Science of Extruder #1
Science of Extruder #1
Science of Extruder #1
MA201
The Art & Science of Extrusion
for Wire & Cable – Part I
Instructor: Dr. Stephan Puissant
MA201:
THE ART AND SCIENCE OF EXTRUSION
FOR WIRE AND CABLE – Part I
Stéphan Puissant
E-mail: stephan.puissant@brugg.com; stephan_puissant@yahoo.fr
Now
Middle XIX’s
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 1 -
Single screw extrusion. An Introduction.
Presentation Overview.
0 Presentation overview
1 Polymers, their viscosity and thermal behavior (11 slides).
2 Single Screw Extruder (55 slides)
3 Extrusion Crosshead (19 slides)
4 Cooling bath (7 slides)
5 References (1 slide)
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 2 -
1 Polymers mechanical and thermal characteristics.
1.1 Archimedes screw vs. plasticizing screw.
Extruder screw
Now.
An extruder screw difference with
these screws is related to the
polymer characteristics.
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 3 -
1 Polymers mechanical and thermal characteristics.
1.2 Introduction.
Molecular structure
High viscosity
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 4 -
1 Polymers mechanical and thermal characteristics.
1.3 Mechanics: definitions of terms used for polymer flows.
W L S=W.L
The shear rate is defined as
V/h (Velocity/height)
m V (velocity of upper plate F (pull force)
V
γ = in s =s −1 (S.I. units) plate)
h m
F/S (Force/Surface)
F N
τ= in 2 = Pa (S.I. units)
S m
ρ kg kg s s
m 3 m3
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 5 -
1 Polymers mechanical and thermal characteristics.
1.4 Mechanics: order of magnitude of viscosity.
The viscosity is very high for polymer melts (ca. 1 million higher than water)
η (Pa.s) ν (m2/s)
Air (0°C) 0.000017 (1.7 10-5 ) 1.33 10-5
Water (0°C) 0.0018 (1.8 10-3) 1.79 10-6
Water (20°C) 0.001 (10-3) 1.0 10-6
Mercury (20°C) 0.0016 (1.6 10-3) 1.2 10-7
Oils 0.01(1.0 10-2) to 1.0 1.0 10-5 to 1.0 10-3
Molten Polymers 100 (102) to 10 000 (104 ) 1.0 10-1 to 1.0 100
Molten Glass 100 (102) to 10 000 (104 ) 1.0 10-1 to 1.0 100
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 6 -
1 Polymers mechanical and thermal characteristics.
1.5 Mechanics: influence of high viscosity on flow.
Re = ρ ⋅ γ acceleration ρV h 2
Re = = t = V = ρ ⋅ V = ρ .V .h
η
η .∆ v η .V 2 η .V 2 η .V / h η
h h
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 7 -
1 Polymers mechanical and thermal characteristics.
1.6 Mechanics: influence of high viscosity on pressure levels.
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 8 -
1 Polymers mechanical and thermal characteristics.
1.7 Mechanics: dependence of viscosity to shear rate and temperature.
100000
10000
170
E ta (P a .s )
1000 210
250
100
10
0 ,1 1 10 100 1000
S h e a r ra te (s -1 )
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 9 -
1 Polymers mechanical and thermal characteristics.
1.8 Thermals: low heat conduction.
λ m 2
Thermal diffusivity: a= . − 6.5 ⋅ 10− 7
a = 13
ρ ⋅c s
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 10 -
1 Polymers mechanical and thermal characteristics.
1.9 Thermals: low heat conduction vs. high viscosity (1/2).
Br ≥ 2
Heat exchanged with the 2 walls at the center
of flow (k is conductivity of melt, Tw, wall
temperature, Tav average temperature of
melt): Q ≈ 2. − k .
(T − Tw ) = −8.k . (T − Tw )
( h 2 ) 2 h2
Shear (friction) heating is important and is
Ratio dissipation/conduction 2
4.η V 2
directly used in the melting process W
= h =
ηV 2 h 2
=
ηV 2
Q 8k (Tp − T ) 2k (T p − T )h 2 2k (Tp − T )
h2
Watt
In the case of extrusion η ≈10 3 Pa.s, k = 0,2
m.°C ⇒ Br ≥ 2
T p −T ≤100°C , V = 0.2m / s
Question: Majority of extruder have a maximum speed of 0.5m/s (30m/min or 251,3 rpm for
a D=38mm):
Will be dissipation or conduction the main phenomenon?
