1.08755300 1.41557700
F -4.18115500 -0.48744800 -0.26365300
F -2.55174200 -1.87340600 -0.55231200
F 1.98624300 0.87591500 -1.56196100
F 2.69864900 -1.62796800 -1.42990800
F 2.56983000 2.05347400 0.17711400

90
INT3
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1740.492919 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.048745 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.116177 a.u.
G = E(DMSO) + Gcorr= -1740.444174 a.u.
H = E(DMSO) + Hcorr= -1740.376742 a.u.

C 3.52727300 -0.71427400 -0.20976100


C 2.06967600 -0.60524100 0.00297300
C 1.54219700 0.75507400 -0.16253100
C 0.09162000 0.94877700 0.34132700
F 1.85754300 -0.97539300 1.36316300
F 0.05691800 0.95333000 1.68204300
F -0.33769600 2.15998900 -0.08081100
F 4.30247000 -0.06675200 0.75994100
C -0.92825700 -0.09503000 -0.16654900
F -0.79411900 -1.23216900 0.52993200
F -0.71603300 -0.34865700 -1.46469300
C -2.39656900 0.38613500 -0.02637800
F -2.56591400 1.03095800 1.13565700
F -2.68346300 1.22032900 -1.03198500
C -3.41809800 -0.77279600 -0.07349600
F -3.40348400 -1.45887800 1.05836300
F -4.63308300 -0.27254500 -0.24950200
F -3.13951100 -1.58930800 -1.08160600
F 1.55702200 1.14383100 -1.46383700
F 3.93091700 -2.02442400 -0.02957000
O 3.91283500 -0.27123000 -1.42531500
H 4.88238600 -0.26461800 -1.45210500
F 2.22264400 1.79508700 0.49747400

INT4
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1640.497449 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.047743 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.114179 a.u.
G = E(DMSO) + Gcorr = -1640.449706 a.u.
H = E(DMSO) + Hcorr = -1640.38327 a.u.

C 2.85944600 -1.34885300 -0.15502800


C 2.44201300 -0.23105600 0.42926800
C 1.87396400 0.97858800 -0.22393300
C 0.38627500 1.24064500 0.12945200
F 2.47974300 -0.13723100 1.76898500

91
F 0.31163100 1.61993900 1.41129500
F -0.06193500 2.24174400 -0.64344100
F 3.25806300 -2.35025900 0.61297600
C -0.52391900 0.00597900 -0.06704000
F -0.34021800 -0.82302000 0.97151800
F -0.17427900 -0.63238200 -1.19168900
C -2.02445300 0.37311700 -0.16083300
F -2.31043800 1.32715800 0.73340200
F -2.28020700 0.83162800 -1.38931600
C -2.95925300 -0.82838400 0.10415800
F -2.97465900 -1.13273500 1.39150600
F -4.18761300 -0.51281000 -0.27576200
F -2.54915400 -1.88238200 -0.58964100
F 1.97355700 0.91194700 -1.55764500
O 2.96269000 -1.56782300 -1.45017900
H 2.84212300 -2.51618500 -1.63477500
F 2.53683300 2.08490700 0.19113900

INT5
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1640.061417 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.035336 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.100773 a.u.
G = E(DMSO) + Gcorr = -1640.026081 a.u.
H = E(DMSO) + Hcorr = -1639.960644 a.u.

C 2.86156400 -1.39937900 -0.32407400


C 2.51872700 -0.25233000 0.35189000
C 1.91802900 0.94832900 -0.21894500
C 0.43741200 1.20964100 0.16452900
F 2.45242400 -0.25473500 1.72901700
F 0.36361500 1.53120700 1.46573500
F -0.03308700 2.25363400 -0.54970400
F 3.20911300 -2.40409200 0.59355000
C -0.49104300 -0.00232300 -0.07900800
F -0.32299800 -0.88490700 0.91847800
F -0.17325800 -0.59672000 -1.23580400
C -1.98807500 0.38873300 -0.14047700
F -2.26011300 1.30454000 0.79849400
F -2.25505800 0.90602100 -1.34439000
C -2.93823100 -0.80952600 0.08020600
F -2.95393500 -1.16606400 1.35468300
F -4.16521800 -0.46100000 -0.27894300
F -2.55115900 -1.84256600 -0.65686700
F 1.98220600 0.95701400 -1.56346300

92
O 2.93798500 -1.68812300 -1.49814500
F 2.55033700 2.10279100 0.21148400

INT6
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1540.049441 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.034397 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.098281 a.u.
G = E(DMSO) + Gcorr = -1540.015044 a.u.
H = E(DMSO) + Hcorr = -1539.95116 a.u.

C 4.00480900 -0.38827400 -0.39493400


C 2.66942000 -0.31640900 0.23667900
C 1.80938000 0.67256200 0.02369800
C 0.43217600 0.76996300 0.64636300
F 2.35681600 -1.31945300 1.04395800
F 0.43465400 0.25407000 1.88055900
F 0.07358700 2.06185400 0.71307600
O 4.48470800 0.38359600 -1.14442700
F 4.64764600 -1.48819500 -0.00208300
C -0.62170800 0.02405000 -0.20443800
F -0.42409400 -1.29220600 -0.05025200
F -0.42197200 0.34393200 -1.49026400
C -2.08275400 0.37803600 0.16290200
F -2.20745700 0.47562600 1.49153800
F -2.39035700 1.55392000 -0.39183300
C -3.10126600 -0.66905500 -0.33975100
F -3.03953400 -1.76741900 0.39504700
F -4.32182900 -0.16392900 -0.25397200
F -2.84747000 -0.97512200 -1.60559300
F 2.08023300 1.66203100 -0.79992700

INT7
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1616.058051 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.048909 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.113731 a.u.
G = E(DMSO) + Gcorr = -1616.009142 a.u.
H = E(DMSO) + Hcorr = -1615.94432 a.u.

C 3.64735000 -0.76575300 0.33815800


C 2.43300500 -0.55062700 -0.23628300
C 1.83826900 0.78746900 -0.37380200
C 0.41263400 0.94973400 0.22607100
F 1.76861200 -1.56303700 -0.87608100

93
F 0.50958400 0.88539900 1.56751200
F -0.05331800 2.17918000 -0.09195400
O 4.41458300 0.03812800 0.88481000
F 4.05143900 -2.07921800 0.29957000
C -0.67056900 -0.07243300 -0.19122900
F -0.48787800 -1.21029900 0.49981800
F -0.59608600 -0.34402800 -1.50002700
C -2.10954400 0.43160000 0.09249300
F -2.15635000 1.06735500 1.27048400
F -2.47634800 1.27898800 -0.87577900
C -3.15313500 -0.70778300 0.13726900
F -3.04344300 -1.40256100 1.25876200
F -4.36930900 -0.18286100 0.08233200
F -2.99049300 -1.52236000 -0.89734500
F 1.63437400 1.08945700 -1.74006200
O 2.59354100 1.76810100 0.18396500
H 3.42988300 1.35278100 0.51864300

INT8
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1515.607827 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.033937 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.097523 a.u.
G = E(DMSO) + Gcorr = -1515.57389 a.u.
H = E(DMSO) + Hcorr = -1515.510304 a.u.

C 3.95805700 -0.46657700 -0.32059100


C 2.65602400 -0.25512500 0.18137600
C 1.87832600 0.87068800 -0.09976600
C 0.45616400 0.90512600 0.54274300
F 2.14775700 -1.23574100 0.99186300
F 0.45882500 0.52088200 1.83728600
F -0.00824200 2.17102400 0.50454400
O 4.64975200 0.19516300 -1.03768500
F 4.46636700 -1.67092600 0.13406500
C -0.57073000 0.04207400 -0.21899600
F -0.37154700 -1.25396700 0.06601900
F -0.38928000 0.21895700 -1.53802100
C -2.04479100 0.39409700 0.10126600
F -2.18480800 0.65026000 1.40859100
F -2.39779200 1.48059100 -0.59509000
C -3.03142600 -0.73643800 -0.26365600
F -2.94235500 -1.73577600 0.60005800
F -4.26920000 -0.26202400 -0.23597500
F -2.77249300 -1.18971900 -1.48388600

94
O 2.16964300 1.83419700 -0.80473200

INT9
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1591.521889 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.046575 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.112254 a.u.
G = E(DMSO) + Gcorr = -1591.475314 a.u.
H = E(DMSO) + Hcorr = -1591.409635 a.u.

C -3.49910600 -0.98126500 -0.08961200


C -3.05978200 0.30120300 -0.07538800
C -1.70528300 0.90032900 0.28256400
C -0.56218700 -0.14080600 0.03239500
F -0.70825000 -0.86140200 -1.11139100
O -2.97545200 -2.08975900 -0.00571300
O -1.60777100 1.42784000 1.47489800
O -1.43219100 1.90002700 -0.77486900
H -1.15792200 2.65593800 -0.24174300
F -4.93818200 -1.02175400 -0.26501000
F -0.49783200 -1.03411200 1.05402000
F -4.02234100 1.30357600 -0.12479600
C 0.85926400 0.48586500 -0.09306900
C 1.98805700 -0.49665800 0.31067000
C 3.38840400 -0.07823000 -0.19295000
F 1.10247500 0.83244800 -1.37513100
F 1.01958700 1.58087800 0.66196500
F 1.75183500 -1.71966800 -0.18989300
F 2.05848500 -0.57629600 1.64683700
F 3.50746100 -0.28956800 -1.49576000
F 3.62252700 1.20324600 0.05958400
F 4.30701600 -0.80661900 0.43286000

INT10
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1592.038358 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.059893 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.126051 a.u.
G = E(DMSO) + Gcorr = -1591.978465 a.u.
H = E(DMSO) + Hcorr = -1591.912307 a.u.

C 3.48130100 0.99458200 -0.13578200


C 3.00824300 -0.35075600 -0.59820500
C 1.72444400 -0.80230100 0.21959300
C 0.52915900 0.12952300 -0.19205800

95
F 0.58400000 0.49874700 -1.50129400
O 3.09937700 2.04999800 -0.50420200
O 1.91682200 -0.84283300 1.49071700
O 1.38583200 -2.07010200 -0.39720900
H 1.40928000 -2.67833600 0.35233300
F 4.43040300 0.91400100 0.81209700
F 0.56567700 1.27261200 0.53350000
F 3.98507900 -1.28644500 -0.34073500
H 2.83683000 -0.31502200 -1.67296300
C -0.87200600 -0.49706100 0.01613700
C -1.98761700 0.56519800 0.18583100
C -3.41139300 0.00955200 -0.04160800
F -1.20317200 -1.24676800 -1.05129200
F -0.89973000 -1.27543500 1.10606500
F -1.81155000 1.56523500 -0.69099600
F -1.94669100 1.06053200 1.42923200
F -3.63712600 -0.20149200 -1.32963800
F -3.58036900 -1.12824400 0.62018900
F -4.29709300 0.89441600 0.39984300

INT11
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1764.996384 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.051569 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.118723 a.u.
G = E(DMSO) + Gcorr = -1764.944815 a.u.
H = E(DMSO) + Hcorr = -1764.877661 a.u.

C -1.51673500 -0.33739500 -0.03875400


C -2.76990500 0.43779100 0.43655200
C -4.09524700 -0.14403600 -0.06858200
F -1.68237200 -0.70893500 -1.31414400
F -1.37555900 -1.43508900 0.71784500
F -4.05171300 -1.48556600 0.08003200
F -2.67637700 1.71291400 0.02285000
F -2.78741500 0.41926700 1.77824700
H -4.93293500 0.27114000 0.49236000
F -4.23113900 0.13081400 -1.37909000
C -0.22048400 0.50544200 0.06410700
C 1.05809800 -0.37147700 0.05357600
C 2.32261200 0.43777500 -0.32761100
C 3.63520100 -0.25866200 0.09280800
F 3.61025100 -1.53044400 -0.28394200
F 3.79956100 -0.19390000 1.40378800
F 2.34826500 0.59868500 -1.65318900
F 2.28159500 1.63868900 0.26229500

96
F 0.90624300 -1.36088100 -0.83571100
F 1.22794300 -0.90333600 1.27012900
F -0.17172200 1.35260300 -0.97176300
F -0.24533100 1.20790600 1.20333900
F 4.65351500 0.34751900 -0.49678800

INT12
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1740.461376 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.049246 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.116617 a.u.
G = E(DMSO) + Gcorr = -1740.41213 a.u.
H = E(DMSO) + Hcorr = -1740.344759 a.u.

C -2.45051000 -1.49293600 0.64239600


C -2.69791000 -0.17170500 -0.08817000
C -1.74766200 0.98527000 0.29494300
C -0.29624200 1.07772500 -0.26549600
F -2.54816700 -0.28397500 -1.48191300
F -0.33851700 1.25944700 -1.58948700
F 0.20697000 2.20428300 0.28848600
F -3.59937000 -2.25089600 0.21048400
C 0.70922000 -0.06462600 0.03385800
F 0.65926400 -0.97040300 -0.94953700
F 0.41114100 -0.63988900 1.20338100
C 2.17112700 0.44500600 0.10819600
F 2.39711300 1.30416900 -0.89532400
F 2.37194100 1.05995300 1.27689400
C 3.21459200 -0.69146500 -0.00943100
F 3.30229800 -1.12158700 -1.25788600
F 4.39886700 -0.22688700 0.36255300
F 2.88385900 -1.70569300 0.77848500
F -1.66308700 1.08847100 1.63229500
F -1.43232400 -2.11947400 -0.09756000
F -2.30406200 2.13518400 -0.15929600
O -3.95181500 0.29467500 0.18184100
H -4.51451300 -0.47533000 0.35333000

INT13
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1616.029125 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.045918 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.112973 a.u.
G = E(DMSO) + Gcorr = -1615.983207 a.u.
H = E(DMSO) + Hcorr = -1615.916152 a.u.

97
C -2.45073400 -0.12081400 0.31984700
C -1.58218700 0.77231300 -0.13154800
C -0.19357100 0.98584300 0.41141000
C 0.84214900 0.02097000 -0.20800200
C 2.23404800 0.05799600 0.46848600
F -1.83767800 1.57504300 -1.17010700
F -0.14231100 0.81898400 1.74754800
F 0.19931100 2.24290800 0.13022900
F 0.37814900 -1.23203100 -0.10764700
F 0.97187600 0.32778900 -1.50914400
F 2.17772300 -0.64991500 1.60207600
F 2.58121600 1.31721300 0.76081500
F -2.05810300 -0.89316200 1.33682100
C -3.90122700 -0.38898400 -0.06953500
O -4.72977700 -0.34775100 0.85789400
C 3.35164600 -0.54309500 -0.41158600
F 3.65443000 0.27902900 -1.40413900
F 4.43343900 -0.73208300 0.33003100
F 2.96327600 -1.70798800 -0.91332800
F -3.69294800 -1.86259000 -0.57469400
O -4.18535700 0.28386500 -1.24903600
H -5.13509800 0.45694700 -1.20144100

INT14
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1515.589855 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.033678 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.097949 a.u.
G = E(DMSO) + Gcorr = -1515.556177 a.u.
H = E(DMSO) + Hcorr = -1515.491906 a.u.

C 2.70501900 0.32680800 0.21894000


C 1.86495000 -0.67348700 -0.02175500
C 0.49724100 -0.83722700 0.59441800
C -0.58218500 -0.05553300 -0.19099800
C -2.00636300 -0.10933300 0.40479000
F 2.12763200 -1.64702200 -0.89470900
F 0.46933400 -0.41743900 1.87202500
F 0.15925800 -2.14117900 0.57481200
F -0.21067900 1.23180600 -0.24390900
F -0.61321700 -0.55246100 -1.43829600
F -2.01421700 0.55781800 1.56551600
F -2.36353700 -1.38068500 0.62357300
F 2.28474100 1.25984900 1.08355700
C 4.10381500 0.56548800 -0.37622600
O 4.62862800 1.62794900 -0.01492100

98
O 4.51261200 -0.32880100 -1.13079700
C -3.09752800 0.52065400 -0.48954100
F -3.24903700 -0.17003400 -1.60864300
F -4.24414700 0.50401200 0.17792800
F -2.79497800 1.77562600 -0.78652300

INT15
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1591.516658 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.04802 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.11318 a.u.
G = E(DMSO) + Gcorr= -1591.468638 a.u.
H = E(DMSO) + Hcorr= -1591.403478 a.u.

