Nothing Special   »   [go: up one dir, main page]

9702 Scheme of Work (For Examination From 2022)

Download as pdf or txt
Download as pdf or txt
You are on page 1of 98

Scheme of Work

Cambridge International AS & A Level


Physics 9702
For examination from 2022

Version 1
In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of
our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important
to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES March 2020


Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of
Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we
cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.
Contents

Introduction .................................................................................................................................................................................................................................................. 4
1 Physical quantities and units .................................................................................................................................................................................................................... 9
2 Kinematics .............................................................................................................................................................................................................................................. 14
3 Dynamics ................................................................................................................................................................................................................................................ 18
4 Forces ..................................................................................................................................................................................................................................................... 23
5 Work, energy and power ........................................................................................................................................................................................................................ 26
6 Density, pressure and deformation of solids .......................................................................................................................................................................................... 29
7 Waves and superposition ....................................................................................................................................................................................................................... 33
8 Electricity and d.c. circuits ...................................................................................................................................................................................................................... 43
9 Motion in a circle ..................................................................................................................................................................................................................................... 50
10 Gravitational fields ................................................................................................................................................................................................................................ 52
11 Temperature, ideal gases and thermodynamics .................................................................................................................................................................................. 56
12 Oscillations ........................................................................................................................................................................................................................................... 62
13 Electric fields......................................................................................................................................................................................................................................... 65
14 Capacitance .......................................................................................................................................................................................................................................... 69
15 Magnetic fields and alternating currents ............................................................................................................................................................................................... 72
16 Quantum physics .................................................................................................................................................................................................................................. 79
17 Particle physics and nuclear physics .................................................................................................................................................................................................... 84
18 Medical physics .................................................................................................................................................................................................................................... 90
19 Astronomy and cosmology ................................................................................................................................................................................................................... 95
Scheme of Work

Introduction
This scheme of work has been designed to support you in your teaching and lesson planning. Making full use of this scheme of work will help you to improve both
your teaching and your learners’ potential. It is important to have a scheme of work in place in order for you to guarantee that the syllabus is covered fully. You
can choose what approach to take and you know the nature of your institution and the levels of ability of your learners. What follows is just one possible approach
you could take and you should always check the syllabus for the content of your course.

Suggestions for independent study (I) and formative assessment (F) are also included. Opportunities for differentiation are indicated as Extension activities; there is
the potential for differentiation by resource, grouping, expected level of outcome, and degree of support by teacher, throughout the scheme of work. Timings for
activities and feedback are left to the judgement of the teacher, according to the level of the learners and size of the class. Length of time allocated to a task is
another possible area for differentiation.

Key concepts
The key concepts are highlighted as a separate item in the new syllabus. Reference to the key concepts is made throughout the scheme of work using the key
shown below:
Key Concept 1 (KC1) – Models of physical systems
Physics is the science that seeks to understand the behaviour of the Universe. The development of models of physical systems is central to physics. Models simplify,
explain and predict how physical systems behave.
Key Concept 2 (KC2) – Testing predictions against evidence
Physical models are usually based on prior observations, and their predictions are tested to check that they are consistent with the behaviour of the real world. This
testing requires evidence, often obtained from experiments.
Key Concept 3 (KC3) – Mathematics as a language, and problem-solving tool
Mathematics is integral to physics, as it is the language that is used to express physical principles and models. It is also a tool to analyse theoretical models, solve
quantitative problems and produce predictions.
Key Concept 4 (KC4) – Matter, energy and waves
Everything in the Universe comprises matter and/or energy. Waves are a key mechanism for the transfer of energy and are essential to many modern applications of
physics.
Key Concept 5 (KC5) – Forces and fields
The way that matter and energy interact is through forces and fields. The behaviour of the Universe is governed by fundamental forces with different magnitudes that
interact over different distances. Physics involves study of these interactions across distances ranging from the very small (quantum and particle physics) to the very
large (astronomy and cosmology).

Guided learning hours


Guided learning hours give an indication of the amount of contact time teachers need to have with learners to deliver a particular course. Our syllabuses are
designed around 180 hours for Cambridge International AS Level, and 360 hours for Cambridge International A Level. The number of hours may vary depending on
local practice and your learners’ previous experience of the subject. The table below give some guidance about how many hours are recommended for each topic.