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 11 -
1 Polymers mechanical and thermal characteristics.
1.10 Thermals: low heat conduction vs. high viscosity (2/2).
310 DeltaTheoretical=10mm
T(°C)
250
210
i.e. increase of temperature in function of the 190
square of velocity. 170
( h ).h
W = η .γ 2 .h = η . V
2
2
150
10 100
l/h
Viscosity of LDPE 22D760 (Bayer)
1000
100000
10000 170
Question: only the first point are in accordance with this law 210
Eta (Pa.s)
How to explain it with the viscosity curve on the right? 1000
250
10
0,1 1 10 100 1000
Shear rate (s-1)
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 12 -
1 Polymers mechanical and thermal characteristics.
1.10 Thermals: Necessary melting Heat.
Q = C p .∆T + ∆H
Q = C p .( 280 − 20) + ∆H
Q =1700.290 + 41500
kJ
Q = 534.50
kg
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 13 -
2 The single screw extruder.
2.1 Generalities on extruder.
2.1.1 The role of the extruder.
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 14 -
2 The single screw extruder.
2.1 Generalities on extruder.
2.1.2 Screw and barrel.
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 15 -
2 The single screw extruder.
2.1 Generalities on extruder.
2.1.3 Screw and barrel functional zones.
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 16 -
2 The single screw extruder.
2.1 Generalities on extruder.
2.1.4 Other components.
Water cooled
Feeding flange Barrel Heating
zone Cover
Gearbox
X-Head
Water cooling Clamp
sleeves
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 18 -
2 The single screw extruder.
2.2 Feed zone.
2.2.1 Diagnosis: pressure and rotation speed dependence of output.
0.8
[kg/h/rpm]
50 rpm
75 rpm
0.4
100 rpm
0
50 100 150 200 250
Head pressure [bar]
Question: Why are outputs decreasing with head pressure?
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 19 -
2 The single screw extruder.
2.3 Feed zone.
2.3.2 Description of feed mechanism.
Direction of
screw rotation
Friction based mechanism.
Pitch=1D x An increasing solid conveying
z
angle ϕ increases the
y
velocity of the solid vs.
Ff
ϕ
W e screw
Vb/g
Vb/s Approximation:
Fna
ϕ Fp2 Geometry considered in
ϕ
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 21 -
2 The single screw extruder.
2.3 Feed zone.
2.3.4 Flat plate model: influence of channel depth.
(D=38mm=1.5”): ( P/ P0 = 1 , f f = 0 , 3 6 ) ,
e x t r u d e r 3 8 m m , f lig h t w id t h = 3 , 8 m m , f lig h t p it ch = 3 8 m m , PE.
45 27,5
Solids conveying is governed by difference 40 q(° ) 25
Ou t p u t ( k g / h )
Q(kg/h)
of friction forces between screw and barrel. 35
30
22,5
20
ff=0,36. 0
0 1 2 3 4 5 6 7 8
5
Ch a n n e l d e p t h ( m m )
5mm for P/P0=100, for ff=0,36.
Ou t p u t a nd con v e y in g a n g le in f u n ct ion of ch a n n e l d e p t h
( P/P0 = 1 0 0 , f f = 0 , 3 6 ) ,
e xt r u d e r 3 8 m m , f lig ht w id t h = 3 , 8 m m , f lig h t p it ch = 3 8 m m , PE.