C 3.83428900 -0.87650500 -0.34675100


C 2.37243400 -0.74130000 -0.07462200
C 1.86724300 0.66121100 -0.07691400
C 0.40616100 0.80054100 0.44620700
F 2.06121400 -1.22400600 1.25499200
F 0.33695700 0.64685800 1.77997300
F -0.00386400 2.08003100 0.19179900
O 4.50635500 -1.67151400 0.36734900
C -0.66280600 -0.12503700 -0.17894500
F -0.59898600 -1.34222000 0.38242900
F -0.48107800 -0.24818300 -1.50100200
C -2.10807400 0.40754600 0.02168900
F -2.25937100 0.91868500 1.25138300
F -2.35540500 1.36678000 -0.87937000
C -3.18962500 -0.68033000 -0.15892900
F -3.20859500 -1.50792400 0.87450400
F -4.37775500 -0.09590400 -0.25090400
F -2.96822500 -1.37395700 -1.26804500
F 1.77606200 1.16297600 -1.37565000
O 2.62492100 1.57608700 0.65434400
H 2.24285500 2.46222500 0.56061900
O 4.28757700 -0.22797500 -1.33319400

INT16
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1491.099371 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.033874 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.097175 a.u.
G = E(DMSO) + Gcorr= -1491.065497 a.u.
H = E(DMSO) + Hcorr= -1491.002196 a.u.

99
C 4.07695500 -0.62105900 -0.28988800
C 2.70061500 -0.25745800 0.16763400
C 1.93467000 0.85074100 -0.10257100
C 0.51044600 0.87069600 0.54916600
F 2.12065100 -1.21294100 0.99838000
F 0.47568300 0.50195200 1.85605700
F 0.02231200 2.13759800 0.51425700
O 4.53608100 -1.70783500 0.14945400
C -0.53099500 0.01450600 -0.20283200
F -0.38077800 -1.28446400 0.10718100
F -0.34303300 0.15205600 -1.52764700
C -2.00353700 0.40204700 0.08673300
F -2.16715700 0.68936300 1.38599400
F -2.33176900 1.47875500 -0.63930100
C -3.00944300 -0.71519600 -0.26643500
F -2.95893200 -1.69609000 0.62227900
F -4.23831900 -0.21351500 -0.26811800
F -2.74778700 -1.20598500 -1.47172600
O 2.16714600 1.86021100 -0.81321900
O 4.65551000 0.17434500 -1.06711500

INT17
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1491.597622 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.047996 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.111136 a.u.
G = E(DMSO) + Gcorr= -1491.549626 a.u.
H = E(DMSO) + Hcorr= -1491.486486 a.u.

C 3.11728700 -1.24329800 0.08415600


C 3.17682300 0.31914000 0.12049000
C 1.86249500 0.84142400 -0.38478800
C 0.64345900 0.82330600 0.57506500
F 4.18035100 0.82985100 -0.66832700
F 0.99691500 0.61377700 1.84892200
F 0.11533500 2.07268400 0.52115700
O 4.11174100 -1.82808200 -0.34342200
C -0.47758900 -0.20000300 0.17674800
F -0.60014100 -1.13317200 1.12431900
F -0.17720900 -0.78482900 -0.99101800
C -1.86811900 0.45574300 0.00538000
F -2.20076300 1.10402300 1.13117700
F -1.83199900 1.31717000 -1.01961400
C -3.01727300 -0.53726200 -0.28479800
F -3.21792200 -1.34695500 0.74360200

100
F -4.12630000 0.16436600 -0.49067800
F -2.76762000 -1.25933500 -1.36663300
O 1.69389900 1.30412100 -1.47601000
O 2.03128500 -1.67479800 0.51931700
H 3.34627600 0.63755900 1.15122900

INT18
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1567.555407 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.061602 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.126622 a.u.
G = E(DMSO) + Gcorr= -1567.493805 a.u.
H = E(DMSO) + Hcorr= -1567.428785 a.u.

C 3.81439100 -0.94764600 -0.15240000


C 2.31482300 -0.69690100 0.13811500
C 1.84972100 0.68699800 -0.37006200
C 0.38532700 0.97656300 0.13412300
F 0.29152400 1.17627700 1.47721200
F -0.06329000 2.12621300 -0.44212400
O 4.10325600 -2.00787400 -0.73241000
C -0.67336400 -0.10495100 -0.18127700
F -0.55741700 -1.10934900 0.71592400
F -0.51324300 -0.63213600 -1.40258600
C -2.13366600 0.41441500 -0.11357800
F -2.29829200 1.26628900 0.90829400
F -2.42550900 1.05109500 -1.25644900
C -3.17790200 -0.70901800 0.06641700
F -3.15375500 -1.18184500 1.30403300
F -4.38926200 -0.21906500 -0.17045000
F -2.94874000 -1.70320700 -0.78215100
O 1.91384500 0.74600400 -1.67192100
O 4.60865300 -0.06783900 0.27264600
O 2.59068000 1.69746100 0.35261000
H 3.48880600 1.31107100 0.41157700
F 2.14543400 -0.82823100 1.53835500
H 1.71669400 -1.48421700 -0.31751200

INT19
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1467.574059 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.060697 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.122871 a.u.
G = E(DMSO) + Gcorr= -1467.513362 a.u.
H = E(DMSO) + Hcorr= -1467.451188 a.u.

101
C -4.39158000 -0.01878300 -0.02004200
C -3.03645800 0.64647400 -0.26192000
C -1.83745500 -0.18326200 -0.04718200
C -0.54325300 0.47127700 0.38401800
F -0.50852300 0.58127800 1.72790500
O -5.36051100 0.73143200 0.10984000
O -2.23872400 0.12412500 -1.34987700
O -1.91660400 -1.46256200 0.37357700
H -2.92601900 -1.64612600 0.28527700
F -0.44744100 1.71315900 -0.13369000
H -2.99997700 1.72462200 -0.15929000
C 0.71061900 -0.31905000 -0.05651800
C 2.00095200 0.53592500 -0.05911600
C 3.29372100 -0.30888100 -0.04534600
F 0.89725600 -1.36054300 0.76769900
F 0.52051100 -0.78361500 -1.30033800
F 2.02213400 1.33005900 1.02040100
F 2.02346900 1.29479900 -1.16032500
F 3.49696900 -0.83849600 1.15065300
F 3.21440400 -1.28185600 -0.94452900
F 4.32414000 0.46922100 -0.34504900
O -4.37660600 -1.28508800 0.04972300

INT20
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1467.587186 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.059994 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.12368 a.u.
G = E(DMSO) + Gcorr= -1467.527192 a.u.
H = E(DMSO) + Hcorr= -1467.463506 a.u.

C 3.07308400 1.31353300 0.06015200


C 3.13751600 -0.23789700 0.38194200
C 1.93955000 -0.86213600 -0.27754300
C 0.58833600 -0.86428400 0.48459700
F 0.64590600 -0.22955200 1.66580000
O 4.06225000 1.71560200 -0.57940100
O 4.31710100 -0.78627000 -0.10788700
O 1.93734400 -1.38904700 -1.35557300
F 0.26903400 -2.15476000 0.74008100
H 3.05658500 -0.35238300 1.46627700
C -0.56365500 -0.26529700 -0.35870400
C -1.77721600 0.16220200 0.49862400
C -3.07280900 0.35083100 -0.32163600
F -0.13003700 0.80231800 -1.03617900

102
F -0.98109200 -1.18766700 -1.24278300
F -1.50482900 1.32280700 1.10223600
F -2.02045000 -0.77253200 1.42917900
F -2.82990700 1.07342300 -1.40726500
F -3.57452300 -0.81983000 -0.68301000
F -3.96864600 0.98347200 0.42342400
O 2.07227200 1.91441500 0.46328200
H 4.73373000 -0.02605300 -0.55759000

INT21
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1278.987059 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.048508 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.10651 a.u.
G = E(DMSO) + Gcorr= -1278.938551 a.u.
H = E(DMSO) + Hcorr= -1278.880549 a.u.

C 3.29679600 -0.61603300 0.63189400


C 2.54643000 0.12407900 -0.21727900
C 1.21746200 0.62619000 0.29362800
F 1.14903600 0.64286400 1.65272400
F 0.97665900 1.90197500 -0.12474200
C 0.00739800 -0.21442900 -0.17304500
F -0.01757600 -1.36086700 0.53669800
F 0.12849300 -0.53408600 -1.46916000
C -1.36244100 0.48873000 -0.00513300
F -1.40690500 1.17209900 1.14732400
F -1.53942700 1.34437400 -1.02100600
C -2.56100600 -0.48346300 -0.00638500
F -2.61500900 -1.16605400 1.12761200
F -3.68529900 0.21004900 -0.13414500
F -2.46602600 -1.33349400 -1.02117500
O 2.86604200 0.39116600 -1.43682600
H 3.06887100 -0.86177000 1.65684800
O 4.48885200 -1.11380300 0.15207000
H 4.50863800 -0.79932400 -0.76804100

INT22
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1278.452041 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.034676 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.09191 a.u.
G = E(DMSO) + Gcorr= -1278.417365 a.u.
H = E(DMSO) + Hcorr= -1278.360131 a.u.

103
C -3.47200100 0.71588600 -0.34947000
C -2.63850400 -0.39147100 -0.33749100
C -1.37728800 -0.35013200 0.45943800
F -1.37019800 0.52615500 1.50664900
F -1.08699100 -1.58351900 1.03234100
C -0.09353300 -0.00449800 -0.34368100
F -0.06833500 1.32950100 -0.57047800
F -0.08748400 -0.61244600 -1.54201200
C 1.24562500 -0.38150700 0.33944700
F 1.20179600 -0.13898300 1.65894000
F 1.48448100 -1.68938900 0.15305900
C 2.46807800 0.38286100 -0.21132900
F 2.46431800 1.64346700 0.19918100
F 3.58322000 -0.19316100 0.22733600
F 2.47692800 0.36065000 -1.53885200
O -2.79462400 -1.51054000 -1.04549700
H -4.34094200 0.51627500 -1.02267500
O -3.43449000 1.87009200 0.23871200

INT23
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1178.525239 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.031733 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.089049 a.u.
G = E(DMSO) + Gcorr= -1178.493506 a.u.
H = E(DMSO) + Hcorr= -1178.43619 a.u.

C -3.79077200 -0.02941600 0.25801200


C -2.42290900 -0.65695500 0.02963400
C -1.42795700 0.14533100 -0.46716400
F -1.65365700 1.48253600 -0.70183000
C -0.02043600 -0.20822400 -0.70884400
F 0.46123100 0.43659400 -1.81883800
F 0.14054400 -1.53342100 -0.90840900
C 0.93910800 0.18200000 0.44128300
F 0.74406000 1.47612400 0.75345000
F 0.63997900 -0.56757600 1.51522800
C 2.44809700 0.01362300 0.18292800
F 2.87402800 0.86949900 -0.73622800
F 3.11382800 0.25173500 1.31107800
F 2.72953000 -1.22086500 -0.21444500
O -2.38547100 -1.87871100 0.33370400
H -4.61336300 -0.72870500 0.01362500
O -4.01244600 1.04107700 0.76269900

104
INT24
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1078.514592 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.031303 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.086442 a.u.
G = E(DMSO) + Gcorr= -1078.483289 a.u.
H = E(DMSO) + Hcorr= -1078.42815 a.u.

C -3.60886800 0.59723200 -0.15617100


C -2.55426600 -0.50593700 -0.02749800
C -1.17792000 -0.10845400 0.38064000
F -1.08161500 1.03217000 1.05837500
C -0.07952100 -0.80558400 0.11532900
F -0.12082900 -1.92242000 -0.58703500
C 1.32241600 -0.40559100 0.51655200
F 1.32840100 0.19606600 1.71474700
F 2.09292800 -1.50193400 0.57822200
C 1.98091500 0.56153800 -0.48373600
F 1.28756100 1.69060100 -0.54322500
F 3.21862300 0.83579000 -0.09968700
F 2.01499200 0.00854000 -1.68925600
O -2.85214700 -1.63480600 -0.30889000
H -4.64614600 0.23953900 -0.06005900
O -3.31172100 1.72379600 -0.42859600

INT25
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1154.485333 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.043074 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.101363 a.u.
G = E(DMSO) + Gcorr= -1154.442259 a.u.
H = E(DMSO) + Hcorr= -1154.38397 a.u.

C -3.16714100 0.84937700 -0.01711700


C -2.40427600 -0.44176800 0.31226200
C -0.98563300 -0.39667500 -0.28877200
F -0.65545300 -1.35176900 -1.16505600
C -0.04925400 0.47975700 0.03988400
F -0.29276800 1.43552300 0.94831000
C 1.36505000 0.50825400 -0.45628600
F 1.45830100 0.10829200 -1.73872000
F 1.85514400 1.76247300 -0.37122400
C 2.31541700 -0.38771400 0.35369700
F 1.94693900 -1.65883200 0.24730100
F 3.56241100 -0.26980700 -0.08909000

105
F 2.28566600 -0.03749300 1.63538900
O -2.40556000 -0.62804300 1.60849500
H -4.16960000 0.84167600 0.45559300
O -2.76804200 1.80261500 -0.63553500
O -3.11999100 -1.46513500 -0.42290000
H -3.36880300 -2.08002400 0.27971900

INT26
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1153.957796 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.033008 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.087809 a.u.
G = E(DMSO) + Gcorr= -1153.924788 a.u.
H = E(DMSO) + Hcorr= -1153.869987 a.u.

C -3.14643200 0.81602800 0.22506300


C -2.46337900 -0.54939300 0.27118500
C -1.02492500 -0.43718100 -0.31853800
F -0.64428700 -1.48333600 -1.07481700
C -0.08362300 0.47442300 -0.09113300
F -0.31766700 1.51042300 0.74779000
C 1.33949400 0.44780900 -0.53588500
F 1.49321200 -0.12891900 -1.74645400
F 1.83271500 1.70824400 -0.61567900
C 2.27350800 -0.30922000 0.42123900
F 1.93310300 -1.59218000 0.47735400
F 3.54001100 -0.22994600 0.01839300
F 2.19062000 0.20836300 1.64405000
O -2.30819100 -0.98047600 1.54036300
H -4.06690200 0.79156200 0.85296500
O -2.88557800 1.80644300 -0.42971600
O -3.25002100 -1.24849100 -0.57818100

INT27
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1591.544297 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.047579 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.11277 a.u.
G = E(DMSO) + Gcorr= -1591.496718 a.u.
H = E(DMSO) + Hcorr= -1591.431527 a.u.

C -4.16901800 0.53002200 0.00554600


C -2.86342700 -0.30610500 0.28145800
C -1.59549500 0.49333300 0.11952000
C -0.39749600 -0.35389400 -0.01816200

106
F -2.95170600 -0.69546600 1.64800800
F -0.36135500 -1.28976800 0.96902500
F -0.24789000 -1.07129000 -1.21391800
O -4.32144600 1.59191000 0.61788900
C 0.93509900 0.42862700 0.08749100
F 1.12303300 0.80990200 1.36856800
F 0.89113400 1.53945600 -0.66903900
C 2.19552400 -0.35891800 -0.34998200
F 2.12627000 -1.63625500 0.05399300
F 2.29706400 -0.33386300 -1.68652600
C 3.51180100 0.21962300 0.21362000
F 3.63611000 -0.04937600 1.50509800
F 4.53857900 -0.32775900 -0.42704900
F 3.55523400 1.53488500 0.03840100
F -1.72969000 1.15929600 -1.15198400
O -2.94009400 -1.47061200 -0.45707500
H -3.83934800 -1.40697600 -0.84557600
O -4.95766300 -0.02967300 -0.79863600

INT28
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1491.588193 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.046879 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.110902 a.u.
G = E(DMSO) + Gcorr= -1491.541314 a.u.
H = E(DMSO) + Hcorr= -1491.477291 a.u.

C 3.88036100 -0.31423500 0.58217600


C 2.82325000 0.03112100 -0.53684500
C 1.42146000 -0.13014900 -0.02556300
C 0.43294000 0.74589800 0.05331100
F 3.00408100 1.36660800 -0.87697300
F 0.54173100 1.99342600 -0.40502100
O 3.70075800 0.21608900 1.67993900
C -0.93721200 0.46267100 0.61577500
F -1.46673600 1.61056900 1.07820100
F -0.88158900 -0.41828100 1.62786600
C -1.89159900 -0.10239300 -0.45561600
F -1.93229500 0.76440100 -1.47853100
F -1.39571400 -1.26976600 -0.88839000
C -3.34249000 -0.35936000 -0.00546200
F -3.92266500 0.76506100 0.38586000
F -4.02288100 -0.85271100 -1.03345800
F -3.37691500 -1.23676700 0.98643800
F 1.20997600 -1.37444300 0.40959100
O 3.02004500 -0.75737600 -1.62546800

107
H 3.88055200 -1.18855700 -1.42163200
O 4.77747800 -1.07691800 0.17112100

INT29
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1491.08802 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.032457 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.096837 a.u.
G = E(DMSO) + Gcorr= -1491.055563 a.u.
H = E(DMSO) + Hcorr= -1490.991183 a.u.

