Nothing Special   »   [go: up one dir, main page]

8de8.SCG Bibliografia

Download as pdf or txt
Download as pdf or txt
You are on page 1of 14

UNIVERSIDAD DE CANTABRIA

DEPARTAMENTO DE CIENCIA E INGENIERÍA DEL TERRENO


Y DE LOS MATERIALES

TESIS DOCTORAL

EVALUACIÓN DE LA INTEGRIDAD ESTRUCTURAL DE


COMPONENTES SOMETIDOS A CONDICIONES DE
BAJO CONFINAMIENTO

Autor:

SERGIO CICERO GONZÁLEZ

Director:

D. FEDERICO GUTIÉRREZ-SOLANA SALCEDO

Tesis Doctoral presentada en la Universidad de Cantabria para la obtención del


Título de Doctor Ingeniero de Caminos, Canales y Puertos

Santander, Marzo de 2007


Capítulo 8 Bibliografía

CAPÍTULO 8

BIBLIOGRAFÍA

[1] Griffith, A.A., “The Phenomena of Ruptura and Flow in Solids”, Phil. Trans. R. Soc.
London. A 221, 163-198 (1920).

[2] Irwin, G.R., “Analysis of Stresses and Strains Near the End of a Crack Traversing a
Plate”, Trans. J. Appl. Mech. 24, 361-364 (1958).

[3] Williams, M.L., “On the Stress Distribution at the Base of Stationary Crack”. Journal of
Applied Mechanics, Vol. 24, p. 109-114 (1957).

[4] Elsheby, J.D., Solid State Phys., Vol.3, p.79-144 (1956).

[5] Paris, P.C., Gomez, R.E., Anderson, W.E., “A Rational Analytic Theory of Fatigue”,
The Trend in Engineering, Vol.13, nº1 (1961).

[6] Paris, P.C., “The Fracture Mechanics Approach to Fatigue”, Proceedings of the Tenth
Sagamore Army Materials Research Conference, Syracuse University Press (1964).

[7] Burdekin F.M. y Stone D.E.W., “The Crack Opening Displacement Approach to
Fracture Mechanics in Yielding Materials”. Journal of Strain Análisis, Vol. 1, p.144-
153 (1966)

291
Capítulo 8 Bibliografía

[8] Dugdale, D.S., “Yielding in Steel Sheets Containing Slits”. Journal of the Mechanics and
Physics of Solids, Vol. 8, p.100-104.

[9] McClintock, F.A., “Plasticity Aspects of Fracture”. Fracture: An Advanced Treatise,


Vol. 3, Academia Press, New York, p. 47-225 (1971).

[10] ASME Boiler and Pressure Vessel Code, “Section XI, Rules for In-Service Inspection of
Nuclear Power Plant Components”, The American Society of Mechanical Engineers
(1995).

[11] British Standard BS 7910: “Guide on Methods for Assessing the Acceptability of Flaws
in Metallic Structures”, BSi, London (2000)

[12] R6:“Assessment of the Integrity of Structures Containing Defects”, British Energy


Generation, Report R/H/R6, Revision 4 (2001).

[13] SINTAP, “Structural Integrity Assessment Procedure for European Industry”, SINTAP
BRITE-EURAM Project BRPR-CT95-0024 (1999).

[14] FITNET, “European Fitness-for-Service Network”, EU´s Framework 5, Proposal No.


GTC1-2001-43049, Contract No. G1RT-CT-2001-05071.

[15] Pluvinage, G., Azari, Z., Kadi, N., Dlouhy, I., Kozak, V., “Effect of Ferritic
Microstructure on Local Damage Zone Distance Associated with Fracture Near
Notch”, Theoretical and Applied Fracture Mechanics 31, p. 149-156 (1999).

[16] Kim, J.H., Kim, D.H., Moon, S.I., “Evaluation of Static and Dynamic Fracture
Toughness Using Apparent Fracture Toughness of Notched Specimens”, Materials
Science and Engineering A, Vol. 387-389, p.381-384 (2004).

[17] Taylor, D., Cornetti, P. y Pugno, N., “The Fracture Mechanics of Finite Crack
Extension”, Engineering Fracture Mechanics, 72, Issue 7, p. 1021-1038 (2005).