40 27,5
Question: 35 q(° )
Q(kg/h)
25
22,5
Ou t p u t ( k g / h )
30 20
Why is the output decreasing above 25 17,5
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 22 -
2 The single screw extruder.
2.3 Feed zone.
2.3.4 Flat plate model: influence of flight pitch.
Out p ut ( kg /h)
fv= 0.2
50
flight pitch. Q(kg/h)
Barrel friction 40 ff= 0.45,
fv= 0.2
coefficient
30 Q(kg/h) ff= 0.4,
Max outputs may vary fv= 0.2
20
from 20kg/h to about 60 Q(kg/h)
ff= 0.33,
kg/h. 10
fv= 0.2
0
0 0,5 1 1,5 2 2,5
Fligh t Pit ch ( * D )
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 23 -
2 The single screw extruder.
2.3 Feed zone.
2.3.5 Flat plate model: influence of pressure.
Dependance on coefficient of friction and back pressure at the end of the feeding zone
(D=38mm=1.5”).
Higher back pressure reduces output.
Higher coefficient of friction against barrel reduces the pressure dependence of the output.
machine performance
40
(coefficient of friction)?
30
20
10
0 P/P0
1 10 100 1000
Q(kg/h), ff= 0.33 Q(kg/h), ff= 0.35 Q(k g/h), ff= 0.4 Q(kg/h), ff= 0,45 Q(kg/h), ff= 0.5
Q(kg/h), ff= 0,6
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 24 -
2 The single screw extruder.
2.3 Feed zone.
2.3.6 Grooved barrel.
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 25 -
2 The single screw extruder.
2.3 Feed zone.
2.3.9 Feed zone with helical grooves: its limit.
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 26 -
2 The single screw extruder.
2.3 Feed zone.
2.3.7 Feed zone with helical grooves: how it works.
S0
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 27 -
2 The single screw extruder.
2.3 Feed zone.
2.3.8 Feed zone with helical grooves: example of results.
2.5
Rate (kg/h/rpm)
2
30 rpm
1.5
60 rpm
1
0.5
0
0 100 200 300 400 500
Pressure (bar)
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 28 -
2 The single screw extruder.
2.3 Feed zone.
2.3.9 Feed zone with helical grooves: advantages and disadvantages.
Advantages:
Output depends on screw speed only
Product dimensions are easier to keep under control during ramps
Transient effects weak and only over a short period of time
pressure build-up capability
but:
Screw sections have to be carefully matched (melting capacity etc)
Feed section may not be adapted for some materials, particularly materials
with low 'internal' or intergranular coefficient of friction(but: Is there any
universal high-performance screw anyway?)
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 29 -
2 The single screw extruder.
2.3 Feed zone.
2.3.10 Comparison of the different feeding zones.
1400 28
1200 26
Qs ( k g/h/r pm )
1000 24
Q(k g/h)
800 22
600 20
400 18
200 16
0 14
5 10 15 20 25 30 35 40 45 50 55 60 5 10 15 20 25 30 35 40 45 50 55 60
N ( rpm ) N( rpm )
The solid material is compacted and gradually melted. The molten material accumulates into
a melt pool. (Pull-out tests by Maddock 1960)
Photo from [J.F.A.]p.172
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 31 -
2 The single screw extruder.
2.4 Melting zone.
2.4.2 Melting zone unwrapped.
Unwrap the screw into a plane. Solid and molten material separates
according to the scheme below. Material that melts early or late
does not have the same history!
Metering zone
Liquid
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 32 -
2 The single screw extruder.
2.4 Melting zone
2.4.3 Viscous dissipation against conduction (again!
.