4
Scheme of Work

Topic Suggested teaching time (% of the course) Suggested teaching order

1 Physical quantities It is recommended that this unit should take about 5% of the AS level course. 1
and units

2 Kinematics It is recommended that this unit should take about 10% of the AS level course. 2

3 Dynamics It is recommended that this unit should take about 12% of the AS level course. 3

4 Forces It is recommended that this unit should take about 10% of the AS level course. 4

5 Work, energy and It is recommended that this unit should take about 5% of the AS level course. 5
power

4 Density and It is recommended that this unit should take about 8% of the AS level course. 6
pressure & 6
Deformation of solids

7 Waves & It is recommended that this unit should take about 20% of the AS level course. 7
8 Superposition

9 Electricity & It is recommended that this unit should take about 20% of the AS level course. 8
10 D.C. circuits

11 Particle physics & It is recommended that this unit should take about 10% of the AS level course. 9
23 Nuclear physics
It is recommended that this unit should take about 8% of the A level course.

12 Motion in a circle It is recommended that this unit should take about 6% of the A level course. 10

13 Gravitational fields It is recommended that this unit should take about 5% of the A level course. 13

14 Temperature, It is recommended that this unit should take about 15% of the A level course. 12
15 Ideal gases &
16 Thermodynamics

17 Oscillations It is recommended that this unit should take about 12% of the A level course. 11

18 Electric fields It is recommended that this unit should take about 8% of the A level course. 15

5
Scheme of Work

Topic Suggested teaching time (% of the course) Suggested teaching order

19 Capacitance It is recommended that this unit should take about 8% of the A level course. 14

20 Magnetic fields & It is recommended that this unit should take about 12% of the A level course. 16
21 Alternating
currents

22 Quantum physics It is recommended that this unit should take about 8% of the A level course. 17

24 Medical physics It is recommended that this unit should take about 8% of the A level course. 18

25 Astronomy and It is recommended that this unit should take about 10% of the A level course. 19
cosmology

Resources
Textbooks endorsed by Cambridge International are listed at www.cambridgeinternational.org Endorsed textbooks have been written to be closely aligned to the
syllabus they support, and have been through a detailed quality assurance process. All textbooks endorsed by Cambridge International for this syllabus are the ideal
resource to be used alongside this scheme of work as they cover each learning objective. In addition to reading the syllabus, teachers should refer to the specimen
assessment materials.
Test Maker is our new online service that makes it easy for teachers to create high-quality, customised test papers for their learners using Cambridge questions.
Design a test for your whole class, or create individual tests for each learner. You can select questions depending on the level of difficulty and the assessment
objectives they test. Test Maker is available from the School Support Hub www.cambridgeinternational.org/support

School Support Hub


The School Support Hub www.cambridgeinternational.org/support is a secure online resource bank and community forum for Cambridge teachers, where you can
download specimen and past question papers, mark schemes and other resources. We also offer online and face-to-face training; details of forthcoming training
opportunities are posted online. This scheme of work is available as PDF and an editable version in Microsoft Word format; both are available on the School Support
Hub at www.cambridgeinternational.org/support. If you are unable to use Microsoft Word you can download Open Office free of charge from www.openoffice.org

6
Scheme of Work
Websites
This scheme of work includes website links providing direct access to internet resources. Cambridge Assessment International Education is not responsible for the
accuracy or content of information contained in these sites. The inclusion of a link to an external website should not be understood to be an endorsement of that
website or the site's owners (or their products/services).
The website pages referenced in this scheme of work were selected when the scheme of work was produced. Other aspects of the sites were not checked and only the
particular resources are recommended.
www.falstad.com/mathphysics.html
www.khanacademy.org/science/physics
www.mathsisfun.com/physics/index.html
https://phet.colorado.edu
www.physicsclassroom.com
www.physicslab.co.uk
https://sciencing.com
https://spark.iop.org
www.stem.org.uk
https://studynova.com/lecture/physics/

7
Scheme of Work
How to get the most out of this scheme of work – integrating syllabus content, skills and teaching strategies
We have written this scheme of work for the Cambridge International AS & A Level Physics 9702 syllabus and it provides some ideas and suggestions of how to
cover the content of the syllabus. We have designed the following features to help guide you through your course.

Suggested teaching activities give you lots of


Learning objectives help your learners by making it
ideas about how you can present learners with
clear the knowledge they are trying to build. Pass
new information without teacher talk or videos.
these on to your learners by expressing them as ‘We
Try more active methods which get your
are learning to / about…’.
learners motivated and practising new skills.

Formative assessment (F) is ongoing assessment


which informs you about the progress of your learners.
Don’t forget to leave time to review what your learners
have learnt. You could try question and answer, tests,
quizzes, ‘mind maps’, or ‘concept maps’. These kinds of
Extension activities provide your activities can be found in the scheme of work.
more able learners with further
challenge beyond the basic content of
the course. Innovation and
independent learning are the basis of
these activities.
Independent
study (I) gives
your learners
Past papers, specimen papers and mark schemes the opportunity
are available for you to download at: to develop their
www.cambridgeinternational.org/support own ideas and
understanding
Using these resources with your learners allows you to with direct input
check their progress and give them confidence and from you.
understanding.