[18] Gutiérrez-Solana, F., González, J., Setién, J., Varona, J.M., “Guía de Estudio de Ciencia
de los Materiales (II): Comportamiento Mecánico de los Materiales”, Servicio de
Publicaciones de la ETS de Ingenieros de Caminos, Canales y Puertos de la Universidad
de Cantabria (1995).

292
Capítulo 8 Bibliografía

[19] Tada, H., Paris, P.C., Irwin, G.R., “The Stress Analysis of Cracks Handbook”, 2nd
Edition, Paris Productions, Inc., St. Louis (1985).

[20] Murakami, Y., “Stress Intensity Factors Handbook”, Pergamon Press, New York
(1987).

[21] Rooke, D.P., Cartwright, D.J., “Compendium of Stress Intensity Factors”, Her
Majesty´s Stationary Office, London (1976).

[22] ASTM, “Standard Test Method for Plane Strain Fracture Toughness of Mettallic
Materials”, E399-83, Philadelphia (1983).

[23] Brown, W.F. Jr., Srawley, J.E., “Plane Strain Crack Toughness Testing of High
Strength Metallic Materials”, ASTM STP 410, American Society for Testing and
Materials, Philadelphia (1966).

[24] Anderson T. L., “Fracture Mechanics: Fundamentals and Applications”, 2nd edition,
CRC Press, Boca Raton, (1995).

[25] Broek, D., “Elementary Engineering Fracture Mechanics”, 3rd Edition, Martinus
Nijhoff, The Hague (1982).

[26] Rice, J.R., “A Path Independent Integral and the Approximate Analysis of Strain
Concentration by Notches and Cracks”, Journal of Applied Mechanics, Vol.35, p. 379-
386 (1968).

[27] Ewalds, H.L., Wanhill, R.J.H., “Fracture Mechanics”, Edward Arnold Pub., Londres
(1985).

[28] Barenblatt, G.I., “The Mathematical Theory of Equilibrium Cracks in Brittle Fracture”,
Advances in Applied Mechanics, Vol. III, Academic Press, p. 55-129 (1962).

[29] Ruiz Ocejo, J., González-Posada, M.A., Gutiérrez-Solana, F., y Gorrochategui, I.,
“Development and Validation of Procedures: Review of Existing Procedures”, SINTAP
Task 5, Report SINTAP/UC/04 (1997).

293
Capítulo 8 Bibliografía

[30] Ruiz Ocejo, J., González-Posada, M.A., Gorrochategui, I., Gutiérrez-Solana, F.,
“Análisis Comparativo de los Procedimientos de Evaluación de la Integridad
Estructural de Componentes Fisurados”, Anales de Mecánica de la Fractura, 15, p. 115-
119 (1998).

[31] Ruiz Ocejo, J., González-Posada, M.A., Gorrochategui, I., Gutiérrez-Solana, F.,
“Comparison Between Structural Integrity Assessment Procedures for Cracked
Components”, Fourth International Conference on Engineering Structural Integrity
Assessment: Lifetime Management and Evaluation of Plant, Structures and
Components, Cambridge, Reino Unido (Sept. 1998).

[32] González-Posada, M.A., “Influencia de la sustentación hiperestática en el criterio Fuga


antes que Rotura aplicado a sistemas de tuberías en régimen elastoplástico”, Tesis
Doctoral, Escuela Técnica Superior de Ingenieros Industriales, Universidad de
Cantabria (2004).

[33] Paris, P.C. y Johnson, R.E., “A Method of Applications of Elastic-Plastic Fracture


Mechanics to Nuclear Vessel Analysis”, Elastic-Plastic Fracture: Second Symposium,
Vol. II- Fracture Resistance Curves and Engineering Applications, ASTM STP 803,
C.F. Shih y J.P. Gudas, Eds., American Society for Testing and Materials, p. II-5-II-40
(1983).

[34] Wilkoswski, G., Ahmad, J., Barnes, D., Brust, F., Ghadiali, N., Guerreri, D., Kiefner, J.,
Kramer, G., Landow, M., Marschall, C., Maxey, W., Nakgaki, M., Papaspyropoulos, V.
y Scott, P., “Degraded Piping Program-Phase II Progress”, Nuclear Engineering and
Design, Vol. 98, p. 195-217 (1987).