C 3.95028000 -0.51309400 0.31135500


C 2.87091000 0.11907300 -0.63611500
C 1.47203700 -0.17315500 -0.06912700
C 0.48130800 0.59247100 0.37229800
F 3.04232200 1.63124500 -0.23526000
F 0.58037600 1.92844700 0.49670500
O 3.51875400 -0.88419500 1.42912400
C -0.89381300 0.12017900 0.75007300
F -1.41662600 0.95419900 1.67730700
F -0.88248100 -1.12029800 1.27384500
C -1.86191900 0.10851600 -0.45043600
F -1.87004500 1.33467900 -0.99838000
F -1.40760900 -0.77074600 -1.35519400
C -3.32581600 -0.26507700 -0.15064100
F -3.87978100 0.60667800 0.67931400
F -4.01002500 -0.25465900 -1.29018300
F -3.40547200 -1.47867100 0.37647200
F 1.18668300 -1.48052600 -0.19865500
O 2.91866300 -0.04177800 -1.88160600
O 5.11333300 -0.58485200 -0.12228900

INT30
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1326.96338 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.022378 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.080251 a.u.
G = E(DMSO) + Gcorr = -1326.941002 a.u.
H = E(DMSO) + Hcorr = -1326.883129 a.u.

C -3.47176500 0.74020000 -0.51052300


C -2.60354900 -0.25360200 -0.31438500
C -1.34945800 -0.34381400 0.48991800
C -0.08346500 0.01459200 -0.32123200
C 1.25065800 -0.39262300 0.34775400

108
F -2.80126700 -1.42900600 -0.99688700
F -1.15679600 -1.60941400 0.95531700
F -1.38210000 0.47618500 1.55954400
F -0.14146100 -0.60195000 -1.51316700
F -0.07602400 1.34202600 -0.53190000
F 1.45289200 -1.70182000 0.15415300
F 1.20335000 -0.15196600 1.66476000
F -3.09910200 1.87979000 0.21170900
C 2.47490500 0.35763100 -0.21929600
F 3.58377000 -0.23441400 0.20247800
F 2.45315800 0.33270200 -1.54592600
F 2.48536200 1.61627800 0.19176200

INT31
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1327.4713 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.035704 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.094259 a.u.
G = E(DMSO) + Gcorr = -1327.435596 a.u.
H = E(DMSO) + Hcorr = -1327.377041 a.u.

C -3.30856900 0.76929600 -0.47225000


C -2.55846500 -0.30643600 -0.33208800
C -1.32015600 -0.43751500 0.51244400
C -0.05651000 -0.01923700 -0.27519600
C 1.27927700 -0.14274100 0.48879400
F -2.85260300 -1.41748400 -1.01471800
F -1.17934700 -1.71790300 0.89734700
F -1.40856000 0.33566800 1.60721200
F 0.00376500 -0.78600500 -1.37504200
F -0.21391700 1.26235500 -0.63862100
F 1.44367600 -1.40620900 0.89846300
F 1.25029400 0.66997500 1.55188900
F -3.01521300 1.89668500 0.16959800
H -4.18737200 0.81050400 -1.10273400
C 2.53117700 0.23125800 -0.33760900
F 3.59544700 0.10352600 0.44395900
F 2.66837900 -0.57681500 -1.37751900
F 2.46217200 1.48306700 -0.76277200

INT32
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1403.431621 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.048638 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.109148 a.u.
G = E(DMSO) + Gcorr = -1403.382983 a.u.

109
H = E(DMSO) + Hcorr = -1403.322473 a.u.

C 3.23094800 -0.17918300 -0.45600100


C 2.36769500 0.80003500 0.21252300
C 1.08532500 0.33852100 0.76426400
C -0.17469600 0.41359200 -0.15051300
C -1.35320600 -0.47392700 0.32100700
F 2.05683900 1.83180100 -0.73397300
F 0.69048000 1.08448900 1.87364700
F 1.17120600 -0.94237300 1.21531300
F -0.61928600 1.68607300 -0.21488700
F 0.12311000 0.01803000 -1.39738200
F -1.50715200 -0.40616800 1.65096200
F -1.10543400 -1.74710500 -0.01928600
F 2.55796800 -1.06136900 -1.41280400
H 3.93494100 0.35039400 -1.10209100
O 3.85449200 -1.02984300 0.43306900
H 4.42331700 -1.62160400 -0.07584600
C -2.70980500 -0.08687200 -0.30799100
F -3.58857900 -1.05441300 -0.07310600
F -2.59201800 0.07040400 -1.62026900
F -3.17288600 1.03584900 0.22218900

INT33
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1303.465409 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.048309 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.10697 a.u.
G = E(DMSO) + Gcorr = -1303.4171 a.u.
H = E(DMSO) + Hcorr = -1303.358439 a.u.

C -3.40871400 -0.65293200 -0.39597500


C -2.53699300 0.34132200 -0.29137500
C -1.27936100 0.38674600 0.51217200
C -0.03129400 0.00458900 -0.31659300
C 1.31392300 0.37320800 0.35221800
F -2.72723200 1.46647400 -1.01184800
F -1.34931900 -0.45193400 1.55847400
F -1.07282600 1.63952200 0.98270100
F -0.06547800 -1.31898300 -0.53751100
F -0.09106200 0.63557900 -1.49913900
F 1.25931200 0.11659100 1.66538500
F 1.54238200 1.67902000 0.17334400
H -4.26866700 -0.51585900 -1.04424100
O -3.27544900 -1.81968500 0.25437800

110
H -4.02904200 -2.38668700 0.04402400
C 2.51652400 -0.40021000 -0.23048400
F 2.48428200 -0.35876100 -1.55640400
F 2.49676900 -1.66299400 0.16613400
F 3.64059200 0.16034100 0.19057800

INT34
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1302.996352 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.034948 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.092916 a.u.
G = E(DMSO) + Gcorr = -1302.961404 a.u.
H = E(DMSO) + Hcorr = -1302.903436 a.u.

C -3.48302800 -0.73685300 -0.35404800


C -2.58296400 0.29816900 -0.22843400
C -1.32557300 0.34561300 0.51433100
C -0.05677500 0.00747700 -0.31178700
C 1.29139800 0.36593000 0.35740600
F -2.72913600 1.39515600 -1.06605100
F -1.33915900 -0.51386400 1.55660700
F -1.07728000 1.60540700 1.01884000
F -0.06276500 -1.31290300 -0.57655400
F -0.10526000 0.66658500 -1.48327700
F 1.25202600 0.09272500 1.66930200
F 1.52657200 1.67528200 0.19719300
H -4.28016000 -0.48121700 -1.08416300
O -3.51576300 -1.84468500 0.22785400
C 2.49632700 -0.39489300 -0.23559600
F 2.46592500 -0.34148800 -1.56175300
F 3.62187700 0.16552400 0.18817100
F 2.48830500 -1.66286300 0.14753300

INT35
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1202.995254 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.033674 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.090349 a.u.
G = E(DMSO) + Gcorr = -1202.96158 a.u.
H = E(DMSO) + Hcorr = -1202.904905 a.u.

C -3.71295900 -0.41482400 0.38207300


C -2.30535500 -0.56888300 -0.07131200
C -1.42550000 0.40661800 -0.26240500
C 0.00661000 0.22778200 -0.71423000

111
C 0.94886200 -0.01483100 0.48337200
F -1.94384800 -1.83419500 -0.28379700
F -1.73769300 1.66942800 -0.02882200
F 0.11790300 -0.81062500 -1.55465500
F 0.40535100 1.34295400 -1.34708100
F 0.60694100 -1.17816700 1.05209400
F 0.76838600 0.97797800 1.36587400
H -4.24939400 -1.37257100 0.47379900
O -4.21719700 0.64701400 0.62494500
C 2.45312900 -0.07738100 0.15261900
F 2.69582600 -1.02202800 -0.74323200
F 2.87796000 1.08718000 -0.31250400
F 3.12009000 -0.36079600 1.26389400

INT36
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1278.950611 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.04664 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.105728 a.u.
G = E(DMSO) + Gcorr = -1278.903971 a.u.
H = E(DMSO) + Hcorr = -1278.844883 a.u.

C -3.48659200 -0.14403000 0.58515000


C -2.05037400 -0.37155300 0.09002000
C -1.11431800 0.50067000 -0.26249800
C 0.28168000 0.16408600 -0.71242200
C 1.26133900 0.04565000 0.47353300
F -1.70526100 -1.67286500 0.04225200
F -1.29964600 1.82637500 -0.20949700
F 0.32720300 -0.99374000 -1.39619900
F 0.74012600 1.14354600 -1.52253300
F 0.89210500 -1.00361700 1.22192200
F 1.16872400 1.16317200 1.21240000
H -3.56529800 -0.82406700 1.46723500
O -3.82564600 1.09449100 0.76500500
O -4.30121300 -0.85080900 -0.42027300
H -4.61435600 -0.11845700 -0.96665800
C 2.74907200 -0.14479300 0.12045200
F 2.92167900 -1.22040400 -0.63476500
F 3.22306200 0.91506500 -0.51762500
F 3.43753000 -0.30276600 1.24584000

INT37
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1278.999481 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.046262 a.u.

112
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.103647 a.u.
G = E(DMSO) + Gcorr = -1278.953219 a.u.
H = E(DMSO) + Hcorr = -1278.895834 a.u.

C 3.38311700 0.90695200 -0.38062200


C 2.11874800 0.83336200 0.08547800
C 1.43628100 -0.45980800 0.31714800
C 0.00936900 -0.57368500 -0.31216900
C -1.18327600 -0.03874800 0.51943400
F 1.40650600 1.97619900 0.33493400
F 1.13988700 -0.61794200 1.71997200
F 0.00157600 0.06360800 -1.50711100
F -0.27212400 -1.86810400 -0.55658400
F -0.88022300 1.09633100 1.15962500
F -1.53750800 -0.96149200 1.42696400
H 3.80567200 1.90518500 -0.53919600
O 4.11099300 -0.13595900 -0.64946300
O 2.18858900 -1.47879400 -0.10352700
H 3.15837500 -1.05137600 -0.37695200
C -2.43622000 0.25632500 -0.33493400
F -3.47948600 0.43628900 0.46771000
F -2.27044200 1.35736900 -1.05434000
F -2.70027600 -0.75805500 -1.14960800

INT38
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1178.543293 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.033347 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.089702 a.u.
G = E(DMSO) + Gcorr = -1178.509946 a.u.
H = E(DMSO) + Hcorr = -1178.453591 a.u.

C -3.66129800 -0.57836500 0.26114100


C -2.30493500 -0.48179700 -0.13625900
C -1.48688900 0.64841900 -0.14286100
C -0.01537500 0.46064100 -0.62982400
C 0.90728600 -0.09181400 0.47122700
F -1.76778500 -1.68361500 -0.55937300
F 0.08888400 -0.34511100 -1.71129000
F 0.48249900 1.66221500 -0.98769100
F 0.53117500 -1.33903700 0.79023600
F 0.78785000 0.68611100 1.56055900
H -4.05257600 -1.61104900 0.15905500
O -4.39266300 0.31528200 0.67977900

113
O -1.78242900 1.79328500 0.20687600
C 2.40942900 -0.15415200 0.13047800
F 2.62037700 -0.89463500 -0.94934100
F 2.90755900 1.05722900 -0.07086500
F 3.05655300 -0.70705400 1.15268700

INT39
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1254.450677 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.046842 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.104407 a.u.
G = E(DMSO) + Gcorr = -1254.403835 a.u.
H = E(DMSO) + Hcorr = -1254.34627 a.u.

C -3.60472400 0.20469600 -0.31570100


C -2.26286100 0.11700700 -0.55118000
C -1.13388700 -0.71751300 -0.00605600
C -0.09929200 0.26748100 0.76418600
C 1.20180500 0.70014200 0.05867100
F -1.77125100 1.12676800 -1.41133900
F -0.69434200 1.44366600 1.13009100
F 0.31340300 -0.29004200 1.93284000
F 0.93484400 1.35813800 -1.07630100
F 1.82633700 1.58993400 0.87528100
H -4.03316800 1.03943000 -0.92086000
O -4.40896600 -0.45899100 0.41411900
O -1.44925200 -1.72750000 0.73321000
O -0.29903800 -1.12504500 -1.17772100
H -0.24291000 -2.07464400 -1.01635300
C 2.24590600 -0.42700200 -0.24917300
F 3.44517800 -0.06928500 0.22493600
F 1.93979700 -1.58574400 0.31962900
F 2.38963800 -0.61136400 -1.55337500

INT40
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1254.44469 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.045437 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.10404 a.u.
G = E(DMSO) + Gcorr = -1254.399253 a.u.
H = E(DMSO) + Hcorr = -1254.34065 a.u.

C -3.47237900 -0.76819300 0.18740600


C -2.15173700 -0.55488300 -0.47439400
C -1.47766400 0.72081500 0.21940100

114
C 0.06222600 0.69941300 -0.29405000
C 1.12831800 -0.03062400 0.55787600
F -1.43279200 -1.75887200 -0.26905300
F 0.20256300 0.20119000 -1.57655600
F 0.54060600 1.97584300 -0.36784900
F 0.72886100 -1.22041900 1.03209900
F 1.48899600 0.73952400 1.60524900
H -3.41041500 -1.33381400 1.13432700
O -4.53788000 -0.38306500 -0.22984500
O -1.44382700 0.57386600 1.54789600
O -2.06421500 1.77510000 -0.33605900
H -2.24518300 -0.42283300 -1.55058200
C 2.44210500 -0.33513000 -0.19958300
F 2.28489500 -1.32838700 -1.06945800
F 2.89831600 0.73043100 -0.85117200
F 3.38164100 -0.71252600 0.67233900

INT41
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1839.732628 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.039458 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.10878 a.u.
G = E(DMSO) + Gcorr = -1839.69317 a.u.
H = E(DMSO) + Hcorr = -1839.623848 a.u.

C -4.02391400 -0.36619900 -0.10673400


C -2.73116200 0.20918900 0.51308300
C -1.48464300 0.00459000 -0.38299400
C -0.16059400 0.12977000 0.41085200
C 1.07731200 0.40503200 -0.47282000
F -4.12355500 0.00379200 -1.37677700
F -4.02755600 -1.68768300 -0.03658000
F -5.06893300 0.09943600 0.56085000
F -2.54126700 -0.38823900 1.69635500
F -2.91452700 1.51859000 0.70730000
F -1.54507100 -1.21697000 -0.93243800
F -1.52214200 0.91663700 -1.36209500
F 0.02387500 -1.01599600 1.07877900
F -0.28227300 1.13132600 1.29787600
F 0.99834600 -0.41559300 -1.54983600
F 0.98036600 1.66406400 -0.95231100
O 2.16705200 0.21067300 0.26021900
C 3.40284000 0.53199500 -0.43922400
F 3.86334700 1.68585900 0.25162000
C 4.32659600 -0.53868600 0.06359000
F 5.58630100 -0.31234400 -0.34985000

115
F 4.41211500 -0.67473800 1.41270200
F 3.96374900 -1.74586600 -0.40073600

INT42
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1739.723881 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.039301 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.107161 a.u.
G = E(DMSO) + Gcorr = -1739.68458 a.u.
H = E(DMSO) + Hcorr = -1739.61672 a.u.

C 3.79938800 0.13085900 -0.25179500


C 2.48718100 -0.49056800 0.27556200
C 1.22154800 0.22190400 -0.26101000
C -0.03010400 -0.08038200 0.60177400
C -1.35431500 0.20231500 -0.13915000
F 3.72098200 0.30493400 -1.56460000
F 4.02891700 1.29636100 0.33020000
F 4.80423400 -0.68775700 0.01654100
F 2.50290500 -0.42537900 1.61264400
F 2.45387300 -1.77059200 -0.10298500
F 1.42911700 1.54450100 -0.26150200
F 1.00820800 -0.18059300 -1.51891900
F 0.01811100 0.68201600 1.69672800
F -0.02137200 -1.37005000 0.96150700
F -1.28992700 1.40095200 -0.72961200
F -1.54745000 -0.70981800 -1.09285200
O -2.36018100 0.15486900 0.79000800
C -3.59704400 0.44953600 0.31277300
F -3.93042400 1.72884600 0.37281400
C -4.43939100 -0.46460800 -0.11861500
F -4.15136700 -1.73783500 -0.18310800
F -5.65271200 -0.19261700 -0.51877800

INT43
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1815.715991 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.051117 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.121299 a.u.
G = E(DMSO) + Gcorr = -1815.664874 a.u.
H = E(DMSO) + Hcorr = -1815.594692 a.u.