Basic melting mechanism: "Tadmor model” (1968). More elaborate
models (Lindt, Han) can be traced back here
Barrel Melt film
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 33 -
2 The single screw extruder.
2.4 Melting zone.
2.4.4 Energy balance.
Eth = λ ⋅ S ⋅
Tw − Tm
δ
δ
E th U Eth
ηU 2
Ediss = S ⋅
2δ
Eth: Heating power Ediss: Dissipation power
λ: Thermal conductivity Tw: Barrel temperature
Tm: Melting temperature S: Surface of melt film
δ: Melt film thickness U: Relative barrel velocity
Stability: If δ increases, Eth and Ediss decrease, which tends to make δ
decrease again
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 34 -
2 The single screw extruder.
2.4 Melting zone.
2.4.5 Melting energy necessary for a given polymer.
Melting energy necessary to bring the material from the solid into the
liquid phase:
(
E p = Q ⋅ cs ( Tm − Ts ) + ∆hm )
Ep: Melting power Q: Mass throughput
cs: Heat capacity ∆hm: Heat of fusion
Tm: Melting temperature Ts: Solid bed temperature
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 35 -
2 The single screw extruder.
2.4 Melting zone.
2.4.6 Melting energy necessary for a given polymer.
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 36 -
2 The single screw extruder.
2.4 Melting zone.
2.4.7 Simple Tadmor melting model: screw pitch and number of flights.
Influence of pitch and number of flights on solid bed Axial m elt ing length versus pitch and num ber of flights
Decrease from 3.9D for 1flight, to 3.3D for two flights. 2,7
2,6
0,5 0,75 1 1,25 1,5 1,75 2 2,25 2,5 2,75 3 3,25 3,5 3,75 4 4,25 4,5
Pitch (*D)
Question: Why are most of screw at a pitch of 1D, when the figure above shows that we
could further reduce the melting length?
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 37 -
2 The single screw extruder.
2.4 Melting zone.
2.4.8 Simple Tadmor melting model: screw pitch and flight width.
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 38 -
2 The single screw extruder.
2.4 Melting zone.
2.4.9 Simple Tadmor melting model: influence of polymer.
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 39 -
2 The single screw extruder.
2.4 Melting zone.
2.4.10 Simple Tadmor melting model: its limits.
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 40 -
2 The single screw extruder.
2.4 Melting zone.
2.4.11 Improvement: the barrier zone.
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 41 -
2 The single screw extruder.
2.4 Melting zone.
2.4.12 Improvement: description of the barrier zone.
Main flight
Melt pool
Barrier flight
Solid bed
Primary Secondary
channel channel
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 42 -
Coffee Break
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 43 -
2 The single screw extruder.
2.5 Melt conveying.
2.5.1. Simplification of flow matter.
Is decomposed into:
Drag flow Pressure flow
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 44 -
2 The single screw extruder.
2.5 Melt conveying.
2.5.2. description of simplified flow.
W ⋅U z ⋅ h W ⋅ h 3 ∆P
Q = Qd − Qp Qd = Qp =
2 12 ⋅ η Z
Qd: Drag flow Qp: Pressure flow
W: Channel width h: Channel height
Uz: Rel. peripheral velocity ∆P: Pressure difference
η: Viscosity Z: Channel length
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 45 -
2 The single screw extruder.
2.5 Melt conveying.
2.5.3 Simplified flow first analysis.
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 46 -
2 The single screw extruder.
2.5 Melt conveying.
2.5.4 Simple complete screw model: Interaction with feed zone.
friction on barrel. 35
Out p ut ( k g/h)
Out put (kg/h)ff= 0,325
Out put (kg/h) ff= 0,350
performance is based on the 25 Out put (kg/h) ff= 0,375
Out put (kg/h) ff= 0,400
interaction between: 20 Xhead out put (kg/h) L= 5,
R= 20
0
0 200 400 600 800
Ba ckp re ssure @ X he a d ( ba r)
Question: To what do the different curves (extruder output for different friction
coefficients) correspond in reality?
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 47 -
2 The single screw extruder.
2.5 Melt conveying.
2.5.5 Simple complete screw model: Influence of metering flight depth.
40 Hp=2,16mm
Output (kg/h),
35 Hp=3,00 mm
30 Output (kg/h),
Hp=5,0 mm
25
Xhead output (kg/h)
20 L=5, R=20
15 Xhead output (kg/h)
L=3, R=20
10
5
0
0 100 200 300 400 500 600 700 800
Pressure end metering zone (bar)
Question: any idea why the curve for depth=5.0mm stops in the region of low pressure,
high output?
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 48 -
2 The single screw extruder.
2.5 Melt conveying.
2.5.6 Simple complete screw model: Influence of metering flight depth.
Pressure along the screw (D=38mm=1.5”, N=100rpm):
Case of real metering depth =2.16mm.