[35] Golembiewski, H.J. y Vasoukis, G., “On the Required Toughness for the Application of
the Net Section Criterion on the Nuclear Power Plant Components”, Nuclear
Engineering and Design, Vol.87, p. 67-71 (1985).

[36] Golembiewski, H.J. y Vasoukis, G., “Influence of Material Properties and Geometry on
the Limit Load Behaviour of Flawed Structures”, International Journal Pressure Vessel
and Piping, Vol.31, p. 131-140 (1988).

294
Capítulo 8 Bibliografía

[37] Ruiz Ocejo, J., González-Posada, M.A., Gorrochategui, I., Gutiérrez-Solana, F.,
“Presente y Futuro de los Procedimientos de Evaluación de la Integridad Estructural
de Componentes Fisurados”, Anales de Mecánica de la Fractura, 14, p. 417-420 (1997).

[38] Harrison, R.P., Loosemore, K. y Milne, I., R6: “Assessment of the Integrity of Structures
Containing Defects”, CEGB Report R/H/R6 (1976).

[39] Kumar, V., German, M.D. and Shih, C.F., “An Engineering Approach for Elastic-
Plastic Fracture Analysis”, General Electric Company, NP-1931, Research Project
1237-1 Topical Report (1981).

[40] R6:“Assessment of the Integrity of Structures Containing Defects”, British Energy


Generation, Report R/H/R6, Revision 3 (1986)

[41] Bergman, M., Brickstad, B., Dahlberg, L., “A Procedure for Safety Assessment of
Components with Cracks-Handbook”, SAQ/FoU Report, 91/01, AB Svensk
Anläggningsprovning, Swedish Plant Inspection Ltd, (1991)

[42] “Fitness for Service Guide”, EXXON Chemical (1995)

[43] “Fitness for Service Evaluation Procedures for Operating Pressure Vessels, Tanks and
Piping in Refinery and Chemical Service”. Draft nº5, Consultants Report, The Materials
Properties Council (Oct. 1995).

[44] API 579, “Recommended Practice for Fitness for Service”, Draft Issue 4, American
Petroleum Institute (1996).

[45] PD6493, “Guidance Methods for Assessing the Acceptability of Flaws in Fusion Welded
Structures”, BSi (1975)

[46] Gorrochategui, I., Gutiérrez-Solana, F., Varona, J.M., “Estudio Comparativo de


Métodos Elastoplásticos de Cálculo de Estructuras Agrietadas”, Anales de Mecánica de
la Fractura, 9 (1992).

[47] Schwalbe, K.H., Zerbst, V., Kim, Y.J., Brocks, W., Cornec, A., Heerens, J., Amstutz,
H., “The ETM Method for Assessing the Significance of Crack-Like Defects in

295
Capítulo 8 Bibliografía

Engineering Structures, Comprising the Versions ETM 97/1 and ETM 97/2”, GKSS-
Forschungszentrum Geesthacht GmbH (1998).

[48] Ainsworth, R.A., “The Assessment of Defects in Structures of Strain Hardening


Material”, Engineering Fracture Mechanics, Vol. 19, Nº4, p. 633-642 (1984).

[49] Kim, Y.J. y Huh, N.S., “Enhanced Reference Stress-based J and Crack Opening
Displacement Estimation Method for Leak-Before-Break Analysis and Comparison with
GE/EPRI Method”, School of Mechanical Engineering, Sungkyunkwan University, 300
Chunchun-dong, Jangangu, Suwon, Kyonggi-do, Korea (2000).

[50] Turner, C.E, “A J-Based Fracture Safe Estimation Procedure, En J, with Applications
Incluiding Estimation of the Maximum Load for Ductile Tearing”, L.H.Larsson (ed.),
Elastic-Plastic Fracture Mechanics, p. 411-426 (1985).

[51] Bloom, J.M., “Deformation Plasticity Failure Assessment Diagram”, Elastic-Plastic


Fracture Mechanics Technology, ASTM STP 896, J.C.Newman, Jr and F.J.Loss, Eds.,
American Society for Testing and Materials, Philadelphia, p. 114-127 (1985).