C -4.02018400 -0.36665900 -0.10709300


C -2.72612500 0.20164600 0.51673900
C -1.48238600 0.01048900 -0.38612400
C -0.15583000 0.12476700 0.40507800

116
C 1.07867200 0.41538000 -0.47908100
F -4.12242400 0.01836100 -1.37242900
F -4.02324200 -1.68888500 -0.05272500
F -5.06395900 0.09070300 0.56801400
F -2.53152000 -0.41187600 1.69103500
F -2.90983800 1.50802800 0.72968600
F -1.54404600 -1.20297100 -0.95292900
F -1.52258200 0.93660400 -1.35176000
F 0.03346100 -1.03111900 1.05429500
F -0.27480000 1.11171000 1.30866000
F 0.99362500 -0.38371600 -1.57108400
F 0.98214600 1.68371000 -0.93226700
O 2.17268100 0.20528200 0.24178900
C 3.42406600 0.53309500 -0.45652800
F 3.85440400 1.68868200 0.25793600
C 4.33360000 -0.54853800 0.09657500
F 5.61274800 -0.29826300 -0.28892000
F 4.00565500 -1.73451600 -0.51240600
O 4.37213100 -0.74682700 1.44218100
H 3.52398700 -0.46679700 1.81489000

INT44
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1715.718778 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.050346 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.119337 a.u.
G = E(DMSO) + Gcorr = -1715.668432 a.u.
H = E(DMSO) + Hcorr = -1715.599441 a.u.

C -3.76904300 0.40779900 0.17837300


C -2.53593100 -0.42270200 -0.24184500
C -1.19977400 0.18635200 0.24792000
C 0.01797000 -0.36809300 -0.53345600
C 1.35443600 -0.17463000 0.21357200
F -3.68388400 0.72677700 1.46322600
F -3.85049700 1.51511000 -0.54085100
F -4.86234100 -0.31222300 -0.01756400
F -2.52441600 -0.50476200 -1.57798900
F -2.66512600 -1.64775800 0.27334500
F -1.23808400 1.51509800 0.08854400
F -1.05915900 -0.08802200 1.54985900
F 0.08958100 0.26478100 -1.70747000
F -0.15077600 -1.67871900 -0.74823000
F 1.42425900 1.08178600 0.68037300
F 1.41843400 -0.99771800 1.26005900
O 2.36434900 -0.41826000 -0.67645400

117
C 3.61488600 -0.45453600 -0.12513400
F 3.99357500 -1.65328000 0.30897400
C 4.42175200 0.59232700 -0.10502700
F 5.64216900 0.46667800 0.37803800
O 4.19317200 1.83065900 -0.52140800
H 3.31044600 1.91197500 -0.91635600

INT45
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1791.697331 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.062912 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.134013 a.u.
G = E(DMSO) + Gcorr = -1791.634419 a.u.
H = E(DMSO) + Hcorr = -1791.563318 a.u.

C -4.03339000 -0.34353900 -0.09695600


C -2.73181900 0.21887000 0.51640100
C -1.49103500 -0.00272800 -0.38368100
C -0.16203100 0.11073900 0.40368400
C 1.07678300 0.36818300 -0.48430700
F -4.13481800 0.02552400 -1.36717700
F -4.05125400 -1.66487800 -0.02478600
F -5.07051300 0.13428400 0.57445000
F -2.54500600 -0.37704200 1.70091900
F -2.89998600 1.53090100 0.70750800
F -1.56822700 -1.22585100 -0.92806400
F -1.52414800 0.90568100 -1.36646800
F 0.01036200 -1.03429500 1.07653100
F -0.27049400 1.11735300 1.28737700
F 0.97987900 -0.45933500 -1.55894200
F 0.98465700 1.62537200 -0.97492600
O 2.16496300 0.16671000 0.24220300
C 3.40258300 0.47397000 -0.46257200
F 3.82517200 1.68489600 0.18517000
C 4.37883900 -0.55519800 0.06969900
F 4.26734800 -0.72490500 1.46163000
O 5.68127200 -0.18819600 -0.17124100
H 5.75307800 0.75879800 0.01469300
O 4.14325000 -1.79813900 -0.45388600
H 3.66472000 -1.66292000 -1.28390500

INT46
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1691.712462 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.062661 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.1321 a.u.

118
G = E(DMSO) + Gcorr = -1691.649801 a.u.
H = E(DMSO) + Hcorr = -1691.580362 a.u.

C -3.77387500 0.41451300 0.18292700


C -2.54372200 -0.41710300 -0.24333300
C -1.20493400 0.18445400 0.24871900
C 0.01082200 -0.36656300 -0.53788100
C 1.34928000 -0.18335200 0.20828300
F -3.68783200 0.72474000 1.46992600
F -3.85263700 1.52690300 -0.52884900
F -4.86982500 -0.30068800 -0.01730700
F -2.53559600 -0.49196800 -1.57999600
F -2.67723400 -1.64481200 0.26518200
F -1.24195800 1.51490100 0.10011500
F -1.06626900 -0.09985100 1.54903400
F 0.07791600 0.27431700 -1.70829400
F -0.16602400 -1.67556400 -0.76384500
F 1.41072400 1.06149600 0.70090600
F 1.40310200 -1.02479400 1.24805100
O 2.35267000 -0.42524200 -0.67999000
C 3.60511500 -0.43794800 -0.13508900
F 4.00405100 -1.64938000 0.28861600
C 4.43767100 0.59425400 -0.11525200
O 5.68293400 0.54504000 0.38310000
H 5.83475900 -0.29820000 0.83765800
O 4.10156200 1.77480400 -0.64176700
H 4.60001800 2.47416600 -0.19049300

INT47
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1691.254953 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.05056 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.118592 a.u.
G = E(DMSO) + Gcorr = -1691.204393 a.u.
H = E(DMSO) + Hcorr = -1691.136361 a.u.

C 3.77541300 0.32838700 -0.12975000


C 2.48548000 -0.28098300 0.46284000
C 1.21633200 0.06619600 -0.35374800
C -0.08378900 -0.13076000 0.46494400
C -1.35515900 -0.27013500 -0.40146000
F 3.82136300 0.11560800 -1.43842900
F 3.82582600 1.63025000 0.10168400
F 4.82534100 -0.24669600 0.43745400

119
F 2.35594800 0.17114300 1.71667200
F 2.63270900 -1.60914000 0.48869000
F 1.29123000 1.34629100 -0.74519600
F 1.19726300 -0.71338200 -1.44199200
F -0.21746500 0.92478500 1.27751500
F 0.04314100 -1.23857000 1.21477200
F -1.29577600 0.67538100 -1.37053300
F -1.30081700 -1.46062800 -1.03869200
O -2.41645700 -0.15135700 0.39023100
C -3.66620200 -0.37961800 -0.27164800
F -4.06371100 -1.66518900 0.11409800
C -4.65345000 0.58853600 0.10603300
O -5.85655900 0.38684000 0.19869000
O -4.15486900 1.84893800 0.22986300
H -4.92413400 2.42621600 0.34206500

INT48
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1364.208256 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.022959 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.079972 a.u.
G = E(DMSO) + Gcorr = -1364.185297 a.u.
H = E(DMSO) + Hcorr = -1364.128284 a.u.

C -2.53042600 -0.26463400 0.07187500


C -1.22385100 0.50964300 -0.21082600
C 0.05411100 -0.33545900 0.02199600
C 1.32433900 0.52800800 0.20000700
C 2.70507500 -0.16409500 -0.00665800
F -2.49172600 -1.46278700 -0.49699200
F -2.71762900 -0.40929800 1.37474300
F -3.55464100 0.41303900 -0.42916900
F -1.21847700 1.58923000 0.58386600
F -1.25837900 0.90946800 -1.48779200
F -0.13799700 -1.07603400 1.12834300
F 0.17740600 -1.16283800 -1.02446100
F 1.27509600 1.02699000 1.45247100
F 1.23059000 1.57411700 -0.65551700
F 2.49021600 -1.48193100 0.55556100
F 2.70524700 -0.48916700 -1.40679500
O 3.69089400 0.43526300 0.39916200

INT49
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1264.18692 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.021739 a.u.

120
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.077517 a.u.
G = E(DMSO) + Gcorr = -1264.165181 a.u.
H = E(DMSO) + Hcorr = -1264.109403 a.u.

C -2.34178700 -0.30707500 -0.02465800


C -1.05494400 0.54737400 -0.02744700
C 0.23212200 -0.30353700 -0.15679300
C 1.49775600 0.44655400 0.31826800
C 2.77848200 -0.22473800 -0.20947400
F -2.29281400 -1.19616900 -1.00848100
F -2.47825800 -0.94021800 1.12878100
F -3.38747300 0.48298800 -0.20700700
F -1.01546600 1.25035800 1.11054700
F -1.11831300 1.38997400 -1.06110500
F 0.10292400 -1.42542600 0.56081500
F 0.40157900 -0.62833800 -1.44582100
F 1.52251100 0.46538600 1.65576000
F 1.45306500 1.69674800 -0.14756500
F 2.96632800 -1.38730600 0.39580100
O 3.49293700 0.20956900 -1.02936200

INT50
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1791.697331 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.062912 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.134013 a.u.
G = E(DMSO) + Gcorr = -1791.634419 a.u.
H = E(DMSO) + Hcorr = -1791.563318 a.u.

C -2.54150700 -0.26658600 0.05831300


C -1.22853100 0.51108700 -0.18224300
C 0.04535600 -0.34922700 0.01484400
C 1.32226100 0.49940100 0.22466300
C 2.70656200 -0.18512400 -0.00816800
F -2.51535700 -1.43283500 -0.57410900
F -2.73333100 -0.47923100 1.35145000
F -3.56006900 0.44639500 -0.40594300
F -1.22434600 1.55176200 0.66365200
F -1.25958400 0.97179400 -1.43935500
F -0.15698900 -1.12966700 1.09272800
F 0.15394100 -1.13992000 -1.06140900
F 1.27093300 0.93673100 1.50511100
F 1.21587600 1.59344400 -0.56831600
F 2.65284300 -0.38315800 -1.49049700
O 3.69283100 0.48826700 0.35047000

121
O 2.57604200 -1.48878500 0.49742000
H 3.42891200 -1.67099000 0.91262400

INT51
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1502.648099 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.039227 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.10129 a.u.
G = E(DMSO) + Gcorr = -1502.608872 a.u.
H = E(DMSO) + Hcorr = -1502.546809 a.u.

C 3.92154100 -0.07225400 -0.44997100


C 2.69189400 -0.16657100 0.47967800
C 1.34517400 -0.01817200 -0.27069400
C 0.17883500 0.35861300 0.67779400
C -1.22400500 0.05699600 0.09878000
F 3.75032200 -0.84431400 -1.51508400
F 4.11439400 1.17642600 -0.84325300
F 4.99418200 -0.48155500 0.21117800
F 2.80468400 0.79566000 1.40448400
F 2.72222300 -1.35934900 1.08181700
F 1.47165300 0.94139200 -1.19917100
F 1.08541800 -1.17686100 -0.88850600
F 0.27392100 1.66917900 0.93402600
F 0.32153300 -0.31772000 1.82990100
F -1.23188400 0.47755700 -1.18551400
F -1.36539800 -1.29053100 0.05899400
O -2.12623700 0.64603700 0.88785700
C -3.51351400 0.87554900 0.52566800
F -3.47210400 1.76617800 -0.57925400
C -4.11926300 -0.36723000 -0.06245900
F -4.04466000 -1.39835200 0.79326400
F -5.42719500 -0.14906200 -0.31089400
F -3.62754400 -0.82752600 -1.24705700

INT52
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1853.044898 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.047232 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.11804 a.u.
G = E(DMSO) + Gcorr =corr = -1852.997666 a.u.
H = E(DMSO) + Hcorr = -1852.926858 a.u.

C -2.94947900 -0.83186100 -0.50895000


C -1.79047700 0.00799900 -0.23720500
C -0.82230800 -0.10847600 0.72505300

122
C 0.35932300 0.89796200 0.64962200
C 1.46716500 0.52158800 -0.35002800
F -1.66427500 1.02111400 -1.17423700
F 0.00777000 2.17295100 0.33295800
F 0.96670700 0.97848000 1.85752200
F 2.50533300 1.37105300 -0.19589800
F 1.01442200 0.65100400 -1.60738600
H -3.30167100 -0.71166200 -1.54613900
O -3.26409700 -1.82909600 0.14974900
O -0.70171500 -0.95439100 1.65018100
C 2.03829900 -0.90181600 -0.22358300
F 2.46299600 -1.14456400 1.00779900
F 1.13978600 -1.81069200 -0.56732700
F 3.07759100 -1.01571500 -1.05205100
O -4.44585200 0.66875800 -0.14247100
H -4.81311800 0.10443800 0.54460400

INT53
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1526.687926 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.027651 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.088876 a.u.
G = E(DMSO) + Gcorr = -1526.660275 a.u.
H = E(DMSO) + Hcorr = -1526.59905 a.u.

C 3.56550300 0.08156600 -0.06897200


C 2.17429400 0.54491800 0.34152400
C 0.94646600 -0.33857400 0.00044300
C -0.40734500 0.41502100 0.05472000
C -1.62280900 -0.53525000 0.18643200
F 3.53535500 -1.30917900 0.22082900
F 3.52585900 0.09111800 -1.48204400
F 2.15199400 0.69005200 1.69311000
F 1.94276600 1.76744200 -0.20477200
F 0.87842900 -1.36174400 0.87403900
F 1.06922300 -0.84837800 -1.23548900
F -0.42293000 1.24713200 1.10579600
F -0.55250900 1.13766200 -1.06700400
F -1.72959300 -0.93413300 1.45838600
F -1.44995100 -1.60860100 -0.59626700
C -2.96155500 0.12419500 -0.21193500
F -3.96057000 -0.64743200 0.19208200
F -3.07633700 1.31352400 0.36507800
F -3.04143800 0.26795200 -1.52521800

123
TS1
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1953.064359 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.043547 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.117816 a.u.
G = E(DMSO) + Gcorr= -1953.020812 a.u.
H = E(DMSO) + Hcorr= -1952.946543 a.u.

C 5.26639900 -1.02744200 -0.44095600


O 5.24462100 -1.69568800 0.51083500
O 5.47305900 -0.55548200 -1.48326400
C 3.49279300 0.71512700 0.22183100
C 2.21531900 -0.11407300 0.23781200
C 0.86447100 0.57927700 -0.07360200
C -0.37831900 -0.21760500 0.39840000
C -1.68647200 0.22667800 -0.30408500
C -2.95322900 -0.20579400 0.47556500
F 3.35660700 1.58800400 1.32213500
F 3.31170500 1.58012400 -0.87998900
F 2.08789900 -0.70222100 1.45469700
F 2.33866300 -1.10585800 -0.68603500
F 0.81918400 1.78220100 0.52123700
F 0.75319000 0.75985000 -1.40370200
F -0.53213200 -0.04607800 1.72069800
F -0.19852500 -1.52194000 0.14852100
F -1.70290100 1.56112000 -0.41781800
F -1.72831000 -0.31176400 -1.53029000
F -3.14819700 0.64246100 1.48955400
F -2.78593400 -1.44186100 0.96239200
C -4.23005200 -0.20709100 -0.39301100
F -5.28830000 -0.31602000 0.39604200
F -4.31495300 0.92642900 -1.07727600
F -4.22209700 -1.22612600 -1.23708800

TS2
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1764.447022 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.035404 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.102308 a.u.
G = E(DMSO) + Gcorr= -1764.411618 a.u.
H = E(DMSO) + Hcorr= -1764.344714 a.u.

