Nothing Special   »   [go: up one dir, main page]

ZOLLERN-Broschuere ZAT Drewerksgetriebe ENG

Download as pdf or txt
Download as pdf or txt
You are on page 1of 20
At a glance
Powered by AI
The document discusses slewing gears produced by Zollern, including their applications, design, advantages, and specifications needed for design.

Slewing gears are used to rotate heavy loads like cranes and wind turbines. They are commonly used in applications such as mobile cranes, ship cranes, construction equipment, and wind turbines.

Zollern slewing gears have advantages such as compact design, long service life, modular design, easy maintenance, high efficiency, and ability to work in tight spaces.

Drive Technology

Slewing
gears
The ZOLLERN Group
ZOLLERN is one of the pioneers
in the metal industry. At several locations
in Europe, North America and Asia,
2,400 employees develop, produce and
service a wide range of high-quality
metal products. ZOLLERN supplies
sophisticated solutions for a wide range
of applications with its business areas
of drive technology, investment casting,
sand casting and forging, mechanical
engineering elements and steel profiles.

Contents Page

Slewing gears 3

Application examples 4

Modular gear design 6

Output torques 9

Operating factor K for slewing gears 11

Gear ratios 11

Technical data, »bottom flange« design 12

Technical data »top flange« design 14

Model series 16

Installation instructions and connection design 17

Possible installation positions 18

Lubricant recommended 18

Data necessary for the design 19


Slewing gears 02 // 03

ZOLLERN slewing gears


Powerful and cost-effective

ZOLLERN slewing gears Fields of application


have proved their value with high performance • Truck-mounted and mobile cranes
in demanding operation and under the toughest • Ship and on-board cranes
operating conditions. Their stand-out • Shipyard and port cranes
advantages and special characteristics are • Container gantry cranes
• Construction-site cranes and conveying equipment
• Compact design • Loading and warehouse cranes
• Long service life • Cable and hydraulic excavators
• Modular gear design • Offshore cranes
• Easy maintenance • Wind turbines
• High efficiency • Tunnel drilling machines
• Practical shape
The slewing gear planetary gears are also used
With the ready-to-install unit from ZOLLERN, cost-ef- in ZOLLERN rope winches, industrial gears,
fective solutions are possible even in tight spaces. free-fall winches and travel drives.
ZOLLERN drives consist of design- and system-
compatible gear components.
High-performance series
For demanding applications

Wind turbine Hydraulic excavator

Mobile crane Tunnel drilling machine Ship crane

Standard series

Size 3.19 3.20 3.22 3.24 3.25

Typical
drive unit class M3 M4 M6 M2 M5
according to FEM
Application examples 04 // 05

Tower crane Lattice boom crane Oil platform Bucket wheel excavator

3.26 3.27 3.28 3.29

M4 M6 M7 M8
Modular gear design

Input
designs

Bevel gear Hydraulic

Design
of planetary gear

2-stage 3-stage

Housing types
and
Pinion design

Bottom flange »FU«


Modular gear design 06 // 07

Our advantages for you


• Flexible customer connection
• Adaptable to all common motors

Electric Free shaft

Our advantages for you


• Gearing designed
according to ISO 6336
• Modular gear design
• Finely graduated gear ratios com-
bined from standard serial parts
• High torque density
• Weight-optimized and
compact design
• Harmonious torque step over the
entire series
4-stage 5-stage

Our advantages for you


• Design using finite element method
• Tension and weight-optimized
design
• Single-part shaft pinion
• Pinion design according to
standard series
• Quenched and tempered quality
steels
• Ground tooth flanks
• Optimized tooth shape
• Tip relief
Top flange »FO« • Asymmetrical crowning
»  OLLERN slewing gears
Z
are specially designed for
applications in wind turbines
as well as in the shipping, port
and offshore industries. «
Output torques 08 // 09