[52] Ruiz Ocejo, J., Gutiérrez-Solana, F., González-Posada, M.A. , y Gorrochategui, I.,
“Failure Assessment Diagram-Crack Driving Force Diagram COMPATIBILITY”,
SINTAP Task 5, Report SINTAP/UC/05 (1997).

[53] VOCALIST, “Validation of Constraint Based Assessment Methodology in Structural


Integrity”, FIKS CT-2000-00090, Fifth Framework of the European Atomic Energy
Comunity (EURATOM).

[54] Bilby, B.A., Cardew, G.E., Goldthorpe, M.R., y Howard, I.C., “A Finite Element
Investigation of the Effects of Speciment Geometry on the Fields of Stress and Strain at
the Tip of Stationary Cracks”, Size Effects in Fracture, Institute of Mechanical
Engineers, p.37-46, London (1986).

[55] Betegon, C. y Hancock, J.W., “Two Parameter Characterization of Elastic-Plastic


Crack Tip Fields”, Journal of Applied Mechanics, Vol. 58, p. 104-110 (1991).

[56] Kirk, M.T., Dodds, R.H., Jr., y Anderson, T.L., “Approximate Techniques for
Predicting Size Effects on Cleavage Fracture Toughness”. Fracture Mechanics: 24th
Volume, ASTM STP 1207, American Society for Testing and Materials, Phidadelphia.

296
Capítulo 8 Bibliografía

[57] O´Dowd, N.P. y Shih, C.F., “Family of Crack-Tip Field Characterized by a Triaxiality
Parameter-I. Structure of Fields”. Journal of the Mechanics and Physics of Solids, Vol.
39, p. 898-1015 (1991).

[58] O´Dowd, N.P. y Shih, C.F., “Family of Crack-Tip Field Characterized by a Triaxiality
Parameter-II. Fracture Applications”. Journal of the Mechanics and Physics of Solids,
Vol. 40, p. 939-963 (1992).

[59] Shih, C.F., O´Dowd, N.P. y Kirk, M.T., “A Framework for Quantifaying Crack Tip
Constraint”. Constraint Effects in Fracture, ASTM STP 1171, American Society for
Testing and Materials, p. 2-20, Philadelphia (1993).

[60] Beremin, F.M., “A Local Criterion for Cleavage Fracture of a Nuclear Pressure
Vessel”, Metall. Trans., Vol. 14ª, p. 2277-2287 (1983).

[61] Beremin, F.M., “Experimental and numerical study of the different stages in ductile
rupture” en “Application to crack initiation and stable crack growth, three dimensional
constitutive relations and ductile fracture”, Ed. S. Nemath-Nasser, S. North Holland
Publishing Company, p. 185-205 (1981).

[62] Rice, J.R. y Tracey, D.M., “On the Ductile Enlargement of Voids in Triaxial Stress
Fields”, J. Mech. Phys. Solids, Vol. 17, p. 201-217 (1969).

[63] Gurson, A.L., “Continuum Theory of Ductile Rupture by Void Nucleation and Growth.
Part I: Yield Criteria and Flow Rules for Porous Ductile Materials”, J. Eng. Mat. Tech.,
Vol. 99, p. 2-15 (1997).

[64] Tvergaard, V., “Influence of Voids on Shear Band Instabilities Under Plane Strain
Conditions”, Int. J. Fracture, Vol. 17, p. 389-407 (1981).

[65] Tvergaard, V., “On Localization in Ductile Materials Containing Spherical Voids”, Int.
J. Fracture, Vol. 18, p. 237-252 (1982).

[66] Lorentz, E., Wadier, Y., Debruyne, G., “Mécanique de la Rupture en Présence de
Plasticité: Definition d´un Taux de Restitution d´energie”, CRAS. t. 328, série IIb
(2000).

297
Capítulo 8 Bibliografía

[67] Marie, S., “Approche Énergétique de la Déchirure Ductile”, Tesis doctoral de la


Universidad de Poitiers, Francia (1999).