C -0.82274300 -0.11163400 -0.09904300


C 0.20325900 0.97896100 0.28582200
C -2.27461700 0.43749000 -0.14228400

124
C 1.69236100 0.74541200 -0.11555000
F 0.10397200 1.22314900 1.59278700
F -0.16788100 2.10641300 -0.36532800
F -0.53776700 -0.58812700 -1.31830600
F -0.78239700 -1.10891800 0.79064400
C -3.33731400 -0.68073500 -0.04264500
F -2.46707000 1.08065600 -1.29783900
F -2.47917500 1.28649000 0.87256100
C 2.36530000 -0.57268300 0.22257600
F 1.74282900 0.91116900 -1.45961000
F 2.35679200 1.77581600 0.44318900
F -4.51684600 -0.19033300 -0.39407000
F -3.02580300 -1.67998200 -0.85816000
F -3.42051600 -1.13914500 1.19597300
C 3.72300800 -0.64996500 0.05187500
F 1.63311100 -1.64256100 -0.19744300
F 1.86944200 -0.67662000 1.79144300
F 4.25417600 -1.83329100 -0.36778200
F 4.40429500 0.37738400 -0.53522500

TS3
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1740.477606 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.047194 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.115023 a.u.
G = E(DMSO) + Gcorr= -1740.430412 a.u.
H = E(DMSO) + Hcorr= -1740.362583 a.u.

C 2.95074000 1.04895900 0.04882200


C 2.40012100 -0.08645300 -0.49282000
C 1.68908300 -1.16609300 0.18537100
C 0.17858400 -1.32834400 -0.13748800
F 2.15632900 -0.07631700 -1.84936300
F 0.03468300 -1.71038700 -1.41554300
F -0.33170700 -2.30059800 0.64817800
F 1.84046500 2.35805900 0.36846600
C -0.66310000 -0.05466200 0.08586500
F -0.43511700 0.80034700 -0.92069400
F -0.30968800 0.52018600 1.24150900
C -2.18500300 -0.34239600 0.15370500
F -2.52449100 -1.26042500 -0.76085600
F -2.48651500 -0.80931100 1.37007000
C -3.04822400 0.91411800 -0.09645000
F -3.03801500 1.24126200 -1.37889600
F -4.29741500 0.66144600 0.26732400
F -2.58990200 1.93395300 0.61766200

125
F 1.79836700 -1.08890100 1.52698300
F 3.35215100 0.95382800 1.33264500
O 3.77924500 1.76012300 -0.73070800
H 3.57955800 2.69379000 -0.56408500
F 2.19233100 -2.41042700 -0.16662800

TS4
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1640.040513 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.033828 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.099765 a.u.
G = E(DMSO) + Gcorr = -1640.006685 a.u.
H = E(DMSO) + Hcorr = -1639.940748 a.u.

C 3.64600700 -0.98767500 -0.32728100


C 2.43813000 -0.46540400 0.27784500
C 1.74322400 0.57128200 -0.21546300
C 0.36278000 0.95668300 0.28505400
F 2.06730800 -1.00740800 1.45156200
F 0.31331600 1.01500100 1.61903500
F -0.01761800 2.13333800 -0.23435600
F 4.13970200 -2.00954700 0.40452000
C -0.68408900 -0.08625100 -0.18618200
F -0.51700400 -1.21656500 0.51590300
F -0.46603800 -0.35292300 -1.48351800
C -2.15070700 0.38731200 -0.03979900
F -2.31006200 1.04701400 1.11412400
F -2.44564400 1.20711200 -1.05411800
C -3.16577300 -0.77781000 -0.06478500
F -3.12910200 -1.45550200 1.07137000
F -4.38542500 -0.28732100 -0.22847300
F -2.89206400 -1.59846600 -1.07107100
F 1.99936000 1.02716100 -1.42132800
O 4.19361500 -0.64306600 -1.31978800
F 2.45589800 2.33763100 0.66990100

TS5
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1591.504072 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.041853 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.10965 a.u.
G = E(DMSO) + Gcorr = -1591.462219 a.u.
H = E(DMSO) + Hcorr = -1591.394422 a.u.

C -3.55065200 -1.10358500 0.30517800


C -2.48993100 -0.38360700 -0.22727100

126
C -1.77385500 0.63902700 0.45404900
C -0.38817600 1.01800200 -0.13633400
F -2.16891200 -0.62442700 -1.54439400
F -0.31388900 1.17719500 -1.46901600
F 0.08197200 2.14154100 0.44759000
O -4.08911600 -1.12153900 1.38551100
O -1.97033700 0.99501200 1.61300700
O -2.52225300 2.52336000 -0.77685800
H -2.96972700 2.70695200 0.05448800
F -4.05851600 -2.00612900 -0.65370200
C 0.64681000 -0.08927500 0.20360200
F 0.46704700 -1.13365900 -0.62919100
F 0.47111000 -0.53151000 1.46036700
C 2.12270700 0.36782600 0.09398500
F 2.29796400 1.16771800 -0.96662800
F 2.45577900 1.04277500 1.20273000
C 3.11929400 -0.80271800 -0.04785500
F 3.05178300 -1.33692700 -1.25823800
F 4.35268300 -0.35107300 0.14357300
F 2.86366800 -1.74057500 0.85581000

TS6
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1592.015604 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.055916 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.123535 a.u.
G = E(DMSO) + Gcorr = -1591.959688 a.u.
H = E(DMSO) + Hcorr = -1591.892069 a.u.

C 3.40535100 1.23498700 -0.23538400


C 3.40730700 -0.05592400 -0.72468400
C 1.50356000 -1.24088100 0.24159400
C 0.51788900 -0.11697800 -0.11523600
F 0.63707000 0.30533400 -1.38221800
O 2.94376000 2.26581800 -0.68160000
O 1.86683700 -1.42423000 1.37334200
O 1.51394400 -2.17159800 -0.72726600
H 2.02788600 -2.92717500 -0.39756300
F 3.97520400 1.30734800 1.04542900
F 0.70580000 0.91668600 0.71883100
F 4.22524400 -0.98939600 -0.11283100
H 3.24336500 -0.25501900 -1.77184000
C -0.94784800 -0.59266700 0.06105800
C -1.95711300 0.57327500 0.19856400
C -3.41449900 0.15476200 -0.09286100
F -1.29513800 -1.34155000 -0.99785800

127
F -1.04515000 -1.35072300 1.16342100
F -1.63937000 1.55900800 -0.65053100
F -1.91169600 1.04324500 1.45001200
F -3.59597000 -0.04130400 -1.38956900
F -3.70808400 -0.96106000 0.56284100
F -4.23185100 1.11717300 0.30972600

TS7
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1840.883225 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.061362 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.130947 a.u.
G = E(DMSO) + Gcorr = -1840.821863 a.u.
H = E(DMSO) + Hcorr = -1840.752278 a.u.

C 1.28199700 0.48196900 0.01129600


C 2.58136500 -0.32209600 0.31363700
C 3.92466500 0.38297900 0.07219300
F 1.37138600 1.08705300 -1.18172000
F 1.03810300 1.38793000 0.97003800
F 3.37062800 1.91229700 0.13843500
F 2.44304900 -1.41330100 -0.47543700
F 2.50322500 -0.68946200 1.60445100
H 4.62225200 0.56517200 0.86682400
O 4.84357300 -1.33028200 0.33403700
H 4.68477200 -1.93440600 -0.39793200
F 4.29097300 0.43970500 -1.21383900
C 0.02369200 -0.43697200 -0.06251000
C -1.29589700 0.35697000 0.12927300
C -2.52948800 -0.41018900 -0.41034900
C -3.86593700 0.10977300 0.16414000
F -3.90870900 1.43348400 0.08591500
F -4.00904900 -0.25787900 1.42701700
F -2.57711600 -0.27632900 -1.73915200
F -2.42687000 -1.70887200 -0.10140500
F -1.21823900 1.52480700 -0.52191500
F -1.47797400 0.59831700 1.43440400
F -0.02872300 -1.03289600 -1.26365000
F 0.07464800 -1.38167200 0.88545800
F -4.86510900 -0.39686000 -0.54273900

TS8
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1740.404938 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.045724 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.114398 a.u.

128
G = E(DMSO) + Gcorr = -1740.359214 a.u.
H = E(DMSO) + Hcorr = -1740.29054 a.u.

C 3.49146300 0.57346600 0.02872900


C 2.67941700 -0.44709100 -0.24436400
C 1.25319800 -0.45129200 0.24428400
C 0.39226200 0.66576700 -0.39373900
F 2.85291500 -1.07150100 -1.42627100
F 0.93431000 1.86369500 -0.11975300
F 0.38861400 0.49526800 -1.72558700
F 4.72536500 0.66661400 -0.47134800
C -1.08179600 0.78630800 0.08049800
F -1.63455600 1.75944000 -0.66771500
F -1.08722200 1.18572100 1.35820900
C -1.98020400 -0.46608800 -0.03437700
F -1.75526100 -1.09942500 -1.19092900
F -1.71326000 -1.28585200 0.98765100
C -3.48995200 -0.12948600 0.02256100
F -3.89108000 0.42406500 -1.11058000
F -4.16995900 -1.25121600 0.21103800
F -3.74210400 0.69994800 1.02622000
F 1.17270100 -0.28721700 1.57521100
F 3.34209600 1.37941600 1.08198900
F 0.64857200 -1.60304400 -0.10419200
O 3.12033800 -2.14494300 0.82837000
H 2.81079600 -2.91318000 0.33600500

TS9
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1591.501492 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.04165 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.109539 a.u.
G = E(DMSO) + Gcorr = -1591.459842 a.u.
H = E(DMSO) + Hcorr = -1591.391953 a.u.

C 3.70177600 -0.49399300 -0.55162500


C 2.39737500 -0.22024900 -0.00750200
C 1.60707800 0.85679900 -0.33651100
C 0.22807100 0.93509200 0.38576300
F 1.96079600 -1.11274800 0.93918500
F 0.28613200 0.65151100 1.70927400
F -0.25460900 2.19624000 0.28705200
O 4.31137700 0.11591000 -1.38224200
O 1.81649800 1.77142500 -1.15994700
O 4.80120100 0.00853400 1.41509400

129
H 4.95931700 0.90302900 1.09772300
F 4.04061300 -1.82603000 -0.34987800
C -0.84250000 0.01998100 -0.24436600
F -0.63109400 -1.25215200 0.13285000
F -0.74385200 0.08295500 -1.58316400
C -2.29749300 0.39948100 0.12594600
F -2.37495600 0.73792500 1.42035700
F -2.68405200 1.44289100 -0.61888600
C -3.31059900 -0.74052200 -0.11491800
F -3.18101300 -1.68954600 0.79956700
F -4.54161800 -0.25088700 -0.04225800
F -3.13125600 -1.27010700 -1.31873200

TS10
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1591.488496 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.043511 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.11051 a.u.
G = E(DMSO) + Gcorr= -1591.444985 a.u.
H = E(DMSO) + Hcorr= -1591.377986 a.u.

C -3.71864800 -1.15747200 0.25941900


C -2.46871100 -0.50653000 -0.26961400
C -1.80838600 0.57653400 0.17981500
C -0.41834100 0.93219300 -0.30653100
F -2.03089000 -0.98910600 -1.48034100
F -0.31819300 1.00167100 -1.64184600
F -0.00149200 2.10760000 0.22107800
O -4.20161500 -2.05446000 -0.46682400
C 0.63823500 -0.10050000 0.17087600
F 0.51296500 -1.23767700 -0.53258800
F 0.42672100 -0.38239000 1.46848600
C 2.10379700 0.38759000 0.04487300
F 2.27993600 1.06045700 -1.10042200
F 2.38985200 1.19933300 1.07082100
C 3.13312100 -0.76411200 0.06884400
F 3.11540300 -1.43858300 -1.07048300
F 4.34782300 -0.25871900 0.23975200
F 2.87044700 -1.59441800 1.07043600
F -1.98164900 0.99929700 1.44155200
O -2.53581400 2.36858000 -0.64389300
H -2.23149100 3.09603400 -0.09010500
O -4.14172300 -0.75280100 1.36396700

TS11
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1567.522204 a.u.

130
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.059366 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.124625 a.u.
G = E(DMSO) + Gcorr= -1567.462838 a.u.
H = E(DMSO) + Hcorr= -1567.397579 a.u.

C 4.22569300 0.32017900 -0.22307700


C 2.90580200 -0.44245700 -0.34021500
C 1.67955800 0.31765300 -0.08100400
C 0.38758800 -0.48845800 0.08236800
F 0.36367100 -1.17490000 1.24826700
O 5.17483100 -0.10445400 -0.89485300
O 1.90833200 0.73853600 -1.34635500
O 1.68865500 1.25978700 0.93843100
H 2.65994100 1.49712800 0.97975300
F 0.28122500 -1.40425800 -0.91264700
F 3.32917800 -1.59581000 1.07887700
H 2.84500800 -1.29116400 -0.99821000
C -0.90094100 0.36892200 0.05862400
C -2.16879900 -0.44413600 -0.30333200
C -3.48632000 0.25730900 0.09199200
F -1.10256300 0.91414300 1.27199100
F -0.79623000 1.36100600 -0.83600200
F -2.15158000 -1.63333900 0.31629900
F -2.20398400 -0.64284400 -1.62726100
F -3.66505300 0.22533000 1.40392500
F -3.47949100 1.52018900 -0.31556200
F -4.50242200 -0.37154200 -0.48547900
O 4.22628100 1.31590600 0.55585800

TS12
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1467.546213 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.058277 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.121759 a.u.
G = E(DMSO) + Gcorr= -1467.487936 a.u.
H = E(DMSO) + Hcorr= -1467.424454 a.u.

C 4.03422600 0.67851000 0.29366600


C 2.88094900 -0.27492900 0.57177900
C 1.84012600 -0.19532900 -0.48619500
C 0.50093600 -0.86060800 -0.13570600
F 0.44689300 -1.33115300 1.12824200
O 5.13709500 0.36494500 -0.05062600
O 3.03266900 -1.58118300 0.22710800
O 1.96514800 0.23512600 -1.62027700

131
H 2.80627100 2.07789300 0.73591000
F 0.22386300 -1.87849300 -0.97642400
H 2.53219000 -0.06946200 1.60004300
C -0.64727000 0.16789200 -0.26470900
C -1.95276200 -0.26712400 0.44464100
C -3.20085300 0.49825400 -0.04611500
F -0.25078800 1.32866400 0.29005800
F -0.92217300 0.38661100 -1.55887500
F -1.83673000 -0.04459900 1.75921700
F -2.17177700 -1.57326200 0.24079800
F -2.95472900 1.80218100 -0.07350900
F -3.55640700 0.09745400 -1.25667000
F -4.20671000 0.26903500 0.78686500
O 3.73839400 1.98156300 0.48661500

TS13
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1467.56727 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.056975 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.121283 a.u.
G = E(DMSO) + Gcorr= -1467.510295 a.u.
H = E(DMSO) + Hcorr= -1467.445987 a.u.

C 2.52598700 1.67582300 0.05899500


C 3.12114900 -0.37397700 0.47441900
C 2.04689400 -0.88614100 -0.23441700
C 0.69269800 -0.96990500 0.45158700
F 0.69959800 -0.44745100 1.69924300
O 3.00646300 1.86922200 -1.00447500
O 4.35334000 -0.49059700 -0.11907100
O 2.10209300 -1.27810900 -1.42520300
F 0.32736300 -2.27406500 0.57680600
H 3.13968200 -0.25382000 1.54633500
C -0.43784000 -0.27701200 -0.34831600
C -1.68481400 0.04886600 0.50795100
C -2.95125000 0.32760000 -0.33140900
F 0.01131800 0.87722600 -0.86432600
F -0.82660000 -1.07043700 -1.36030400
F -1.44287800 1.13764600 1.24644500
F -1.96190100 -0.98038800 1.32234000
F -2.67474500 1.17480100 -1.31474300
F -3.43203400 -0.79357900 -0.84673300
F -3.88064200 0.86586900 0.44722700
O 1.96818800 2.06240400 1.03234300
H 4.16740300 -0.72764600 -1.04155900

132
TS14
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1278.445993 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.032731 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.090135 a.u.
G = E(DMSO) + Gcorr= -1278.413262 a.u.
H = E(DMSO) + Hcorr= -1278.355858 a.u.

C 3.71878500 -0.08205700 -0.51281900


C 2.57336400 0.60433100 -0.03788500
C 1.39548700 -0.14900800 0.22252500
F 1.35403600 -1.41953700 -0.23782400
F 1.11082700 -0.44193300 1.80348200
C 0.02453800 0.47915300 -0.05722200
F -0.11075800 0.58381600 -1.41329800
F -0.11700900 1.71216600 0.44698000
C -1.22904000 -0.30479300 0.44477500
F -1.06340200 -1.63428400 0.44207000
F -1.53204000 0.08001800 1.69450500
C -2.48963500 -0.02777200 -0.40605200
F -2.42149800 -0.63602300 -1.58246600
F -3.55887900 -0.49349200 0.23489900
F -2.65419200 1.27585400 -0.60002100
O 2.58236800 1.92136100 0.18431200
H 4.52233000 0.66020700 -0.73355600
O 3.97424700 -1.29868800 -0.71947500

TS15
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1178.498823 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.030046 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.0876 a.u.
G = E(DMSO) + Gcorr= -1178.468777 a.u.
H = E(DMSO) + Hcorr= -1178.411223 a.u.