Output torques
Preliminary gear selection Calculation of the corrected torque
In order to determine the right gear size for the
application, the loading, duration (T) and load TC = T • K
spectrum must first be known.
The F.E.M. (Fédération Européenne de la Manutention T = required torque
Section I; Rules for the design of hoisting appliances; TC = corrected torque
3rd edition 1998) differentiates between the following K = operating factor (according to the
loads: operating class and the spectrum class
from the table on page 11)
• Load I: crane operating with no wind Tdyn perm = dynamically permitted torque according to
• Load II: crane operating with wind catalogue for class M5-L2-T5
• Load III: crane under extraordinary loads
The following must apply for selection of the gear size:
The maximum output torques given in the technical TC ≤ Tdyn perm
data relate to the load spectrum L2, operating class
T5 and a reference speed of 15 rpm for load case II. If the operating spectrum or speed deviate from this,
the correct gear size is determined individually.
If the rotating mechanism is classified in a different
drive unit class then it is possible to preselect the
correct gear size by converting the required
maximum torque using the operating factor K.
ZOLLERN application engineers then take care of the
individual design.

130.000
121.000
120.000

110.000

100.000
100.000

90.000
82.700
80.000
Output torques (Nm)

70.000
62.500
60.000

50.000 47.000

40.000
34.000

30.000
24.000

20.000 15.700

9.300
10.000

3.19 3.20 3.22 3.24 3.25 3.26 3.27 3.28 3.29


Size
»  OLLERN slewing gears
Z
are known for their strong
performance under tough
conditions in the construction
machinery industry. «
Operating factor K for slewing gears / Gear ratios 10 // 11

Operating factor K for slewing gears


Description T2 T3 T4 T5 T6 T7 T8

Operating Mean operating time over 0.25 over 0.5 over 1 over 2 over 4 over 8
over 16
class per day in h calculated over 1 year to 0.5 to 1 to 2 to 4 to 8 to 16

Service life in h 400 to 800 to 1,600 to 3,200 to 6,300 to 12,500 to 25,000 to


8 years, 200 days/year 800 1,600 3,200 6,300 12,500 25,000 50,000

Load
Drive unit class operating factor K
spectrum

L1 Maximum load only as an exception, M1 M2 M3 M4 M5 M6 M7


Light otherwise light load 0.91 0.94 0.97 0.99 1.02 1.08 1.17

L2 Roughly equal shares of low, medium M2 M3 M4 M5 M6 M7 M8


Medium and high loads 0.92 0.95 0.98 1.00 1.09 1.16 1.23

L3 Loads are always close to the maxi- M3 M4 M5 M6 M7 M8 M8


Heavy mum load 0.95 1.01 1.08 1.15 1.21 1.27 1.33

L4 M4 M5 M6 M7 M8 M8 M8
Always maximum load
Very heavy 1.19 1.26 1.31 1.36 1.41 1.46 1.52

Gear ratios the model series


// 2-stage // 3-stage // 4-stage // 5-stage

17 46 199 1,397
22 61 236 1,529
26 72 279 1,676
29 84 322 1,764
35 94 362 1,811
108 418 1,934
130 435 2,089
144 501 2,173
154 542 2,347
177 555 2,507
650 2,708
676 2,817
720 3,009
780 3,250
864 3,380
922 3,598
1,064 3,900
1,178 4,056
4,680

Preferred series in bold type


Technical data
»Bottom flange« design (FU)

24 x ø B4
B5

B6
B7
5 mm

ø B3

ø B2

ø B1
Technical data - »Bottom flange« design (FU) 12 // 13

Size Torques1 Main gear dimensions Gear Eccen- Output pinion Total Relief
dimensions tricity weight (see
C S. 16)

­
»FU« Tdyn. zul Tstat ø B1 ø B2±0,2 ø B3 h7 B42 B5 B6 B7 2 stages 3 stages e mn z b x 3 stages B10

(Nm) (Nm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (kg) ­­­ (mm)