8
Scheme of Work

1 Physical quantities and units

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

1.1 Physical 1.1.1 Understand Discuss the importance of units. Why are units used? Why do physical quantities require a unit?
quantities that all physical
quantities consist of Present the prefixes and their symbols for learners to order. This can be done as a simple card sort activity in
1.2 SI units a numerical small groups or as a class on the board.
magnitude and a
KC3 unit. Go through the prefixes and their symbols in order, present the multiplication factor and introduce the importance
of standard form (e.g. mega, M, is 1 000 000 or 106 in standard form). Learners should recall and use the following
1.1.2 Make prefixes and their symbols to indicate decimal submultiples or multiples of both base and derived units: pico (p),
reasonable estimates nano (n), micro (μ), milli (m), centi (c), deci (d), kilo (k), mega (M), giga (G) and tera (T).
of physical quantities
included within the You can use interactive websites (see links) to give learners a sense of scale in the real world. (I)
syllabus.
Test learners’ understanding of the prefixes with simple examples both mathematical (such as conversions
1.2.1 Recall the between km/h and m/s, cm and nm, s-1 to ps-1, etc) and their meaning (e.g. can learners read a sentence with the
following SI base prefixes added in? ‘When the 103 10-9bots attacked carrying 1012ball 10-3obes, it wasn’t long before they
quantities and their 10-1mated all 10-2ent life.’ - ‘When the KiloNanobots attacked carrying Teraball Miliobes, it wasn’t long before
units: mass (kg), they Decimated all Centient life.’) (F)
length (m), time (s),
current (A), Ask learners what the base quantities might be. Introduce the SI base quantities and match their units.
temperature (K).
Set learners the task of simplifying derived units they know into SI base quantities e.g. the Newton is kgms-2.
1.2.2 Express
derived units as Alternatively lay out a match up task of derived units and their SI base quantities.
products or quotients
of the SI base units Pick some simple equations learners have learnt from Cambridge IGCSE Physics (or its equivalent) and direct
and use the derived them to check the homogeneity of the units e.g. momentum = mass x velocity. Momentum is measured in Ns or
units for quantities kgms-1, the latter being the units for mass x velocity. A Newton is a kgms-2 so Ns = kgms-2s = kgms-1. Therefore,
listed in this syllabus the units are the same.
as appropriate.
Set learners more questions for practice. (F)
1.2.3 Use SI base
units to check the Notes and questions:
homogeneity of www.s-cool.co.uk/a-level/physics/units-quantities-and-measurements

9
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

physical equations
Interactive websites showing the scale of the real world:
1.2.4 Recall and use www.nikon.com/about/sp/universcale/scale.htm
prefixes and their https://scaleofuniverse.com
symbols to indicate
decimal submultiples
or multiples of
both base and
derived units.

1.3 Errors and 1.3.1 Understand Discuss where errors come from. Pick an example like measuring a distance with a metre rule, the temperature of
uncertainties and explain the water using a thermometer, the time to walk across the room with a stopwatch, etc. Ask learners ‘What is the error
effects of systematic in your measurement? What does it depend on? What can you do to minimise the error?’
KC3 errors (including zero
errors) and random Ask learners what they think the difference between a systematic error and a random error might be. A simple
errors in example of a systematic error is a zero error. This can happen when measuring a height from a desk with a 30 cm
measurements. ruler and the measurer forgets that the ruler does not start at zero. This will introduce approximately +0.5 cm error
for every measurement of the height. Another example of a zero error is forgetting to set a top pan balance to zero
1.3.2 Understand the before taking a measurement of mass. Systematic parallax errors can be introduced by reading measurements at
distinction between an angle, such as the temperature from a thermometer or the distance from a metre rule. Parallax errors can be
precision and avoided by reading measurements at eye level. An example of a random error is when a set of measurements are
accuracy. made, one may be read in error e.g. if all the readings, except one, are read at eye level.

1.3.3 Assess the Discuss precision and accuracy. You could use the ‘bull’s-eye’ analogy (see mathsisfun.com link below) to help
uncertainty in a explain the difference. A result may be accurate and not precise e.g. if the measured value is close to accepted
derived quantity by value, but there is a lot of scatter on the graph and/or a large range in the repeated measurements. A result may
simple addition of be precise but not accurate e.g. if the measured value is very different to the accepted value, but the results are
absolute or consistent then there is a small range and little scatter on the graph. A precise but inaccurate result may be due to
percentage systematic error.
uncertainties.
Introduce absolute and percentage uncertainty. Make use of examples when explaining these (see links below).