C -3.94585700 -0.07634500 -0.26423500


C -2.58783700 0.63111900 -0.31667500
C -1.37580800 -0.15049200 -0.15712700
F -1.50369800 -1.49451100 -0.09745100
C -0.13500400 0.34221400 -0.02020300
F 0.24435800 0.64739600 2.03172400
F 0.11945100 1.61504300 -0.24334900
C 1.07302600 -0.57274300 -0.09889600
F 1.09602500 -1.50733200 0.85441900
F 1.02088400 -1.23828700 -1.28700900
C 2.44330000 0.14220900 -0.12647900

133
F 3.38862700 -0.79351100 -0.21469100
F 2.52405200 0.91306600 -1.20884500
F 2.68726500 0.87713300 0.93857400
O -2.61392500 1.83623200 -0.45712100
H -4.72306600 0.43765500 -0.85517300
O -4.17364100 -1.02428100 0.43168500

TS16
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1153.949929 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.028563 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.085895 a.u.
G = E(DMSO) + Gcorr= -1153.921366 a.u.
H = E(DMSO) + Hcorr= -1153.869987 a.u.

C -3.66984200 0.41110800 -0.07539200


C -2.65505100 -0.73185400 -0.15294500
C -1.01222400 0.32267500 0.00742600
F -0.79581500 1.08969000 -1.11368800
C 0.10262100 0.13949200 0.71679700
F 0.07331900 -0.62380700 1.85300500
C 1.50282700 0.56857700 0.42739700
F 1.56033400 1.75987300 -0.21061200
F 2.22560200 0.69186000 1.57201800
C 2.28685700 -0.41674600 -0.45168900
F 1.71418700 -0.53142300 -1.64538800
F 3.54300600 -0.00813000 -0.63171700
F 2.31977100 -1.61788500 0.12117300
O -2.75490800 -1.48928500 0.88369200
H -4.69187000 0.04478600 -0.33162800
O -3.52417900 1.57457600 0.22808600
O -2.52127500 -1.16602900 -1.36191000

TS17
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1591.9986 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.058518 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.12484 a.u.
G = E(DMSO) + Gcorr= -1591.940082 a.u.
H = E(DMSO) + Hcorr= -1591.87376 a.u.

C -4.15546600 -0.13610900 -0.38700500


C -2.82725300 0.49947000 -0.27002000
C -1.63881000 -0.31453200 -0.01755300
C -0.34544500 0.49493900 0.15124500
F -0.33687800 1.13878900 1.33604600
O -5.08051500 0.23364800 -1.01706100

134
O -1.93895100 -0.64097900 -1.29695700
O -1.56999400 -1.30901700 0.94162700
H -2.36137600 -1.85751100 0.86913800
F -4.25627300 -1.27861400 0.33667100
F -0.26848100 1.43005600 -0.81944800
F -3.49297300 1.32660600 1.24805500
H -2.70492800 1.43508400 -0.78954500
C 0.94052000 -0.36377700 0.08074200
C 2.19487000 0.45964200 -0.30160000
C 3.52313300 -0.25016100 0.04191000
F 1.16930400 -0.93130600 1.27579100
F 0.79261900 -1.33245400 -0.83284400
F 2.18434000 1.63216300 0.34818600
F 2.18797100 0.68832500 -1.61967200
F 3.74286700 -0.23173300 1.34728700
F 3.49385400 -1.50876700 -0.37761100
F 4.52061500 0.37986800 -0.56321300

TS18
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1567.471645 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.056442 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.12331 a.u.
G = E(DMSO) + Gcorr= -1567.415203 a.u.
H = E(DMSO) + Hcorr= -1567.348335 a.u.

C -3.86474600 -1.04640000 -0.09984100


C -3.61878500 0.10148600 -0.93497800
C -1.51987200 0.91241500 0.43175000
C -0.45982900 -0.07746700 -0.07828200
F -0.56361100 -0.34721600 -1.39058500
O -3.32280900 -2.14411400 -0.47468700
O -1.92788900 0.85627700 1.55963200
O -1.55238200 1.99749600 -0.36133200
H -2.40683400 2.43323700 -0.19146700
F -0.53482400 -1.22240300 0.61475100
F -4.08418900 1.37738800 -0.48216900
H -2.80794400 0.21677900 -1.63421700
C 0.96653500 0.49356100 0.14262200
C 2.07257600 -0.58981300 0.12417200
C 3.48282400 -0.01683500 -0.13633400
F 1.23582200 1.39747000 -0.81355300
F 1.02198000 1.11112300 1.33334800
F 1.81936400 -1.49213600 -0.83284400
F 2.09859800 -1.20800800 1.31035700
F 3.62034900 0.33352000 -1.40569100

135
F 3.69570400 1.04328600 0.63344900
F 4.38889800 -0.94175500 0.14814600
O -4.62445000 -0.93129900 0.91315600

TS19
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1591.486114 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.043743 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.110753 a.u.
G = E(DMSO) + Gcorr= -1591.442371 a.u.
H = E(DMSO) + Hcorr= -1591.375361 a.u.

C 3.83242000 -0.88441800 -0.39115700


C 2.61306900 -0.23798000 0.27359900
C 1.63649900 0.40306200 -0.38716100
C 0.32321900 0.83935600 0.14865900
F 2.27698200 -0.73066400 1.47312000
F 0.32366600 0.95088200 1.49077800
F -0.02558000 2.05509600 -0.36483700
O 4.11209000 -2.01162300 0.05723700
C -0.83174600 -0.12212600 -0.22372500
F -0.70200900 -1.24000500 0.51220300
F -0.72138200 -0.45641000 -1.52008000
C -2.25311500 0.45157600 -0.01427000
F -2.30799400 1.16543500 1.11814700
F -2.55452000 1.25162600 -1.04498300
C -3.34645700 -0.63528600 0.06684400
F -3.28196600 -1.28315800 1.21972700
F -4.53907200 -0.06363700 -0.03054600
F -3.20383400 -1.50181300 -0.92837700
F 1.77905100 0.78294300 -1.68350700
O 4.06272700 1.19444400 1.33250700
H 4.53097900 1.33053800 0.50362400
O 4.35463500 -0.25635800 -1.32914100

TS20
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1591.539641 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.046228 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.111416 a.u.
G = E(DMSO) + Gcorr= -1591.493413 a.u.
H = E(DMSO) + Hcorr= -1591.428225 a.u.

C 4.12862000 -0.67177500 0.07167400


C 2.92697400 0.33786600 0.22099400
C 1.60156400 -0.28342800 -0.07055200

136
C 0.40095800 0.40888100 0.05321700
F 2.94127100 0.72900000 1.58440500
F 0.32827800 1.16720000 1.17052200
F 0.04981100 1.54012500 -1.04542500
O 4.04817600 -1.75148400 0.66527900
C -0.90614000 -0.38299500 -0.08364100
F -1.06050300 -1.13580500 1.03709400
F -0.86288700 -1.22734500 -1.12820200
C -2.21714800 0.43702500 -0.23885800
F -2.18987200 1.56895200 0.47674400
F -2.42197500 0.73745200 -1.52790600
C -3.46849300 -0.34456300 0.22740100
F -3.53112900 -0.41140200 1.54953600
F -4.55754900 0.28217000 -0.20645100
F -3.46559600 -1.57602500 -0.27018800
F 1.70100100 -1.03489000 -1.25104900
O 3.21211800 1.46148400 -0.52152000
H 4.13989800 1.29683800 -0.79720200
O 5.07526200 -0.21722200 -0.61700200

TS21
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1591.539641 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.046228 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.111416 a.u.
G = E(DMSO) + Gcorr= -1591.493413 a.u.
H = E(DMSO) + Hcorr= -1591.428225 a.u.

C 4.07605900 0.59013100 0.36860000


C 3.64548700 -0.74330400 -0.31489600
C 1.37119400 -0.33971500 0.05851400
C 0.37087400 0.52730300 -0.09467200
F 3.56674300 -0.61815300 -1.69831300
F 0.54121600 1.58402800 -0.95427800
O 4.09141300 0.54546500 1.60861300
C -1.01373900 0.54244400 0.46510700
F -1.47554700 1.81519500 0.58254900
F -1.06453300 -0.01863200 1.69266000
C -2.02277700 -0.21832900 -0.41923300
F -1.95696800 0.27494700 -1.66795300
F -1.67260200 -1.51390500 -0.44598300
C -3.50101300 -0.16020400 0.00778500
F -3.96782900 1.07881600 -0.05586200
F -4.21805000 -0.91958900 -0.81626900
F -3.65630700 -0.61895500 1.24221700
F 1.03374300 -1.38360500 0.89722500

137
O 3.79662000 -1.84797100 0.11384600
O 4.39630200 1.51359800 -0.39885600

TS22
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1403.378123 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.042692 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.105958 a.u.
G = E(DMSO) + Gcorr = -1403.335431 a.u.
H = E(DMSO) + Hcorr = -1403.272165 a.u.

C 3.13720700 -0.50396000 -0.67834000


C 2.17523700 0.39481000 -0.49616700
C 0.98949100 0.30998700 0.39261000
C -0.32811800 0.05375300 -0.37590700
C -1.61301700 0.29979600 0.44898800
F 2.29175800 1.60482400 -1.09853700
F 0.81766000 1.47700100 1.06894700
F 1.13065000 -0.67868100 1.29362200
F -0.36796800 0.86385500 -1.44543200
F -0.32208100 -1.21881000 -0.80580300
F -1.84569500 1.61624800 0.50776500
F -1.45915000 -0.17048200 1.69358500
F 2.99862800 -1.74400600 -0.22231700
H 3.95752400 -0.34313000 -1.35621800
O 5.04261000 -0.26550200 0.69727400
H 5.06462000 0.68489500 0.85028300
C -2.86734500 -0.36896700 -0.15354900
F -3.94628300 0.10658900 0.45211000
F -2.82856800 -1.68095100 0.01806100
F -2.94936700 -0.10117200 -1.45067400

TS23
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1403.428673 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.047464 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.107915 a.u.
G = E(DMSO) + Gcorr = -1403.381209 a.u.
H = E(DMSO) + Hcorr = -1403.320758 a.u.

C 3.31962800 -0.11971700 -0.29628100


C 2.30369300 0.77647100 0.04043600
C 1.05235400 0.42805100 0.70457800
C -0.20399100 0.37431200 -0.21566600
C -1.38657300 -0.42690700 0.38130100
F 2.05688900 1.74325500 -0.94844600

138
F 0.68441900 1.34230000 1.68589200
F 1.13354300 -0.76739200 1.33810000
F -0.63627400 1.62395700 -0.47610200
F 0.10970000 -0.20763500 -1.38349200
F -1.53714000 -0.15534900 1.68522400
F -1.14319500 -1.73705200 0.23731700
F 2.89383200 -1.32401100 -1.40455900
H 4.06286200 0.31643100 -0.96084400
O 3.79950200 -0.90325400 0.71024000
H 4.32637200 -1.60021000 0.29863400
C -2.73973900 -0.13377400 -0.30214000
F -3.62695400 -1.04136600 0.08657400
F -2.61712300 -0.19517300 -1.62207500
F -3.19075200 1.06504200 0.03567000

TS24
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1302.977232 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.033502 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.091771 a.u.
G = E(DMSO) + Gcorr = -1302.94373 a.u.
H = E(DMSO) + Hcorr = -1302.885461 a.u.

C 3.82554900 -0.01249400 -0.40244400


C 2.51451900 0.50175700 -0.06904800
C 1.35412300 -0.18481100 -0.05147800
C -0.00198900 0.48932200 0.00402500
C -1.24718300 -0.37416300 0.38995600
F 2.51724800 1.79699600 0.34179500
F 0.96405700 -0.89317800 1.77842200
F 1.33141400 -1.37791500 -0.61942500
F 0.00922200 1.54711700 0.82358300
F -0.23967000 0.97246400 -1.25299200
F -1.55644800 -0.18937200 1.67678900
F -1.07236900 -1.67794500 0.15534800
H 4.61497300 0.75596500 -0.31531700
O 4.08443200 -1.14614600 -0.74937300
C -2.51546200 0.03708500 -0.39788900
F -2.71213600 1.34837600 -0.31685300
F -2.43906900 -0.31837000 -1.67210100
F -3.56533200 -0.57783800 0.13783100

TS25
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1278.926456 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.042154 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.103303 a.u.

139
G = E(DMSO) + Gcorr = -1278.884302 a.u.
H = E(DMSO) + Hcorr = -1278.823153 a.u.

C -4.21059700 0.08318200 0.25786800


C -2.02834100 0.01529200 0.08377900
C -0.94069500 0.78017700 0.10932400
C 0.41471800 0.57884400 -0.48496700
C 1.37992900 -0.15999500 0.46399900
F -1.85104900 -1.15368800 -0.62661400
F -0.97892600 1.94611800 0.83061600
F 0.35236900 -0.14222400 -1.62492300
F 0.99112200 1.77079500 -0.78662600
F 0.87657000 -1.37810500 0.71793300
F 1.45594900 0.52770600 1.61628600
H -4.19005300 0.88000200 1.00318600
O -4.57701800 0.23989200 -0.89967000
O -4.36364800 -1.12330100 0.88158900
H -4.48725000 -1.77602400 0.17666200
C 2.82279100 -0.36560400 -0.03391800
F 2.84119100 -1.06092900 -1.16253000
F 3.42996900 0.79621200 -0.23095700
F 3.50233700 -1.04234100 0.88773500

TS26
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1326.914735 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.020814 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.078772 a.u.
G = E(DMSO) + Gcorr = -1326.893921 a.u.
H = E(DMSO) + Hcorr = -1326.835963 a.u.

C 3.60592000 -0.12298600 -0.55430600


C 2.54871600 0.23672500 -0.05364100
C 1.28207700 -0.06174600 0.62605800
C -0.01009700 0.38254700 -0.12303400
C -1.21070200 -0.56166300 0.12994600
F 2.18789900 2.00901900 -0.08717400
F 1.20415900 0.44738600 1.87821700
F 1.20349000 -1.41822500 0.77099200
F -0.39685400 1.60428700 0.27100700
F 0.21502300 0.40137400 -1.44483600
F -1.29283200 -0.85387700 1.43685000
F -1.05154700 -1.69233700 -0.56806300
F 4.43662900 -1.08917600 -0.87211100
C -2.57102200 0.04702600 -0.28267400

140
F -3.48371100 -0.91617900 -0.30679400
F -2.95871900 0.97011100 0.58388200
F -2.49346500 0.59101500 -1.49020300

TS27
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1403.376233 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.045144 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.106635 a.u.
G = E(DMSO) + Gcorr = -1403.331089 a.u.
H = E(DMSO) + Hcorr = -1403.269598 a.u.

C 2.76935500 1.39111200 0.35338600


C 2.36289300 0.12813900 0.45499000
C 1.15858200 -0.42684700 -0.26239100
C -0.15018800 0.19009200 0.29856700
C -1.43575900 -0.56646600 -0.12078800
F 2.63820900 -0.52627500 1.59342300
F 1.02764200 -1.75246200 -0.07534900
F 1.17975500 -0.15354600 -1.57655800
F -0.10158200 0.17739000 1.64200500
F -0.24915200 1.46732200 -0.10604300
F -1.59459200 -1.63260000 0.67335100
F -1.34566500 -0.98354400 -1.39039600
F 2.38097300 2.14727600 -0.70739500
H 3.51611600 1.84590000 0.98642000
C -2.71123600 0.29488700 -0.00269400
F -3.77717000 -0.48681700 -0.10681400
F -2.74061400 0.90633200 1.17518500
F -2.75779000 1.20283700 -0.96517200
O 3.56663200 -1.31986300 -0.69224900
H 4.04882700 -0.64570300 -1.18097400

TS28
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1254.436548 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.042355 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.102135 a.u.
G = E(DMSO) + Gcorr = -1254.394193 a.u.
H = E(DMSO) + Hcorr = -1254.334413 a.u.