3.19 9.300 11.250 260 235 210 Ø 13,5 20 15 55 395 464 2,5 10 12 90 0,5 100 275

3.20 15.700 19.000 282 258 230 Ø 13,5 20 15 70 419 488 2,5 12 13 110 0,5 135 297

3.22 24.000 29.000 326 296 265 Ø 17,5 25 15 72 457 530 2,5 14 13 130 0,5 195 341

3.24 34.000 41.000 368 330 295 Ø 17,5 25 20 90 536 623 2,5 16 13 140 0,5 285 383

3.25 47.000 57.000 400 362 325 Ø 22 30 20 100 530 616 2,5 16 14 150 0,5 340 415

3.26 62.500 79.000 437 400 365 Ø 22 30 20 100 629 728 2,5 18 13 170 0,5 445 452

3.27 82.700 100.000 480 435 395 Ø 26 40 20 110 675 780 2,5 20 13 180 0,5 580 495

3.28 100.000 127.000 510 450 410 Ø 26 40 25 140 754 867 2,5 20 14 200 0,5 730 525

3.29 121.000 158.000 565 510 460 Ø 26 40 25 174 765 881 2,5 22 14 200 0,5 895 580

1)
Output torques according to FEM Section I M5/L2/T5 at nout = 15 rpm
The stated output torques may vary in the case of design according to the specifications of classification organisations or if the gear ratios or pinion gearing deviate
from the preference series.
2)
Strength class 10.9 for DIN EN ISO 4762 fixing bolts and 300HV (DIN EN ISO 7092) washers
Technical data
»Top flange« design (FO)

C
24 x ø A4
A5

A6
A8

A7
5 mm

ø A9

ø A3

ø A2

ø A1
Technical data - »Top flange« design (FO) 14 // 15

Size Torques1 Main gear dimensions Gear Eccen- Output pinion Total Relief
dimensions tricity weight (see
C S. 16)

­
»FO« Tdyn. zul Tstat ø A1 ø A2±0,2 ø A3 h7 A42 A5 A6 A7 A8 ø A9 h7 2 stages3 stages e mn z b x 3 stages A10

(Nm) (Nm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (kg) ­­­ (mm)

3.19 9.300 11.250 320 290 250 Ø 13,5 20 8 45 165 180 285 354 2,5 10 12 90 0,5 100 335

3.20 15.700 19.000 355 325 285 Ø 13,5 20 8 50 190 225 299 368 2,5 12 13 110 0,5 135 370

3.22 24.000 29.000 395 365 320 Ø 17,5 25 8 60 205 250 324 397 2,5 14 13 130 0,5 195 410

3.24 34.000 41.000 430 400 355 Ø 17,5 25 10 75 255 280 371 458 2,5 16 13 140 0,5 285 445

3.25 47.000 57.000 475 440 390 Ø 22 30 10 85 280 300 385 471 2,5 16 14 150 0,5 340 490

3.26 62.500 79.000 515 475 430 Ø 22 30 10 90 330 330 399 498 2,5 18 13 170 0,5 445 530

3.27 82.700 100.000 575 525 465 Ø 26 40 10 100 355 360 430 535 2,5 20 13 180 0,5 580 590

3.28 100.000 127.000 600 550 500 Ø 26 40 15 110 395 375 499 612 2,5 20 14 200 0,5 730 615

3.29 121.000 158.000 660 600 550 Ø 26 40 15 125 425 410 514 630 2,5 22 14 200 0,5 895 675

1)
Output torques according to FEM Section I M5/L2/T5 at nout = 15 rpm
The stated output torques may vary in the case of design according to the specifications of classification organisations or if the gear ratios or pinion gearing deviate
from the preference series.
2)
Strength class 10.9 for DIN EN ISO 4762 fixing bolts and 300HV (DIN EN ISO 7092) washers

// Pin wheel lengths »A8« for top flange »TF«


min. max.
Size length length
1.000
165
170
180
190
200
205
210
220
230
240
250
255
260
270
280
290
300
330
355
375
395
400
425
450
475
500
550
600
650
700
750
800
850
900
950

A8 A8

3.19 165 800 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •


3.20 190 1.300 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
3.22 205 1.300 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
3.24 255 1.300 • • • • • • • • • • • • • • • • • • • • • • • •
3.25 280 1.300 • • • • • • • • • • • • • • • • • • • • •
3.26 330 1.300 • • • • • • • • • • • • • • • • • •
3.27 355 1.700 • • • • • • • • • • • • • • • • •
3.28 395 1.700 • • • • • • • • • • • • • • • •
3.29 425 1.700 • • • • • • • • • • • • • •

• Preferred series
Model series
ZOLLERN’s standard range of slewing gears already include an impressive array of standard features.