Direct learners to think about what the absolute uncertainty would be in a measurement of distance using a 30 cm
ruler, thickness using vernier callipers, time using a stopwatch, etc. It may be worth discussing human reaction
time and its significance when taking measurements of time using a stopwatch versus automated electronic
timers.

10
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

Demonstrate how to calculate absolute and percentage uncertainty for a derived quantity. For example, using
F = ma, the percentage uncertainty in F is the sum of the percentage uncertainty in m and the percentage
uncertainty in a. Why use the percentage uncertainty when adding the uncertainties, rather than the absolute
uncertainty?

Direct learners to practise the identification and calculation of uncertainties through a simple measurement circus.
Measurements can include: the time for one pendulum swing, the rebound height of a tennis ball, the thickness of
a sheet of A4 paper, the length of a piece of A4 piece of paper, etc. Learners should think about which
measurement instrument should be used; preferably one that will introduce the smallest absolute uncertainty.
They should also consider how to use repeated measurements to improve the absolute uncertainty of their
measurement e.g. when timing a pendulum swing it will be more accurate to time for 20 swings, rather than one.

Set learners questions on errors and uncertainties for practice. (F)

Learners can also practise the addition of uncertainties. They can find the density of a block of material by
measuring mass and volume. They should carefully consider the absolute uncertainties and calculate the
percentage uncertainties. They can then add the percentage uncertainties of mass and volume to find the
percentage uncertainty in the density. They should express their final answer of density with the absolute
uncertainty. (I)

Bull’s-eye analogy of precision and accuracy:


www.mathsisfun.com/accuracy-precision.html

Absolute and percentage uncertainty notes and examples:


https://sciencing.com/how-to-calculate-uncertainty-13710219.html
www.bellevuecollege.edu/physics/resources/measure-sigfigsintro/f-uncert-percent/

Absolute and percentage uncertainty video explanation:


https://studynova.com/lecture/physics/measurement-and-uncertainty/absolute-fractional-percentage-uncertainty/

1.4 Scalars and 1.4.1 Understand the Direct learners to sort the following quantities into scalars and vectors: displacement, distance, speed, velocity,
vectors difference between acceleration, volume, mass, momentum, force, work done, energy, temperature, torque, charge, voltage and
scalar and vector frequency.
KC3 quantities and give
examples of scalar Discuss the difference between work done and momentum as an example of two similar equations with the same
and vector quantities units, but they have different meanings and one is a scalar, while the other is a vector.
included in the
syllabus. Define scalar and vector and ensure learners have clear examples for each.

11
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

1.4.2 Add and Demonstrate how to add vectors in the same direction and in the opposite direction, as well as how to draw
subtract coplanar appropriate diagrams. Learners should have seen simple examples of these at Cambridge IGCSE (or equivalent).
vectors.
Introduce how to add vectors graphically. Learners must establish an appropriate scale and use a protractor to
1.4.3 Represent a accurately draw angles. You can demonstrate the head to tail method or the parallelogram method for the addition
vector as two of two vectors. Learners should practise adding and subtracting pairs of vectors graphically (see
perpendicular mathwarehouse.com link).
components.
Introduce how to add vectors at right angles to each other mathematically using Pythagoras’ theorem. Remind
learners of sine, cosine and tangent functions for finding the angle of the resultant vector. Learners can now check
the resultant vectors for any perpendicular vectors they have previously added graphically with this mathematical
method. You could use online simulations or diagrams to visually demonstrate this.

Set learners more questions for practice. (F)

Introduce how to resolve a vector into vertical and horizontal components using trigonometry (see s-cool.co.uk
link). You could again use online simulations or diagrams.

Direct learners to practise resolving vectors into components. (F)

Learners require different amounts of time to understand vectors so provide lots of examples of varying difficulty
and be prepared to take the struggling learners through simpler examples step-by-step until they feel confident.

Extension activity: Have harder questions for the stronger learners to work through.