C 3.29765300 -1.15580600 0.18540900


C 2.15803000 -0.40054400 0.42682200
C 1.36933400 0.39248600 -0.46138800

141
C -0.07502900 0.73057000 0.00828000
C -0.97489200 -0.53040600 -0.07186400
F 1.78385400 -0.36085600 1.76819100
F -0.22532300 1.18930700 1.26605600
F -0.64128400 1.63257500 -0.82521900
F -0.69666000 -1.34430700 0.96264300
F -0.74923800 -1.20959600 -1.21068800
H 3.66685500 -1.62541500 1.12442500
O 3.91643700 -1.37675800 -0.87619000
O 1.55826400 0.48341300 -1.67588900
O 1.88757400 2.47288300 0.29470300
H 2.35113400 2.54184100 -0.54503700
C -2.49374400 -0.26222400 -0.03070500
F -2.82018900 0.53263100 0.98090900
F -2.91404700 0.29038100 -1.16156400
F -3.13759200 -1.41871000 0.12414800

TS29
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1254.442007 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.045413 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.10266 a.u.
G = E(DMSO) + Gcorr = -1254.396594 a.u.
H = E(DMSO) + Hcorr = -1254.339347 a.u.

C -3.36582900 -0.56023400 -0.63110900


C -2.36581700 0.44288700 -0.40274000
C -1.06906600 -0.42029400 0.65363900
C 0.05800300 0.72949300 0.65974300
C 1.24331000 0.53654600 -0.30923000
F -1.79425000 0.83455900 -1.63179700
F -0.38199800 2.00577900 0.41856900
F 0.64914500 0.80637000 1.89194900
F 0.86058600 0.62890200 -1.58962600
F 2.09311300 1.58532400 -0.09908500
H -3.19146600 -1.16541100 -1.54431500
O -4.29398600 -0.84757400 0.11460200
O -0.59359200 -1.41112300 -0.04140000
O -1.61589000 -0.52279600 1.81127900
H -2.67457700 1.32806100 0.14495000
C 2.10890700 -0.75514300 -0.16133200
F 1.86205700 -1.64151400 -1.11038800
F 3.40657700 -0.41933000 -0.30018100
F 1.99774200 -1.32789500 1.02830200

TS30

142
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1254.434562 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.042018 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.10211 a.u.
G = E(DMSO) + Gcorr = -1254.392544 a.u.
H = E(DMSO) + Hcorr = -1254.332452 a.u.

C -2.94947900 -0.83186100 -0.50895000


C -1.79047700 0.00799900 -0.23720500
C -0.82230800 -0.10847600 0.72505300
C 0.35932300 0.89796200 0.64962200
C 1.46716500 0.52158800 -0.35002800
F -1.66427500 1.02111400 -1.17423700
F 0.00777000 2.17295100 0.33295800
F 0.96670700 0.97848000 1.85752200
F 2.50533300 1.37105300 -0.19589800
F 1.01442200 0.65100400 -1.60738600
H -3.30167100 -0.71166200 -1.54613900
O -3.26409700 -1.82909600 0.14974900
O -0.70171500 -0.95439100 1.65018100
C 2.03829900 -0.90181600 -0.22358300
F 2.46299600 -1.14456400 1.00779900
F 1.13978600 -1.81069200 -0.56732700
F 3.07759100 -1.01571500 -1.05205100
O -4.44585200 0.66875800 -0.14247100
H -4.81311800 0.10443800 0.54460400

TS31
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -2028.318027 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.046131 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.122854 a.u.
G = E(DMSO) + Gcorr = -2028.271896 a.u.
H = E(DMSO) + Hcorr = -2028.195173 a.u.

C -4.39319500 0.23205400 -0.39490300


C -3.17431800 -0.43710900 0.27884800
C -1.83542900 0.26559700 -0.05632900
C -0.60919000 -0.64468800 0.20270100
C 0.72273400 0.12654300 0.34367300
F -4.33387600 1.54845100 -0.24010200
F -4.42615600 -0.05339400 -1.68664400
F -5.50334300 -0.21834800 0.16967900
F -3.13005300 -1.71327500 -0.12518400
F -3.36296400 -0.40251300 1.60123700

143
F -1.84727100 0.61869000 -1.34977900
F -1.74932500 1.37453800 0.68855500
F -0.51345400 -1.50260900 -0.82065500
F -0.82055500 -1.34156400 1.33171600
F 0.75790600 1.06039400 -0.63896500
F 0.69439000 0.80684000 1.50868000
O 1.72250000 -0.74704500 0.28102700
C 3.03126900 -0.13706400 0.43209100
F 3.42246700 -0.51526100 1.73993300
C 3.36540000 2.32149000 -0.15069900
O 3.08131200 2.77256400 0.88345000
O 3.70126300 2.16403800 -1.25396000
C 3.88900500 -1.00274200 -0.44275400
F 5.18251900 -0.65295000 -0.32815500
F 3.85534200 -2.33693700 -0.17921500
F 3.55012300 -0.87883500 -1.73331400

TS32
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1839.701735 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.037908 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.107841 a.u.
G = E(DMSO) + Gcorr = -1839.663827 a.u.
H = E(DMSO) + Hcorr = -1839.593894 a.u.

C -4.03551600 -0.41415100 -0.11800400


C -2.78242600 0.33257300 0.39004400
C -1.47811300 -0.11668600 -0.31179900
C -0.21129300 0.27973800 0.48792200
C 1.07061700 0.29725400 -0.37189100
F -4.05642300 -0.41660100 -1.44418900
F -4.04444300 -1.66209600 0.32124700
F -5.11772700 0.20375500 0.33029300
F -2.67984700 0.11680800 1.70754900
F -2.96326300 1.63798900 0.17017600
F -1.49517300 -1.44881800 -0.45181400
F -1.44116600 0.44253000 -1.52725200
F -0.05649100 -0.59963300 1.48302300
F -0.38455600 1.50268900 1.01046700
F 1.08638200 -0.80641900 -1.14123000
F 1.02984300 1.35132800 -1.20086300
O 2.13321100 0.35160700 0.46174100
C 3.34553400 0.51262200 -0.18516000
F 3.77587300 1.79883100 -0.14941400
C 4.26494700 -0.47583700 -0.12867300

144
F 5.42768500 -0.29281800 -0.72165500
F 5.04939500 -0.69049600 1.55127700
F 3.85789100 -1.72659600 -0.18967900

TS33
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1815.633022 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.04642 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.11902 a.u.
G = E(DMSO) + Gcorr = -1815.586602 a.u.
H = E(DMSO) + Hcorr = -1815.514002 a.u.

C -4.03659100 -0.42531600 -0.11705200


C -2.79122200 0.33980100 0.38283300
C -1.47975200 -0.12304100 -0.29666000
C -0.22137600 0.29610300 0.50468300
C 1.06696800 0.28859900 -0.34518600
F -4.04206900 -0.46575600 -1.44278600
F -4.04577300 -1.66012300 0.35775700
F -5.12568700 0.20126900 0.30087900
F -2.69804100 0.15854300 1.70610700
F -2.97426900 1.63823700 0.12776900
F -1.49090300 -1.45785800 -0.40454700
F -1.43081900 0.40725000 -1.52445200
F -0.07196900 -0.55502300 1.52383400
F -0.39679300 1.53297900 0.98971800
F 1.10264000 -0.83901900 -1.07249100
F 1.04208100 1.31378300 -1.20624400
O 2.12482300 0.37364900 0.50369800
C 3.33640800 0.52545200 -0.11352000
F 3.71957200 1.79892700 -0.25531400
C 4.17856500 -0.47239300 -0.30263000
F 5.32636300 -0.30848700 -0.91097000
F 3.81089700 -1.72566500 -0.21967800
O 5.26455600 -0.59648300 1.75651000
H 6.03990500 -1.14406400 1.91729300

TS34
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1815.694019 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.049543 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.120059 a.u.
G = E(DMSO) + Gcorr = -1815.644476 a.u.
H = E(DMSO) + Hcorr = -1815.57396 a.u.

145
C -4.04779700 -0.36684300 -0.15750000
C -2.77170800 0.20803500 0.49579300
C -1.50007800 -0.00443400 -0.36236900
C -0.20089100 0.12190700 0.47151700
C 1.05981100 0.38251700 -0.38046800
F -4.11162700 0.00072900 -1.43049800
F -4.05476400 -1.68799800 -0.08421900
F -5.10936400 0.10199700 0.48057700
F -2.61679100 -0.38338500 1.68686100
F -2.95530000 1.51897000 0.67726800
F -1.54357800 -1.22744300 -0.90871400
F -1.50289000 0.90441600 -1.34489700
F -0.03686600 -1.01763400 1.15331200
F -0.34057000 1.13333500 1.34255200
F 1.03330300 -0.45526500 -1.43639400
F 0.99641000 1.63104700 -0.87933800
O 2.13434500 0.20178700 0.40370900
C 3.35043200 0.51660700 -0.20997400
F 3.75718400 1.76612100 0.19435800
C 4.31688600 -0.46255700 -0.18032000
F 4.87659800 -0.91244300 1.47041500
F 5.53236800 -0.04947000 -0.57492000
O 3.99805600 -1.70038200 -0.56392400
H 4.38384500 -2.28939700 0.10438600

TS35
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1791.667119 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.061139 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.132465 a.u.
G = E(DMSO) + Gcorr = -1791.60598 a.u.
H = E(DMSO) + Hcorr = -1791.534654 a.u.

C -4.05217100 -0.42067700 -0.07234500


C -2.79349800 0.36393800 0.35898400
C -1.49819600 -0.14058000 -0.32304800
C -0.22179200 0.30575900 0.43303200
C 1.06254300 0.24453700 -0.42222700
F -4.08106100 -0.54365700 -1.39270100
F -4.06260100 -1.62396900 0.47829300
F -5.13048400 0.23883900 0.32329600
F -2.67601800 0.25394700 1.68848500
F -2.97874900 1.64783700 0.03850800
F -1.52522800 -1.47988200 -0.36725400
F -1.47621800 0.32907700 -1.57605300
F -0.07236200 -0.49578400 1.49513200

146
F -0.38813300 1.56663200 0.86140400
F 1.06933900 -0.94085800 -1.07288800
F 1.00227200 1.20110400 -1.36511800
O 2.11329200 0.39207800 0.39591300
C 3.36528500 0.45899700 -0.27938500
F 3.72945300 1.79779900 -0.33733100
C 4.33953700 -0.34509800 0.35838800
F 5.17132900 -1.34134000 -0.98460300
O 3.95471800 -1.38997300 1.09633600
H 3.06049800 -1.65615100 0.83729400
O 5.47352200 0.22573700 0.75760300
H 6.16315900 -0.45554700 0.74095400

TS36
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1767.684371 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.069563 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.140758 a.u.
G = E(DMSO) + Gcorr = -1767.614808 a.u.
H = E(DMSO) + Hcorr = -1767.543613 a.u.

C -3.90941700 0.17972700 -0.42937500


C -2.68932700 -0.32777100 0.37072400
C -1.34795400 0.26630900 -0.12665400
C -0.12672900 -0.57042000 0.32950600
C 1.21590200 0.19244900 0.26652200
F -3.84754100 1.49768000 -0.56674600
F -3.94747000 -0.38187000 -1.62708400
F -5.01761700 -0.13394300 0.22466400
F -2.65885200 -1.66282000 0.27124100
F -2.86541200 0.01257200 1.65090000
F -1.36430100 0.30844100 -1.46652600
F -1.24889500 1.51708000 0.33949800
F -0.05163200 -1.64835800 -0.46046100
F -0.32571300 -0.97313000 1.59463600
F 1.26559000 0.83757400 -0.92507300
F 1.20988500 1.15270400 1.21042600
O 2.20280200 -0.69709200 0.41967000
C 3.56805700 -0.23810300 0.55490800
F 3.67274700 0.33733200 1.81033700
C 3.91457200 0.79798600 -0.49280000
O 4.10686500 0.25673400 -1.69365200
H 4.23657100 -0.74060700 -1.57471700
O 4.63328100 -2.10661800 -0.81239800
H 4.25680800 -1.39766700 0.05772600
H 4.00531000 -2.83243800 -0.88764300

147
O 4.10250100 1.97201300 -0.28045300

TS37
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1767.18454 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.059671 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.131506 a.u.
G = E(DMSO) + Gcorr = -1767.124869 a.u.
H = E(DMSO) + Hcorr = -1767.053034 a.u.

C -4.07189600 -0.26333400 0.00627800


C -2.76368300 0.55417600 -0.08191700
C -1.49128700 -0.32925200 -0.08055500
C -0.21492100 0.46166800 0.29673200
C 1.12072300 -0.20142100 -0.12552400
F -4.03652400 -1.28043900 -0.84514200
F -4.25031000 -0.72907000 1.23224900
F -5.09445600 0.52066700 -0.30404500
F -2.73841800 1.39590100 0.96016200
F -2.80000500 1.26317500 -1.21520600
F -1.66638100 -1.32254900 0.80588600
F -1.36648100 -0.86574400 -1.30121500
F -0.22456000 0.62032100 1.62946200
F -0.28804200 1.68044600 -0.27281200
F 0.97361500 -1.55863600 0.13870100
F 1.15540600 -0.15176400 -1.50787800
O 2.12741900 0.34146100 0.44688300
C 3.66416200 -0.44252300 0.09152700
H 3.34157100 -1.02099600 -0.75331000
F 3.75094100 -1.10556400 1.23919900
C 4.46260300 0.85338500 -0.06608300
O 4.92434300 1.34055700 0.97872100
O 4.50246000 1.28912300 -1.23421200
O 5.44498900 -1.48349900 -0.59467900
H 5.69747700 -0.87703200 -1.29740100

TS38
E(DMSO)[M06-2X/6-311++G(2d,p), SMD (DMSO)] = -1767.149035 a.u.
Gcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.062824 a.u.
Hcorr(DMSO)[M06-2X/6-311++G(2d,p)] = 0.132234 a.u.
G = E(DMSO) + Gcorr = -1767.086211 a.u.
H = E(DMSO) + Hcorr = -1767.016801 a.u.

C -3.11871500 -1.11399600 0.10349100

148
C -2.33131800 0.19477700 -0.13981300
C -0.78212500 -0.01958500 -0.07919900
C -0.03320200 1.31969400 0.20752200
C 1.52078700 1.45717800 0.05892600
F -2.60450700 -2.10867300 -0.60875100
F -3.10701200 -1.44585800 1.38562300
F -4.38090200 -0.93397600 -0.26879100
F -2.75321400 1.07967100 0.77390800
F -2.68012300 0.63911900 -1.35461000
F -0.57137900 -0.93016800 0.88158000
F -0.45858500 -0.52251400 -1.27750100
F -0.34590000 1.63700400 1.47559400
F -0.66378000 2.16192300 -0.64744600
F 2.05003000 1.64007500 -1.17432600
F 2.30322600 1.52898500 1.15906800
O 1.72284100 -0.22639700 -0.00044300
C 2.94470600 -0.67121300 -0.33653100
H 3.74176400 0.05414100 -0.14420400
F 3.01144300 -0.88003400 -1.75583600
C 3.25497400 -2.01203600 0.37258900
O 3.95407100 -1.89189300 1.40314900
O 2.76698000 -3.04840200 -0.11600400
O 1.34368500 3.24565100 0.25248300
H 1.03331200 3.59527600 -0.58778600