Parking brake Output housing


The parking brake is a spring action disc brake (failsafe). All output housings in the standard range
It is hydraulically released. The holding brake is not an are made from spheroidal graphite cast iron
operating brake and can only be operated at standstill. and are configured for optimum weight and
friction using finite elements.
Output pinion
The configuration of gearbox and pinion toothing
depends on the selection of the pitch diameter of
the pinion tooth system. For optimum pinion tooth
system, see table, pages 13, 15.

// Without ZOLLERN optimization

Pinion tooth flank Meshed tooth flanks

When the output pinion is under load, the shaft and tooth are
deformed. This deformation can lead to meshing interference and
edge wear.

Standard tooth flank

Meshing interference and edge wear

// With ZOLLERN optimization

The pairing of output pinion and ring gear is calculated depending on the specific application. Shaft deformation and deflection of the
output pinion are considered under load.

Pinion tooth flank Meshed tooth flanks

In order to compensate for shaft deformation and deflection, the


tooth flank is corrected with asymmetric crowning in the angle of
the flank, appropriate to the torque. This prevents edge wear and
ensures optimum load distribution.
Asymmetric crowning

In addition, the tooth deformation under load is calculated and the


tooth flank is corrected by means of tip relief. This prevents the ring
gear from meshing too early.

Tip relief

Using tooth flank corrections, crowning and tip relief significantly


increases the service life of the output pinion and ring gear.
Significantly narrower tooth crown widths can be used.

ZOLLERN optimization

Optimum meshing
Model series / Installation instructions and connection design 16 // 17

Installation instructions and


connection design
To ensure perfect functioning and optimal power transmission between the gear and the driven mating gear, the gears
require a connection design that is resistant to bending and twisting. This requires conformance with the shape and
position tolerances described below.

Top flange »FU« Bottom flange »FO«

min. ø A10

min. ø B10 Values according to Values according to


DIN ISO 286-1 DIN ISO 286-1

IT8 A IT8 A

B
ø A3 H8
ø A2

A
ø B3 H8

ø B2

A Values according to
ø A9 H8 DIN ISO 286-1

IT8 B

// Fixing bolts for steel construction (customer connection)

Fixing holes Thread size


A
for steel construction
according to DIN-EN
20273-m

ø 11.0 M 10 0.4

ø 13.5 M 12 0.6

ø 17.5 M 16 0.6

ø 22.0 M 20 0.8

ø 26.0 M 24 0.8
Possible installation positions
Position Output pinion

Bottom Horizontal Top

Corrosion protection Options (available on request)


Standard C3 coating, "high" protection duration • Service brake
(epoxy resin), colour RAL 9002 (grey-white). • Manual brake control
• Electric drive with asynchronous or
Packing for storage and transport torque motor
Internal preservation of gear for two-year storage. • Sensors for position recognition
• Speed measurement
Lubricant • Temperature monitoring
Gear oil: mineral oil • Supported torque arm for
Pinion toothing: To achieve the full service life, the torque monitoring
tooth flanks must always have an adequate grease • Splined output pinion
film. Determine the type of lubricant to be used in • Case-hardened pinion for top requirements
consultation with the ring gear manufacturer. • Synthetic oil

Lubrication recommendation
Labelling Labelling Minimum standard
according to DIN 51 502 according to ISO 6743-6 of the lubricant
Gear oil
DIN 51 517 T3: CLP 220 and
CLP ISO-L CKC (or CKD)
ISO 12925-1: CKC / CKD 220

First oil change 200 operating hours after commissioning

Subsequent oil changes every 1,000 operating hours, at least every twelve months

Attention Operating conditions


Gear oils based on mineral oil and PAO must not be The slewing gears are designed for use in the central
mixed with synthetic gear oil based on polyglycol. European region. Permitted oil temperature (in
Do not mix greases with different soap bases. operation) -20°C to +70°C and/or ambient temperature
(out of operation) at least -30°C.
Possible installation positions / Lubrication recommendation / Data necessary for the design 18 // 19

Data necessary for the design


Company/address Date

Responsible department Contact Enquiry No.