[68] Marie, S., Chapuliot, S. y Bezine, G., “A New Energetic Approach to Model Ductile
Tearing for Real Components”, Proceedings of PVP99 conference, Boston, USA
(1999).

[69] Marie, S. y Chapuliot, S., “2D Crack Growth Simulation with an Energetic Approach”,
Nuclear Engineering and Design, Vol. 212, Issues 1-3, p. 851-863 (2002).

[70] Debruyne, G., “Proposition d´un Paramètre Énergétique de Rupture pour les Matériaux
Dissipatifs”, CRAS. t. 328, série IIb (2000).

[71] Watanabe, K., “New Proposal of Crack Energy Density Concept as a Fundamental
Fracture Mechanics Parameter”, Bull. JSME, p. 24-198 (1981).

[72] Pellisier-Tanon, A. et al., “Transferability of Data from Specimens to Structures for


Defect Assessment on LWR Components”, Draft Final Report, EER DC 1368 (1998).

[73] Brocks, W., Schmitt, W., “The Second Parameter in J-R curves: Constraint or
Triaxality”. Constraint Effects in Fracture Theory and Application: 2nd Volume, ASTM
STP 1244, American Society for Testing Materials, p. 232-252, Philadelphia.

[74] Wallin, K., “The Scatter in KIC Results” Engineering Fracture Mechanics, Vol. 19, p.
1085-1093 (1984).

[75] Wallin, K., “The Size Effect in KIC Results”, Eng. Fract. Mech., Vol. 22, p. 149-163
(1985).

[76] Wallin, K., “Statistical Re-evaluation of the ASME KIC and KIR Fracture Toughness
Reference Curves”, Nuclear Eng. Design, Vol. 193, p. 317-326 (1999).

[77] Brückner, A., Munz, D. “Prediction of Failure Probabilities for Cleavage Fracture
from the Scatter of Crack Geometry and of Fracture Toughness Using the Weakest Link
Model”, Eng. Fract. Mech., Vol. 18, p. 359-375 (1983).

298
Capítulo 8 Bibliografía

[78] Slatcher, S., Evandt, Ø. “Practical Application of the Weakest-link Model to Fracture
Toughness Problems”, Eng. Fract. Mech., Vol. 24, p. 495-508 (1986).

[79] Minami, F., Toyoda, M.,. Satoh, K., “A Probabilistic Analysis on Thickness Effect in
Fracture Toughness”, Eng. Fract. Mech., Vol. 23, p. 433-444 (1987).

[80] ASTM E-1921, “Test Method for Determination of Reference Temperature, T0, for
Ferritic Steels in the Transition Range”, American Society for Testing and Materials,
Philadelphia (1998).

[81] Natishan, M.E. y Kirk, M.T., “A Micro-mechanical Evaluation of the Master Curve”,
Fatigue and Fracture Mechanics: 30th Volume, ASTM STP 1360, American Society for
Testing and Materials, p. 51-60, West Conoshohocken (2000).

[82] Ritchie, R.O., Knott, J.F. y Rice, J.R., “On the Relationship between Critical Tensile
Stress and Fracture Toughness in Mild Steel”, J. Mech. Phys. Solids, Vol. 21, p. 395-
410 (1973).

[83] Rousselier, G., “Ductile fracture models and their potential in local approach of
fracture”, Nuclear Engineering and Design, Vol. 105, p. 97-111 (1987).

[84] Alegre, J.M. “Estudio Mediante Técnicas de Aproximación Local de la Fractura de


Aceros Inoxidables Austeno-Ferríticos Envejecidos”, Tesis Doctoral, Universidad de
Cantabria (2000)

[85] Kishimoto, K., Takeuchi, N., Auki, S., Sakata, M. “Computational accuracy of the -
integral by the finite-element method”, International Journal of Pressure Vessels and
Piping, Vol. 44, Issue 2, p. 255-266 (1990)

[86] Francfort, G. y Marigo, J.J., “Revisiting Brittle Fracture as an Energy Minimisation


Problem”, J. Mech. Phys. Sol., Vol. 46, nº8, p. 1319-1342 (1998).

[87] Lin, G., Cornec, A. y Schwalbe, K.H., “Three-dimensional Finite Element Simulation of
Crack Extension in Aluminium Alloy 2024FC”, Fatigue and Fracture Engineering
Meterials and Structures, Vol. 21, p. 1159-1173 (1998).