149
References and Notes

1. A. Leeson, T. Thompson, H. F. Stroo, R. H. Anderson, J. Speicher, M. A. Mills, J. Willey, C.


Coyle, R. Ghosh, C. Lebrón, C. Patton, Identifying and managing aqueous film‐forming
foam‐derived per‐ and polyfluoroalkyl substances in the environment. Environ. Toxicol.
Chem. 40, 24–36 (2021). doi:10.1002/etc.4894 Medline
2. A. M. Calafat, L.-Y. Wong, Z. Kuklenyik, J. A. Reidy, L. L. Needham, Polyfluoroalkyl
chemicals in the U.S. population: Data from the National Health and Nutrition
Examination Survey (NHANES) 2003-2004 and comparisons with NHANES 1999-2000.
Environ. Health Perspect. 115, 1596–1602 (2007). doi:10.1289/ehp.10598 Medline
3. United Nations Stockholm Convention, “Perfluorooctanoic acid (PFOA), its salts and PFOA-
related compounds” (UN, 2017);
http://chm.pops.int/Implementation/Alternatives/AlternativestoPOPs/ChemicalslistedinA
nnexA/PFOA/tabid/8292/Default.aspx.
4. “C-8 Medical Monitoring Program” (GCG, 2022); http://www.c-
8medicalmonitoringprogram.com/.
5. N. Rich, “Rob Bilott v. DuPont,” New York Times Magazine, 17 January 2016;
https://hnbpjs.blogspot.com/2016/01/rob-bilott-v-dupont.html.
6. A. Maimaiti, S. Deng, P. Meng, W. Wang, B. Wang, J. Huang, Y. Wang, G. Yu, Competitive
adsorption of perfluoroalkyl substances on anion exchange resins in simulated AFFF-
impacted groundwater. Chem. Eng. J. 348, 494–502 (2018).
doi:10.1016/j.cej.2018.05.006
7. M. Ateia, A. Alsbaiee, T. Karanfil, W. Dichtel, Efficient PFAS removal by amine-
functionalized sorbents: Critical review of the current literature. Environ. Sci. Technol.
Lett. 6, 688–695 (2019). doi:10.1021/acs.estlett.9b00659
8. D. Bond, J. Enck, “First in the nation testing reveals toxic contamination in soil and water near
Norlite incinerator” (Bennington University, 2020);
https://www.bennington.edu/sites/default/files/sources/docs/Norlite%20News%20Releas
e%20%5Bdb%20final%20updated%5D.pdf .
9. C. D. Vecitis, H. Park, J. Cheng, B. T. Mader, M. R. Hoffmann, Kinetics and mechanism of
the sonolytic conversion of the aqueous perfluorinated surfactants, perfluorooctanoate
(PFOA), and perfluorooctane sulfonate (PFOS) into inorganic products. J. Phys. Chem. A
112, 4261–4270 (2008). doi:10.1021/jp801081y Medline
10. J. Cheng, C. D. Vecitis, H. Park, B. T. Mader, M. R. Hoffmann, Sonochemical degradation
of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in groundwater:
Kinetic effects of matrix inorganics. Environ. Sci. Technol. 44, 445–450 (2010).
doi:10.1021/es902651g Medline
11. R. K. Singh, S. Fernando, S. F. Baygi, N. Multari, S. M. Thagard, T. M. Holsen, Breakdown
products from perfluorinated alkyl substances (PFAS) degradation in a plasma-based
water treatment process. Environ. Sci. Technol. 53, 2731–2738 (2019).
doi:10.1021/acs.est.8b07031 Medline

150
12. C. E. Schaefer, C. Andaya, A. Urtiaga, E. R. McKenzie, C. P. Higgins, Electrochemical
treatment of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) in
groundwater impacted by aqueous film forming foams (AFFFs). J. Hazard. Mater. 295,
170–175 (2015). doi:10.1016/j.jhazmat.2015.04.024 Medline
13. A. M. Trautmann, H. Schell, K. R. Schmidt, K. M. Mangold, A. Tiehm, Electrochemical
degradation of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in groundwater.
Water Sci. Technol. 71, 1569–1575 (2015). doi:10.2166/wst.2015.143 Medline
14. M. J. Krause, E. Thoma, E. Sahle-Damesessie, B. Crone, A. Whitehill, E. Shields, B. Gullett,
Supercritical water oxidation as an innovative technology for PFAS destruction. J.
Environ. Eng. 148, 05021006 (2022). doi:10.1061/(ASCE)EE.1943-7870.0001957
15. M. J. Bentel, Z. Liu, Y. Yu, J. Gao, Y. Men, J. Liu, Enhanced degradation of
perfluorocarboxylic acids (PFCAs) by UV/sulfite treatment: Reaction mechanisms and
system efficiencies at pH 12. Environ. Sci. Technol. Lett. 7, 351–357 (2020).
doi:10.1021/acs.estlett.0c00236
16. M. J. Bentel, Y. Yu, L. Xu, Z. Li, B. M. Wong, Y. Men, J. Liu, Defluorination of per- and
polyfluoroalkyl substances (PFASs) with hydrated electrons: Structural dependence and
implications to PFAS remediation and management. Environ. Sci. Technol. 53, 3718–
3728 (2019). doi:10.1021/acs.est.8b06648 Medline
17. M. J. Bentel, Y. Yu, L. Xu, H. Kwon, Z. Li, B. M. Wong, Y. Men, J. Liu, Degradation of
perfluoroalkyl ether carboxylic acids with hydrated electrons: Structure–reactivity
relationships and environmental implications. Environ. Sci. Technol. 54, 2489–2499
(2020). doi:10.1021/acs.est.9b05869 Medline
18. H. Hori, A. Yamamoto, E. Hayakawa, S. Taniyasu, N. Yamashita, S. Kutsuna, H. Kiatagawa,
R. Arakawa, Efficient decomposition of environmentally persistent perfluorocarboxylic
acids by use of persulfate as a photochemical oxidant. Environ. Sci. Technol. 39, 2383–
2388 (2005). doi:10.1021/es0484754 Medline
19. X. Liang, J. Cheng, C. Yang, S. Yang, Factors influencing aqueous perfluorooctanoic acid
(PFOA) photodecomposition by VUV irradiation in the presence of ferric ions. Chem.
Eng. J. 298, 291–299 (2016). doi:10.1016/j.cej.2016.03.150
20. B. N. Nzeribe, M. Crimi, S. Mededovic Thagard, T. M. Holsen, Physico-chemical processes
for the treatment of per- and polyfluoroalkyl substances (PFAS): A review. Crit. Rev.
Environ. Sci. Technol. 49, 866–915 (2019). doi:10.1080/10643389.2018.1542916
21. Q. Zhuo, S. Deng, B. Yang, J. Huang, G. Yu, Efficient electrochemical oxidation of
perfluorooctanoate using a Ti/SnO2-Sb-Bi anode. Environ. Sci. Technol. 45, 2973–2979
(2011). doi:10.1021/es1024542 Medline
22. H. Hori, E. Hayakawa, H. Einaga, S. Kutsuna, K. Koike, T. Ibusuki, H. Kiatagawa, R.
Arakawa, Decomposition of environmentally persistent perfluorooctanoic acid in water
by photochemical approaches. Environ. Sci. Technol. 38, 6118–6124 (2004).
doi:10.1021/es049719n Medline
23. B. Wu, S. Hao, Y. Choi, C. P. Higgins, R. Deeb, T. J. Strathmann, Rapid destruction and
defluorination of perfluorooctanesulfonate by alkaline hydrothermal reaction. Environ.
Sci. Technol. Lett. 6, 630–636 (2019). doi:10.1021/acs.estlett.9b00506

151
24. D. Kong, P. J. Moon, E. K. J. Lui, O. Bsharat, R. J. Lundgren, Direct reversible
decarboxylation from stable organic acids in dimethylformamide solution. Science 369,
557–561 (2020). doi:10.1126/science.abb4129 Medline
25. S. Zhou, B. T. Nguyen, J. P. Richard, R. Kluger, J. Gao, Origin of free energy barriers of
decarboxylation and the reverse process of CO2 capture in dimethylformamide and in
water. J. Am. Chem. Soc. 143, 137–141 (2021). doi:10.1021/jacs.0c12414 Medline
26. H. K. Liberatore, S. R. Jackson, M. J. Strynar, J. P. McCord, Solvent suitability for HFPO-
DA (“GenX” parent acid) in toxicological studies. Environ. Sci. Technol. Lett. 7, 477–
481 (2020). doi:10.1021/acs.estlett.0c00323 Medline
27. C. Zhang, A. C. McElroy, H. K. Liberatore, N. L. M. Alexander, D. R. U. Knappe, Stability
of per- and poly fluoroalkyl substances in solvents relevant to environmental and
toxicological analysis. Environ. Sci. Technol. 56, 6103–6112 (2022).
doi:10.1021/acs.est.1c03979 Medline
28. D. A. Dixon, T. Fukunaga, B. E. Smart, Structures and stabilities of fluorinated carbanions:
Evidence for anionic hyperconjugation. J. Am. Chem. Soc. 108, 4027–4031 (1986).
doi:10.1021/ja00274a029
29. T. Chatterjee, E. Boutin, M. Robert, Manifesto for the routine use of NMR for the liquid
product analysis of aqueous CO2 reduction: From comprehensive chemical shift data to
formaldehyde quantification in water. Dalton Trans. 49, 4257–4265 (2020).
doi:10.1039/C9DT04749B Medline
30. J. D. LaZerte, L. J. Hals, T. S. Reid, G. H. Smith, Pyrolyses of the salts of the perfluoro
carboxylic acids. J. Am. Chem. Soc. 75, 4525–4528 (1953). doi:10.1021/ja01114a040
31. R. N. Haszeldine, 817. The reactions of metallic salts of acids with halogens. Part III. Some
reactions of salts of fluorohalogenoacetates and of perfluoro-acids. J. Chem. Soc. 4259
(1952). doi:10.1039/jr9520004259
32. X. Zhang, U. Gross, K. Seppelt, Fluorocarbonate, [FCO2]–: Preparation and structure. Angew.
Chem. Int. Ed. 34, 1858–1860 (1995). doi:10.1002/anie.199518581
33. M. J. Pellerite, Unusual reaction chemistry in thermal decomposition of alkali metal 2-
alkoxy-2,3,3,3-tetrafluoropropionate salts. J. Fluor. Chem. 49, 43–66 (1990).
doi:10.1016/S0022-1139(00)80362-0
34. Y. Ge, Z. Liu, H. Liu, J.-K. Feng, D. Liu, X. Ge, Theoretical study on the degradation
reaction mechanism of elimination hydrogen fluoride from perfluoropropionic acid.
Comput. Theor. Chem. 1029, 33–40 (2014). doi:10.1016/j.comptc.2013.12.013
35. G. McGrath, “Denied by Trump EPA, NC activists hope Biden EPA will force ‘forever
chemical’ study,” Fayetteville Observer, 17 January 2021;
https://www.fayobserver.com/story/news/2021/01/27/denied-by-trump-epa-nc-activists-
hope-biden-epa-force-forever-chemical-study/4265453001/.
36. Y. Zhao, D. G. Truhlar, The M06 suite of density functionals for main group
thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and
transition elements: Two new functionals and systematic testing of four M06-class
functionals and 12 other function. Theor. Chem. Acc. 120, 215–241 (2008).

152
doi:10.1007/s00214-007-0310-x
37. A. V. Marenich, C. J. Cramer, D. G. Truhlar, Universal solvation model based on solute
electron density and on a continuum model of the solvent defined by the bulk dielectric
constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009).
doi:10.1021/jp810292n Medline
38. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G.
Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich,
J. Bloino, B. G. Janesko, J. V. O. R. Gomperts, B. Mennucci, H. P. Hratchian, A. F.
Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J.
Goings, B. Peng, A. Petrone, D. R. T. Henderson, V. G. Zakrzewski, J. Gao, N. Rega, G.
Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. J. A. Montgomery,
J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N.
Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C.
Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R.
Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J.
Fox, “Gaussian 16, Revision A.03” (Gaussian Inc, 2016).
39. N. Mardirossian, M. Head-Gordon, How accurate are the minnesota density functionals for
noncovalent interactions, isomerization energies, thermochemistry, and barrier heights
involving molecules composed of main-group elements? J. Chem. Theory Comput. 12,
4303–4325 (2016). doi:10.1021/acs.jctc.6b00637 Medline
40. G. Luchini, J. Alegre-Requena, IFunes, J. Rodríguez-Guerra, J. Chen, R. Paton,
“bobbypaton/GoodVibes: GoodVibes v3.0.0,” Zenodo (2019);
https://doi.org/10.5281/ZENODO.3346166.
41. S. Grimme, Supramolecular binding thermodynamics by dispersion-corrected density
functional theory. Chemistry 18, 9955–9964 (2012). doi:10.1002/chem.201200497
Medline
42. Y.-P. Li, J. Gomes, S. Mallikarjun Sharada, A. T. Bell, M. Head-Gordon, Improved force-
field parameters for QM/MM simulations of the energies of adsorption for molecules in
zeolites and a free rotor correction to the rigid rotor harmonic oscillator model for
adsorption enthalpies. J. Phys. Chem. C 119, 1840–1850 (2015). doi:10.1021/jp509921r
43. C. Y. Legault, “CYLview20: Visualization and analysis software for computational
chemistry” (CYLview, 2020); http://www.cylview.org.
44. C. Dai, L. Sun, H. Liao, B. Khezri, R. D. Webster, A. C. Fisher, Z. J. Xu, Electrochemical
production of lactic acid from glycerol oxidation catalyzed by AuPt nanoparticles. J.
Catal. 356, 14–21 (2017). doi:10.1016/j.jcat.2017.10.010
45. C. Butch, E. D. Cope, P. Pollet, L. Gelbaum, R. Krishnamurthy, C. L. Liotta, Production of
tartrates by cyanide-mediated dimerization of glyoxylate: A potential abiotic pathway to
the citric acid cycle. J. Am. Chem. Soc. 135, 13440–13445 (2013). doi:10.1021/ja405103r
Medline
46. T. M. Rangarajan, S. Sathyamoorthi, D. Velayutham, M. Noel, R. P. Singh, R. Brahma,
Products formed at intermediate stages of electrochemical perfluorination of propionyl

153
and n-butyryl chlorides. Further evidence in support of NiF 3 mediated free radical
pathway. J. Fluor. Chem. 132, 107–113 (2011). doi:10.1016/j.jfluchem.2010.12.004
47. L. V. Saloutina, A. Y. Zapevalov, V. I. Saloutin, M. I. Kodess, V. E. Kirichenko, M. G.
Pervova, O. N. Chupakhin, Synthesis of 2,3-bis(perfluoroalkyl)quinoxalines and 2,3-
bis(perfluoroalkyl)-1,4-benzoxazines from oxides of internal perfluoroolefins. J. Fluor.
Chem. 126, 976–983 (2005). doi:10.1016/j.jfluchem.2005.05.001
48. A. Foris, 19F and 1H NMR spectra of halocarbons. Magn. Reson. Chem. 42, 534–555
(2004). doi:10.1002/mrc.1368 Medline
49. T. Hogan, A. Sen, High-yield, radical-initiated oxidative functionalization of ethane by
perfluorocarboxylic acid anhydrides. Role of metal ions in catalytic alkane oxidations in
the presence of perfluorocarboxylic acid anhydrides. J. Am. Chem. Soc. 119, 2642–2646
(1997). doi:10.1021/ja964068j
50. M. Iznaden, C. Portella, Hydro-2-oxo-3-perfluoroesters. Synthese et Properties
Remarquables: Hydrate, equilibre cent-enolique. J. Fluor. Chem. 43, 105–118 (1989).
doi:10.1016/S0022-1139(00)81639-5
51. S. Garcia-Segura, A. B. Nienhauser, A. S. Fajardo, R. Bansal, C. L. Conrad, J. D. Fortner, M.
Marcos-Hernández, T. Rogers, D. Villagran, M. S. Wong, P. Westerhoff, Disparities
between experimental and environmental conditions: Research steps toward making
electrochemical water treatment a reality. Curr. Opin. Electrochem. 22, 9–16 (2020).
doi:10.1016/j.coelec.2020.03.001
52. M. Panizza, G. Cerisola, Direct and mediated anodic oxidation of organic pollutants. Chem.
Rev. 109, 6541–6569 (2009). doi:10.1021/cr9001319 Medline
53. Z. Liu, M. J. Bentel, Y. Yu, C. Ren, J. Gao, V. F. Pulikkal, M. Sun, Y. Men, J. Liu, Near-
quantitative defluorination of perfluorinated and fluorotelomer carboxylates and
sulfonates with integrated oxidation and reduction. Environ. Sci. Technol. 55, 7052–7062
(2021). doi:10.1021/acs.est.1c00353 Medline
54. N. Watanabe, S. Takemine, K. Yamamoto, Y. Haga, M. Takata, Residual organic fluorinated
compounds from thermal treatment of PFOA, PFHxA and PFOS adsorbed onto granular
activated carbon (GAC). J. Mater. Cycles Waste Manag. 18, 625–630 (2016).
doi:10.1007/s10163-016-0532-x
55. N. Watanabe, M. Takata, S. Takemine, K. Yamamoto, Thermal mineralization behavior of
PFOA, PFHxA, and PFOS during reactivation of granular activated carbon (GAC) in
nitrogen atmosphere. Environ. Sci. Pollut. Res. Int. 25, 7200–7205 (2018).
doi:10.1007/s11356-015-5353-2 Medline
56. F. Xiao, P. C. Sasi, B. Yao, A. Kubátová, S. A. Golovko, M. Y. Golovko, D. Soli, Thermal
stability and decomposition of perfluoroalkyl substances on spent granular activated
carbon. Environ. Sci. Technol. Lett. 7, 343–350 (2020). doi:10.1021/acs.estlett.0c00114
57. S. Hao, Y.-J. Choi, B. Wu, C. P. Higgins, R. Deeb, T. J. Strathmann, Hydrothermal alkaline
treatment for destruction of per- and polyfluoroalkyl substances in aqueous film-forming
foam. Environ. Sci. Technol. 55, 3283–3295 (2021). doi:10.1021/acs.est.0c06906
Medline

154

You might also like