Phone Fax E-mail

Requirement / number of units For use with (e.g. truck-mounted, on-board, offshore or port For use as (e.g. slewing gear, swivel gear, pitch gear)
mobile crane, construction-site crane, wind turbine)

// Operating data - design criteria // Technical data // Hydro motor drive


(all values relate to the output of the slewing gear)

Output/design Output pinion Make


Dynamic load Module m (mm) Type
Output torque Mdyn (Nm) Number of teeth z Available displacement Q (l/min)
Speed on output nout (rpm) Available differential
tooth width b (mm) pressure Øp (bar)
Mdyn corresponds with SM max II according to FEM Section I
Profile shift
Installed power P (kW) coefficient x
// Electric motor drive
Static load Standard x=0.5 for output gear
Output torque Mstat (Nm) Make
❑ Shaft pinion (standard)
Design according to FEM Section I Type
Drive unit class Load spectrum Operating class
❑ Splined output pinion Output (kW)
❑M ❑L ❑T ❑ Hardened and grinded tooth flanks Speed (rpm)
Control (BF; On/Off, gentle start…)
Approval by classification organisation ❑ Case-hardened and Voltage, current type
❑ ABS ❑ DNV•GL grinded tooth flanks Tightening torque MA (Nm)
❑ LRS ❑ RMRS ❑ Other___________ Ring gear, tooth flanks Tilting torque MK (Nm)
❑ soft ❑ hardened Duty cycle ED (%)
Alternative design Start-ups per hour
Ring gear data
Mdyn nout Time share z
Spectrum (Nm) (rpm) (%) b (mm)
1 x // Brake

2
❑ Inner gearing
Parking brake
❑ External gearing
3 ❑ yes ❑ no
Gear ratio
4 i ± % Design
100 % ❑ Spring-pressure disc brake
Gear attachment
❑ with add. backstop ❑ brake motor
❑ Bottom flange ❑ Top flange
Calculated service life in h (hours) ❑ Disc brake ❑ Drum brake
Output unit, length (mm)
Safety factor against (–) Actuation
Position output pinion ❑ hydraulic min. release pressure (bar)
❑ Yield strength ❑ Breakdown Orientation Output gear ❑ electric/ max. release pressure (bar)
at ❑ Mdyn ❑ Mstat (Nm) ❑ bottom ❑ top ❑ horizontal magnetic Expected back-pressure (bar)

// Other

// Scope of supply

❑ Motor ❑ Coupling ❑ Incremental shaft encoder ❑ Acceptance


❑ Load holding valve ❑ Motor lantern ❑ Hydraulic aggregate ❑ Certificates
❑ Brake on input ❑ Torque arm ❑ Hydraulic control
Germany
Plants

Heustrasse 1

zat@zollern.com 
www.zollern.com 
T +49 7586 959-0
88518 Herbertingen

F +49 7586 959-575


Group headquarters

ZOLLERN GmbH & Co. KG


Subsidiaries & local offices

Photos: Shutterstock - p.4, Dabarti CGI, PI – p.5, zhengzaishuru – p.8, Yobidaba – p.10, Fotomicar 123rf – S. 4, masterwilu, Andreas Schindl, Zoran Orcik, evrenkalinbacak –
p. 5, Ivan Kruk, Elena Shchipkova – © ZOLLERN I 09.19 I 112 I www.creaktiv-werbung.com Errors and amendments excepted. Pictures and illustrations similar.

You might also like