299
Capítulo 8 Bibliografía

[88] Elices, M., Guinea, G.V., Gómez, J., Planas, J., “The Cohesive Zone Model:
advantages, limitations and challenges”, Engineering Fracture Mechanics, Vol.70, Issue
14, p. 1913-1927 (2003)

[89] Brocks, W., “Modelling of Crack Growth in Sheet Metal”, Proceedings of ICES-2K,
Los Angeles (2000).

[90] Álvarez, J.A., “Fisuración Inducida por Hidrógeno de Aceros Soldables Microaleados:
Caracterización y Modelo de Comportamiento”, Tesis Doctoral, Universidad de
Cantabria (1998)

[91] Brickstad, B., Bergman, M., Andersson, P., Dahlberg, L., Sattari-Far, I. y Nilsson, F.,
“Procedures Used in Sweden for Safety Assessment of Components with Cracks”, Int. J.
Pressure Vessels and Piping, Vol. 77, p. 877-881 (2000).

[92] RSE-M Code, “Rules for In-servise Inspection of Nuclear Power Plant Components”,
1997 Edition + 1998 and 2000 Addenda, AFCEN, Paris.

[93] Sherry, A.H., Wilkes, M.A., Beardsmore, D.W. y Lidbury, D., “Material Constraint
Parameters for the Assessment of Shallow Defects in Structural Components- Part I:
Parameter Solutions”, Engineering Fracture Mechanics, Vol. 72, Issue 15, p. 2373-
2395, (2005).

[94] Wallin, K., “Quantifying Tstress Controlled Constraint by the Master Curve Transition
Temperature T0”, Engineering Fracture Mechanics, Vol. 68, p. 303-328 (2001).

[95] Smith, E., “A Comparison of Mode I and Mode III Results for the Elastic Stress
Distribution in the Immediate Vicinity of a Blunt Notch”, International Journal of
Engineering Science 42, p. 473-481, (2004)

[96] Pluvinage, G., “Fatigue and Fracture Emanating from Notch; the Use of the Notch
Stress Intensity Factor”, Nuclear Engineering and Design 185, p.173-184, (1998)

[97] Timoshenko, S., Goodier, J.N., Theory of Elasticity. McGraw-Hill, New York (1951).

[98] Neuber, N., Weiss, V., Trans. ASME paper No. 62-WA-270 (1962).

300
Capítulo 8 Bibliografía

[99] Chen, C.C., Pan, H.I., “Collection of Papers on Fracture of Metals”. Metallurgy
Industry Press, Beijing, p. 197-219 (1978).

[100] Usami, S.I., Tanaka, Jono, M., Komai, k., “Current Research on Fatigue Cracks”, The
Society of Materials Science, Kyoto, Japan, 119 (1985).

[101] Glinka, G., Newport, A., Int. J. Fatigue 9, 143 (1987).

[102] Kujawski, D., “Estimation of Stress Intensity Factors for Small Cracks at Notches”,
Fatigue Fract. Eng. Mater. Struct. 14, p. 953-965 (1991).

[103] Bhattacharya, S., Kumar, A.N., “Rotational Factor Using Bending Moment Approach
Under Elasto-plastic Situation in 3PB Notch Geometry”, Engineering Fracture
Mechanics 50, p. 495-505 (1995).

[104] Niu, L.S., Chehimi, C., Pluvinage, G., “Stress Field Near a Large Blunted V Notch and
Application of the Concept of Critical Notch Stress Intensity Factor to the Fracture of
Very Brittle Materials”, Engineering Fracture Mechanics 49 (3), p. 325-335 (1994).

[105] Bao, Y., Jin, Z., Fatigue Fract. Eng. Mater. Struct. 16, 829 (1993).

[106] Fenghui, W., Journal of Material Science 35, 2543 (2000).

[107] Creager, M., Paris, C., “Elastic Field Equations for Blunt Cracks with Reference to
Stress Corrosion Cracking”, International Journal of Fracture 3, p. 247-252, (1967).