Learners can investigate the addition of vectors and their components further using the various simulations. (I)

Head to tail and parallelogram methods to calculate a resultant vector:


www.mathwarehouse.com/vectors/resultant-vector.php

Vectors:
www.mathsisfun.com/algebra/vectors.html

Teacher notes and learner worksheets from the Institute of Physics (IoP) on scalars and vectors:
https://spark.iop.org/episode-201-scalars-and-vectors

Vector addition simulations:

12
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

https://phet.colorado.edu/en/simulation/vector-addition
www.physicsclassroom.com/Physics-Interactives/Vectors-and-Projectiles/Vector-Addition/Vector-Addition-
Interactive
www.falstad.com/dotproduct/

Resolving vectors into components:


www.s-cool.co.uk/a-level/physics/vectors-and-scalars-and-linear-motion/revise-it/resolving-vectors-into-
components
www.physicsclassroom.com/Class/vectors/u3l1e.cfm

Past and specimen papers

Past/specimen papers and mark schemes are available to download at www.cambridgeinternational.org/support (F)

13
Scheme of Work

2 Kinematics

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

2.1 Equations of 2.1.1 Define and use Start with questions to establish what learners recall from Cambridge IGCSE (or equivalent). What is the
motion distance, difference between distance and displacement and can they provide a good example? Discuss running laps
displacement, speed, around an athletics track or the difference between a rambling walk versus a direct route. What is the difference
KC1 velocity and between speed and velocity? Can you give an example of when velocity changes but speed does not? Discuss
acceleration. the example of travelling in a circle: the velocity changes due to the changing direction but the speed remains
constant. How can acceleration be calculated? Discuss why acceleration depends on velocity, referring back to
KC3
2.1.2 Use graphical their understanding of vectors.
methods to represent
distance, Introduce simple example calculations to recap equations for velocity and acceleration as learnt at IGCSE.
displacement, speed,
velocity and Give learners displacement–time graphs to match up with the appropriate description. Examples can include an
acceleration. object moving at constant velocity, an object that is accelerating, an object stationary over a period of time, etc.

2.1.3 Determine Discuss any differences that would be seen with a set of distance–time graphs. Highlight the important difference
displacement from that distance–time graphs can never have negative gradients or a negative y-axis.
the area under a
velocity–time graph. Give learners displacement–time graphs to interpret and describe.

2.1.4 Determine Give learners descriptions to draw. This works particularly well on mini-whiteboards as a group interactive task so
velocity using the that learners can compare and discuss what they’ve drawn. Examples can include a distance–time graph to show
gradient of a a person walking backwards, a displacement–time graph to show a person walking backwards, a displacement–
displacement–time time graph to show a person repeatedly jumping up and down, a distance–time graph to show a person walking in
graph. a circle, a displacement–time graph to show a person walking in a circle, etc. These should stimulate learners’
questions over how direction cannot be shown on a distance–time graph, how acceleration and constant velocity
2.1.5 Determine are respectively represented and the importance of establishing where ‘zero’ is.
acceleration using
the gradient of a Recap with learners how the gradient of a displacement–time graph is velocity.
velocity–time graph.
Recap with learners how the gradient of a velocity–time graph is acceleration, and the area under the line is the
displacement. Learners can practise the calculation of these on simple examples.

Introduce how to find the gradient of a curve. Learners should be familiar with the concept of a tangent to a curve
from Cambridge IGCSE Maths (or equivalent).

14
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

Set learners questions on motion graphs for practice. (F)

Learners can investigate motion and motion graphs further using The Moving Man simulation (see link below). (I)

The basics of linear motion and displacement and velocity–time graphs:


www.s-cool.co.uk/a-level/physics/vectors-and-scalars-and-linear-motion/revise-it/the-basics-of-linear-motion-and-
disp

The Moving Man simulation that plots motion:


https://phet.colorado.edu/en/simulation/legacy/moving-man

Teacher notes and learner worksheets from the IoP on describing motion:
https://spark.iop.org/episode-205-describing-motion

2.1 Equations of 2.1.6 Derive, from Introduce ‘suvat’ as the symbols for displacement, initial velocity, final velocity, acceleration and time.
motion the definitions of
velocity and Derive three equations of motion (also known as suvat equations) from a velocity–time graph showing an object
KC1 acceleration, starting at an initial velocity, u, and undergoing a constant acceleration, a, for period of time, t, until reaching a
equations that final velocity, v. The area under the line is equal to the displacement, s. Derive the final equation of motion by
KC3 represent uniformly combining two of the equations to find an equation without time, t (see s-cool.co.uk link).
accelerated motion in
a straight line. Demonstrate how to apply the equations of motion to simple examples. Encourage learners to draw simple
diagrams, identify which variables they know, identify which variable they want to know and select the appropriate
2.1.7 Solve problems equation of motion.
using equations that
represent uniformly Discuss when to use equations of motion. Emphasise that they can only be used when there is a constant
accelerated motion in acceleration.
a straight line,
including the motion Discuss how there may be additional clues in a question e.g. an object starts at rest (u=0), an object comes to a
of bodies falling in a stop (v=0), constant velocity (a=0), etc.
uniform gravitational
field without air Set learners more questions for practice. (F)
resistance.
Equations of motion:
www.s-cool.co.uk/a-level/physics/equations-of-motion/revise-it/equations-of-motion
https://studynova.com/lecture/physics/mechanics/uniformly-accelerated-motion/