For P<10 bar (Q=18.9kg/h) metering zone consuming pressure
Evolution of pressure along screw (Hm=2.16mm)
for different outputs
500
450
400
Pressure (bar)
350
18,85
300 17,46
250 16,08
13,68
200
150
100
50
0
0 5 10 15 20 25
Axial length(/D)
175
Pressure (bar)
If:
150
125 35,62
24,12
100
16,57
P<10bar(Hm=4,2mm), 75
50
11,49
P<50bar(Hm=4,6mm), 25
P<150bar(Hm=5mm)
0 5 10 15 20 25
Axial length (/D)
Pressure (bar)
300
35,63
250 23,82
pressure) 200 15,81
11,09
150
But, as this output is higher than the one 100
itself.
0 2,5 5 7,5 10 12,5 15 17,5 20 22,5 25
Length along screw (/D)
Output decreases dramatically until the Evolution of pressure along screw (Hm=5mm)
for different outputs
screw is again full. 600
550
500
450
32,72
Pressure (bar)
400
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 50 -
2 The single screw extruder.
2.6 Mixing zones.
2.6.1 Type of mixing.
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 51 -
2 The single screw extruder.
2.6 Mixing zones.
2.6.2 Description of the two type of mixing.
3.0 mm
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 52 -
2 The single screw extruder.
2.6 Mixing zones.
2.6.3 Evaluation criteria of mixing and solutions.
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 53 -
2 The single screw extruder.
2.6 Mixing zones.
2.6.4 Some different mixing zones.
Stat-dyn device
Saxton device
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 54 -
2 The single screw extruder.
2.6 Mixing zones.
2.6.5 Conclusion.
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 55 -
2 The single screw extruder.
2.7 General relations for Extruder.
2.7.1 Output range for standard extruder.
Specific output.
2.5”
Specific output is proportional to
D3 at same L/D.
L/D
Qsp(38-25D)=Qsp(60-24D)*(38/60)3 *(25/24)=1.1*0.254*25/24=0.29kg/h/rpm.
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 56 -
2 The single screw extruder.
2.7 General relations for Extruder.
2.7.2 Needed power of motor (for different polymers).
As we have seen above (in §2) the melting of a polymer needs a certain energy.
Q = C p .∆T + ∆H
From this energy, one can determine the necessary power of motor needed, knowing that
the plasticizing effect is mainly done by the screw.
From Ref. [G.B.A.], p171,following practical values are proposed
E (kJ/kg) 720-900 648-792 828-1008 648-828 612-792 612-792 1080-1260 864-1044 972-1152 864-1044
For example a 60-24D with a maximum output of 120kg/h of HDPE will need a motor of:
Pmin=0.20(kWh/kg)*120(kg/h)=24kW, or Pmax=0.25*120=30kW.
Question: What will happen when running PA6 on a extruder designed for
HDPE with corresponding motor (30kW)?
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 57 -
2 The single screw extruder.
2.8 Conclusions for the extruder part: screw design criteria.
The design of extruder screws must account for the most important
thermodynamic and rheological properties of the material.
En extruder designed for a given output of a given polymer may be not capable of
working with another material or with higher output.
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 58 -
3 The extrusion head.
3.1 Generalities on Cross head.
3.1.1 Description.
Extruder
Crosshead
Wire
Insulation
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 59 -
3 The extrusion head.
3.1 Generalities on Cross head.
3.1.2 Construction with two main components.
Tooling. The tooling has the task of shaping the extrudate, resp. of
applying the insulation on the core.
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 60 -
3 The extrusion head.
3.2 The Spider die.
3.2.1 Construction and applications.
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 61 -
3 The extrusion head.
3.2 The spider die.
3.2.2 Velocity repartition.
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 62 -
3 The extrusion head.
3.3 The coathanger distributor.
3.3.1 Construction and applications.
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 63 -
3 The extrusion head.
3.3 The coathanger distributor.
3.3.2 The drawbacks of the coathanger distributor.
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 64 -
3 The extrusion head.
3.4 The helical flow distributor.
3.4.1 Construction and applications.
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 65 -
3 The extrusion head.
3.4 The helical flow distributor.
3.4.2 Distributed weld lines.
Manifold Distributed
weld lines
Slit
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 66 -
3 The extrusion head.
3.5 The distributor.
3.5.1 The flow distributor design and analysis.
But: The result can not be better than the available material data
and operating practice!