[108] Yates, J.R. y Brown, M.W., “Prediction of the Length of non Propagating Fatigue
Cracks”, Fatigue and Fracture Engineering Materials and Structures, Vol. 10, p. 187-
201 (1987).

[109] Elayachi, I., Pluvinage, G., Bensalah, M.O., Lebienvenu, M., Dlouhy, I., “To Joint
Effect of Temperature and Notch Root Radius on Fracture Toughness”, Engineering
Mechanics, Vol.12, nº1, p. 11-22, (2005).

[110] Akourri, O., Louah, M., Kifani, A., Gilgert, G., Pluvinage, G., “The Effect of Notch
Radius on Fracture Toughness JIc”, Engineering Fracture Mechanics 65, p. 491-505,
(2000).

301
Capítulo 8 Bibliografía

[111] Yoda, M., “The Effect of the Notch Root Radius on the J-Integral Fracture Toughness
Under Modes I, II and III Loadings”, Engineering Fracture Mechanics 26, No. 3, p.
425-431 (1987).

[112] Veidt, M., Schindler, H.J., “On the Effect of Notch Radius and Local Friction on the
Mode I and Mode II Fracture Toughness of a High-strength Steel”, Engineering
Fracture Mechanics 58, No. 3, p. 223-231,(1997).

[113] Yokobori, T., Konosu, S., “Effects of Ferrite Grain Size, Notch Acuity and Notch
Length on Brittle Fracture Stress of Notched Specimens of Low Carbon Steel”,
Engineering Fracture Mechanics 9, p. 839-847 (1977).

[114] Spink, G.M., Worthington, P.J., Heald, P.T., “The Effect of Notch Acuity on Fracture
Toughness Testing”, Materials Science and Engineering 11, p. 113-117 (1973).

[115] Zhang, J.P., Venugopalan, D., “Effects of Notch Radius and Anisotropy on the Crack
Tip Plastic Zone”, Engineering Fracture Mechanics 26, No. 6, p. 913-925 (1987).

[116] BS EN 10025-1:2004, “Hot Rolled Products of Non-alloy Structural Steels. General


Delivery Conditions”, British Standard (2004).

[117] BS EN 10002-1:2001, “Tensile Testing of Metallic Materials. Method of Test at


Ambient Temperature”, British Standard (2001).

[118] BS 7448: Part 1, “Fracture Mechanics Toughness Tests. Part 1. Method for
Determination of KIC, Critical CTOD and Critical J Values of Metallic Materials”
British Standard (1991).

[119] ASTM E 647, “Standard Test Method for Measurement of Fatigue Crack Growth
Rates”, American Society for Testing and Materials, Philadelphia (1997)

[120] Horn, A.J., “The Effect of Notch Acuity on Structural Integrity”, CORUS STC/TRA
SIN/CR/7043/2004/R (2005).

[121] Sherry, A.H., Lidbury, D.P.G., Bass, B.R. and Williams, P.T., “Developments in Local
Approach Methodology with Application to the Analysis/Reanalysis of the NESC-1 PTS

302
Capítulo 8 Bibliografía

Benchmark Equipment”, International Journal of Pressure Vessels and Piping, 78 Issues


2-3, p. 237-249 (2001).

[122] Gao, X., Ruggieri, C., Dodds, R.H.Jr, “Calibration of Weibull Stress Parameters Using
Fracture Toughness Data”, International Journal of Fracture, 92, nº2, p. 175-200
(1998).

[123] Minami, F. et al, “Method of Constraint Loss Correction of CTOD Fracture Toughness
for Fracture Assessment of Steel Components”, Proceedings of the International
Conference on Fitness-for-Service FITNET 2006, nº 33, Amsterdam (2006)

[124] O´Dowd, N.P., “Application of Two Parameter Approaches in Elastic-plastic Fracture


Mechanics”, Engineering Fracture Mechanics 52, Nº3, p. 445-465, (1995).

[125] Sherry, A.H., France, C.C, Goldthorpe, M.R., “Compendium of T-stress Solutions for
Two and Three Dimensional Cracked Geometries”, Fatigue and Fracture of Engineering
Materials and Structures, Vo. 18, Nº1, p. 141-155, (1995).

303

You might also like