15
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

Teacher notes and learner worksheets from the IoP on uniform acceleration:
https://spark.iop.org/episode-206-uniform-and-non-uniform-acceleration

2.1 Equations of 2.1.8 Describe an Introduce free fall as the motion of bodies falling in a uniform gravitational field without air resistance. In this
motion experiment to scenario the acceleration is due to gravity and is equal to 9.81ms-2.
determine the
KC1 acceleration of free Set learners questions about objects in free fall that can be solved using the equations of motion. (F)
fall using a falling
object. Discuss how it can be proved that an object is undergoing free fall.
KC2
Resource Plus
KC3 Carry out the Acceleration of free fall experiment referring to the Teaching Pack for lesson plans and resources.

If not already covered, discuss and carry out alternative methods for finding the acceleration of free fall e.g. light
gates and datalogger and/or electromagnet triggered timer.

2.1 Equations of 2.1.9 Describe and How does a package fall from a plane if dropped while the plane flies with a constant velocity? Discuss the
motion explain motion due to possible trajectories and encourage learners to consider the forces acting, ignoring air resistance.
a uniform velocity in
KC1 one direction and a Introduce projectile motion through a video clip such as the bus jump in the movie Speed or the jump from a crane
uniform acceleration in the movie Skyscraper. Discuss the realities of such a jump. Learners can estimate values of initial velocity and
in a perpendicular displacement to work out whether the jumper would survive.
KC2
direction.
Lay out the key principles of projectile motion and take learners through examples before setting questions.
KC3
Remind learners that the horizontal and vertical components of velocity are independent of each other. The
horizontal component of velocity does not change as no forces act in this direction, so
velocity = displacement / time can be used. The vertical component of velocity changes due to the force of gravity,
so the equations of motion can be applied using g = 9.81ms-2. Encourage learners to draw diagrams to visualise
the problem and aid with answering questions.

Demonstrate the separation of horizontal and vertical components of velocity using a wheelie chair and a ball. Ask
a learner to throw the ball vertically upwards while sitting on the chair. The chair can be pushed horizontally while
the learner repeats the throw, causing the ball to move in a parabolic path.

Demonstrate projectile motion with the Monkey and the Hunter demonstration (see stem.org monkey link). Ask
learners before the demonstration: should the monkey stay or should it drop?

16
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

Demonstrate projectile motion with the Pearls of Water demonstration (see stem.org pearls link). Learners can
then collect data on the path of the water using the shadows of the droplets on a screen and measure the
distance between each droplet. The horizontal distances should be largely constant. The vertical distances and
the frequency of the strobe can be used to find the initial velocity, final velocity and acceleration due to gravity.

This method of using a strobe to ‘freeze’ the water droplets in midair was also used in the movie Now You See Me
2 to ‘stop’ the rain.

Learners can investigate projectile motion further using various simulations. (I)

Projectile motion simulation:


https://phet.colorado.edu/en/simulation/projectile-motion
www.physicslab.co.uk/shoot.htm

Teacher notes and learner worksheets from the IoP on projectile motion:
https://spark.iop.org/episode-207-projectile-motion

Monkey and Hunter demonstration:


www.stem.org.uk/resources/elibrary/resource/27021/monkey-and-hunter

Pearls of Water demonstration:


www.stem.org.uk/resources/elibrary/resource/34375/pearls-water

Past and specimen papers

Past/specimen papers and mark schemes are available to download at www.cambridgeinternational.org/support (F)