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 67 -
3 The extrusion head.
3.5 The distributor.
3.5.1 Simulation and comparison to experiments.
1.10
Measurement
Relative
Flowrate Calculation
1.05
Distributor
1.00
Flux separator
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 68 -
3 The extrusion head.
3.6 The extrusion tool.
3.6.1 Two types of extrusion tools.
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 69 -
3 The extrusion head.
3.6 The extrusion tool.
3.6.2 Tube tools parameters: DDR definition.
de di
D −D
2 2
DDR = e i
d −d
2
e i
2
High values of the DDR permit to keep shear stresses low inside the
tool (avoid melt fracture), but yet maintain high production speeds.
Condition: High elongational strength of the melt acceptable.
The DDR may reach values up to 200 in practice (TEFLON 340)
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 70 -
3 The extrusion head.
3.6 The extrusion tool.
3.6.3 Tube tools parameters: Some practical values of DDR.
The values given below may still depend on the grade of the polymer used (from Ref.
[B.B.], pp. 50-51).
Polymer PVC PVC PE, all PE, PP PA12 PA6 PBT TPE PVDF ETFE FEP PFA
pure with types with
50% 50%
chalk ATH
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 71 -
3 The extrusion head.
3.6 The extrusion tool.
3.6.4 Tube tools parameters: DRB.
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 72 -
3 The extrusion head.
3.6 The extrusion tool.
3.6.5 Pressure tool.
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 73 -
3 The extrusion head.
3.6 The extrusion tool.
3.6.6 Pressure tool: simulation result.
3 132
1000 m/min
p [bar]
2 88
1 44
0 0
0 4 7 11 15 0 4 7 11 15
x [mm] x [mm]
tau [bar]
T (°C)
216 0.0
208 -5.5
200 -11.0
0 4 7 11 15 0 4 7 11 15
x [mm] x [mm]
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 74 -
3 The extrusion head.
3.6 General relation between pressure and melt temperature in Xhead.
Specific heat 1.20 1.10 1.45 1.40 1.40 1.40 2.30 2.30 2.25 2.10 2.15 2.15 1.55 1.25 1.38 1.18
Cp
(kJ/kg/°C)
Density ρ 1.06 1.40 1.18 1.08 1.02 1.20 0.92 0.92 0.95 0.91 1.13 1.14 1.35 1.35 1.76 2.15
(gr/cc)
ρ.Cp 1272 1540 1711 1512 1428 1680 2116 2116 2137.5 1911 2429 2451 2092 1687 2429 2537
(kJ/m3/°C)
∆T /100bars 7.86 6.49 5.84 6.61 7.00 5.95 4.73 4.73 4.68 5.23 4.12 4.08 4.78 5.93 4.12 3.94
(°C)
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 75 -
3 The extrusion head.
3.8 Conclusions for the crosshead part.
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 76 -
4 Cooling bath.
4.1 Heat transfer on a piece of cable.
Q conduction z
dz
2
= ∫ k ∇T
n d ∂ 2 +
t 2 -
Heat transfer on ∂ 2 -
Q 2 = ∫ k ∇ T n d ∂ 2
z −
dz
conduction
-
HEat transfer on ∂ 1
Q convection
= ∫ −hTsurface−Twater d ∂ 1
t t
2- 1
Heat balance:
∫ ρC p w⃗ . ∇ Td Ω= ∫ k ∇ .T . ⃗n . d ∂Ω= ∫ −h(Tsurf.−Twat. ). d ∂ Ω 1 + ∫ k ∇ .T . ⃗
n. d ∂ Ω 2 +
−
∫ k ∇ .T .n
+
⃗ . d ∂Ω 2
Ω ∂Ω ∂ Ω1 ∂ Ω2 − ∂Ω2
+
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 77 -
4 Cooling bath.
4.2 Heat transfer general assumptions.
Convection:
Coefficient of convection in water h is depending on the type of flow inside the
water:
A value of 1000 W.m-2.K-1 is often used.