17
Scheme of Work

3 Dynamics

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

3.1 Momentum and 3.1.1 Understand Introduce Newton’s first law. Learners may remember this from Cambridge IGCSE (or equivalent).
Newton’s laws of that mass is the
motion property of an object Discuss inertia and its relationship to mass. Discuss how a truck has more inertia than a car: a truck is harder to
that resists change in get moving and harder to stop.
KC1 motion.
Demonstrate the coin drop. Place a coin on top of a piece of thick square cardboard that covers the top of a glass.
3.1.2 Recall F = ma Flick the cardboard hard with your finger to remove the cardboard. The coin will drop straight into the glass.
KC2 Describe and link to Newton’s first law.
and solve problems
using it,
KC3 understanding that Discuss examples of scenarios where an object travels at a constant velocity due to the resultant forces being
acceleration and zero: a rocket through space, a lift moving between floors, a car rolling down a hill such that its weight component
KC5 resultant force are parallel to the road is equal to the friction against its motion, etc.
always in the same
Introduce Newton’s second law. Learners may remember this from Cambridge IGCSE in the format of F = ma.
direction.
Define the unit of the Newton. Define Newton’s second law as the rate of change of momentum. Learners may
3.1.3 Define and use remember how to define momentum from IGCSE.
linear momentum as
the product of mass Link F = ma to W = mg. Learners may be able to explain this.
and velocity.
Demonstrate the guinea and feather drop (see practicalphysics.org guinea link). All objects have the same
3.1.4 Define and use acceleration of free fall (ignore air resistance). Show the Apollo 15 hammer-feather drop (see moon.nasa link).
force as rate of Professor Brian Cox did a similar demonstration in the world’s largest vacuum chamber for the BBC (search for
change of ‘Brian Cox visits the world's biggest vacuum’ or use the link below).
momentum.
Set learners more questions on F = ma for practice. (F)
3.1.5 State and apply
each of Newton’s Investigate F = ma using a trolley and ramp set up (see practicalphysics.org second law link). This can be done
laws of motion. using light gates and a datalogger or by using a stopwatch and equations of motion. Learners can use this to
practise their calculation and analysis of errors.
3.1.6 Describe and
use the concept of Introduce Newton’s third law. Learners may remember this from IGCSE. It is highly likely they will recall the
weight as the effect inaccurate version regarding ‘action and reaction’. Clarify the law and its wording so that it clearly refers to bodies
of a gravitational field

18
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

on a mass and recall experiencing forces. Break it down so that learners understand that the forces are equal in magnitude, opposite in
that the weight of a direction and of the same type. Introduce force pairs.
body is equal to the
product of its mass Use a lift to demonstrate the force on a person as a lift starts to move and as it slows to a stop. One learner can
and the acceleration stand on a balance (in either kilograms or Newtons) and observe how their mass (or weight) changes as the lift
of free fall. accelerates and decelerates. Learners should be able to explain what they are seeing.

Use two skateboards or pairs of roller skates to demonstrate equal and opposite forces on two people as they
push off from each other. They do not have to both push; as long as one person pushes and the other keeps their
arms firm, both will move away. This also works on ice skates due to the low friction.

Discuss apparently paradoxical examples e.g. if there are equal and opposite forces between the Sun and the
Earth, why do we orbit the Sun and not the other way around? Why does a rock fall to the Earth and not the Earth
to the rock? Would the Earth move if a lot of people jumped together in one place? How does a swimmer move
when they push the side of a swimming pool? How does a bat or racket cause a ball to move? In each case the
two forces are equal and opposite, but according to F = ma the difference in masses produce different amounts of
acceleration.

Demonstrate a simple use of force pairs using a balloon: jet propulsion. Also used by rockets, animals such as
squid and octopuses, aeroplanes and EVA (extra vehicular activity) jetpacks.

Identify and discuss the force pairs on a book placed on a table (see tap.iop link).

Discuss how two magnets, one stronger than the other, pull each other with equal force (see tap.iop link).

Demonstrate equal and opposite forces using a newton meter and a top pan balance.

Discuss how a horse can pull a carriage when the force on the carriage is equal and opposite to the force on the
horse. Repeat the idea of the difference in masses producing different accelerations for equal forces.

Set learners more questions for practice. (F)

Learners can investigate forces and motion further using various simulations. (I)

Forces and Newton’s laws:


https://studynova.com/lecture/physics/mechanics/forces-and-newtons-laws/
www.mathsisfun.com/physics/force.html
www.s-cool.co.uk/a-level/physics/forces

Guinea and feather demonstration:

19
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

http://practicalphysics.org/guinea-and-feather.html
https://youtu.be/E43-CfukEgs

The Apollo 15 Hammer-Feather Drop:


https://moon.nasa.gov/resources/331/the-apollo-15-hammer-feather-drop/

Investigating Newton’s second law of motion:


http://practicalphysics.org/investigating-newtons-second-law-motion.html

Forces and Motion simulations:


https://phet.colorado.edu/en/simulation/forces-and-motion-basics
https://phet.colorado.edu/en/simulation/legacy/forces-and-motion

Teacher notes and learner worksheets from the IoP on Newton’s laws:
https://spark.iop.org/newtons-laws-motion