Simplification:
We can show that the conduction in wire direction is negligible against the
convection in the same direction (number of Peclet).
P =
Q
=
R1 . ρ . C . R2 −R1 . ρ . C w . L
conv
2
Cu pCu
2 2
Isol pIsol
e
Q cond 2R1 . k Cu 2 R2 −R1 . k Isol
2 2 2
Numerical application:
kg J W
Polyethylene insulation: ρ PE ≈1000 3
, C p−PE ≈2500 , k PE ≈0 . 33 ,
m kg.° C m.° C
kg J W
Core conductor in cupper: ρ Cu≈8940 3
, C p−Cu≈385 , k Cu≈389 ,
m kg . °C m.° C
Conductor radius: R1=0 . 15mm ,Insulation radius R2=0 .3 mm
m
Line speed w=20 ,Unit cooling through length L=1 m, P e≈1,4. 104 >>1
s
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 78 -
4 Cooling bath.
4.3 Heat transfer analytical solution.
4.3.1 Validity conditions.
We use the ratio of the two heat transfers in radial direction, the one
by conduction (in the polymer) and the other by convection (with
water):
h . ΔT h
water .R water
Bi= =
k .
ΔT
R k
solid
solid
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 79 -
4 Cooling bath.
4.3 Heat treansfer analytical solution.
4.3.2 Example.
Example PE wire:
Analytical solution:
Length to reach a certain temperature
R1 . ρ . C . R2 −R1 . ρ .C .w . Log Tm L −Twater
2 2 2
L=
Cu pCu
−2 . h. R2
Isol pIsol
Tm z =0 −Twater
Numerical application:
Polyethylene insulation: ρ PE ≈1000
kg
3
, C p−PE ≈2500
J
kg.° C
, k PE ≈0 . 33
W
m.° C
,
m
Core conductor in cupper: ρ Cu≈8940
kg
m 3
, C p−Cu≈385
J
kg . °C
, k Cu≈389
W
m.° C
,
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 80 -
4 Cooling bath.
4.4 Heat transfer numerical solution.
4.4.1 Numerical resolution.
Cylindrical coordinates
At any point (conduction <<convection in axis dir.
ρC p w .
∂T
∂z
=k
1 ∂
r ∂r
r
∂T
∂r
With same boundary conditions as above
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 81 -
4 Cooling bath.
4.4 Heat transfer numerical solution.
4.4.2 Finite difference method of solution.
Graphical comparisons
TmCu-TmPE (°C)
Temperature(°C)
Temperature (°C)
100 100 100 Tm numerical(°C)
TmCu-TmPE (°C) Tm analytical (°C)
75 75 Tm numerical(°C)
75
Tm analytical (°C)
50 50 50
25 25 25
0 0
0
0 2,5 5 7,5 10 12,5 15 17,5 20 0 2,5 5 7,5 10 12,5 15 17,5 20 0 2,5 5 7,5 10 12,5 15 17,5 20
Ref
[J.F.A]: J.F.Agassant, “Polymer Processing, Principles and Modelling”, Hanser
Verlag, 1991, Münich,Vienna, New-York.
[G.A.M.]: G.A. Martin et al., “Der Einschnecken Extruder- Grundlagen und
Systemoptimierung”, VDI-Veralg, Düsseldorf 2001.
[C.R.]: C. Rauwendahl, “Polymer extrusion” , Hanser Verlag, 3rd. Edition,1994,
Münich,Vienna, New-York.
[B.B.]: B. Buluschek, “The Art and Science of Extrusion for Wire & Cable 1”,
52nd. IWCS professional Development Course, Nov. 2003.
[G.E.]: General Electric’s Web site: www.geplastics.com
[D.S.]:D. Schlaefli: « Plastics extrusion: a short Overview », International
Technical Symposium 2000, Ecublens (CH).
[S.P.]: S. Puissant: « DC32: Etude d’outillage en extrusion », Cours FITI3 GIP-
InSIC, Ecole des Mines de Nancy, 2002-2011, Saint Dié des Vosges, France.
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 84 -
Thanks
20111111 IWCS – The art and science of extrusion for wire and cable Part 1 – S. Puissant - 85 -