3.2 Non-uniform 3.2.1 Show a Introduce the topic through questioning e.g. what is the net force on an object falling through the air at constant
motion qualitative velocity? Why does a piece of paper fall more slowly than a piece of chalk if the acceleration of gravity is the
understanding of same?
KC1 frictional forces and
viscous/drag forces Set learners the task of drawing a series of force diagrams of a ball that it is thrown up and falls back down over
including air several snapshots of time. Learners should identify that weight will be present in every diagram, acting down and
KC2
resistance. unchanging, but drag changes with speed and acts opposite to the direction of motion. Most learners will draw an
upwards force for the ball when it moves upwards, when what they are trying to express is the fact that the ball is
KC5 3.2.2 Describe and moving upwards due to the force of the throw at the beginning. Highlight the difference between force and velocity.
explain qualitatively (F)
the motion of objects
in a uniform Introduce terminal velocity by asking learners whether all objects have the same terminal velocity. Lead the
gravitational field discussion into variables that affect terminal velocity. Highlight the important concept of drag force increasing as
with air resistance. speed increases. No treatment of the coefficients of friction and viscosity is required, but learners may enjoy
discussing these variables qualitatively. Clarify that air resistance is drag force in air.
3.2.3 Understand
that objects moving Set learners the task of drawing a series of force diagrams of a parachutist falling from a plane and opening a
against a resistive parachute over several snapshots of time. Learners should consider both weight and air resistance, direction and
force may reach a size of both forces, motion before and after the parachute is opened and where terminal velocity occurs. Learners
terminal (constant) can also sketch a velocity–time graph of the motion. Videos and animations of parachutists may aid this, including
velocity. extreme cases such as the record-breaking free fall parachute jump in 2012 (see guinnessworldrecords.com link).
(F)

20
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

Recap the criteria for an object to fall at terminal velocity and the variables that affect this.

Learners can carry out the quantitative task of timing the descent of an object over a fixed distance through a
viscous liquid. Plasticine or silicone balls in translucent detergent work well.

Learners can carry out the quantitative task of timing the descent of a paper parachute over different distances
through air to assess when it reaches terminal velocity. Video recording and analysis of the results can be used,
particularly in this case, as objects will fall quickly in air. The iPad app Vernier Video Physics works well. (I)

You could give learners the qualitative task of designing, building and testing a parachute to safely protect the fall
and landing of a raw egg.

Learners can investigate terminal velocity further using the physicsclassroom.com link. (I)

Complete toolkit on terminal velocity including interactive simulation and animations:


www.physicsclassroom.com/Teacher-Toolkits/Terminal-Velocity/Terminal-Velocity-Complete-ToolKit

Teacher notes and learner worksheets from the IoP on terminal velocity:
https://spark.iop.org/episode-209-drag-air-resistance-terminal-velocity

Record-breaking free fall parachute jump in 2012:


www.guinnessworldrecords.com/news/60at60/2015/8/2012-highest-freefall-parachute-jump-392848

3.3 Linear 3.3.1 State the Define impulse and relate back to Newton’s second law of motion.
momentum and its principle of
conservation conservation of Look at force–time graphs for impacts and relate to the change of momentum. Consider how a force–time graph
momentum. for object A and object B and their forces relate to Newton’s third law of motion.
KC2
3.3.2 Apply the Introduce the principle of conservation of momentum.
KC3 principle of
conservation of What is the force used to kick a football? Allow learners to come up with a plan to measure the change in
momentum to solve momentum and the time of impact to calculate the force of impact (see spark.iop link).
simple problems,
Remind learners of the principle of conservation of momentum. Ask learners whether they think the energy in a
including elastic and
collision is conserved. The overall energy must be conserved but it may converted to different types, reducing the
inelastic interactions
kinetic energy. A perfectly elastic collision is completely silent. Can learners suggest when this happens? A
between objects in
collision between molecules is a good example. A collision between billiard balls is not a good example because
both one and two
the balls make sound on impact.
dimensions.

21
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

3.3.3 Recall that, for Introduce examples of elastic and inelastic collisions such as a train and a truck, billiard balls, cars, etc. Calculate
a perfectly elastic the change in velocity assuming momentum is constant and consider any changes in kinetic energy carefully.
collision, the relative
speed of approach is Set learners questions for practice. Learners should be able to apply the conservation of momentum to solve
equal to the relative simple problems (knowledge of the concept of coefficient of restitution is not required). (F)
speed of separation.
Introduce explosions. These too conserve momentum, but the objects involved start with no momentum and no
3.3.4 Understand kinetic energy. Examples include an astronaut with a jet pack, using a fire extinguisher to power a small vehicle, a
that, while supernova. Video clips may aid this with scenes from movies WALL-E and Gravity, where in both cases the lead
momentum of a character uses a fire extinguisher to move through the vacuum of space.
system is always
conserved in Demonstrate the transfer and conservation of momentum by dropping a tennis ball with a football below it such
interactions between that the football’s momentum is transferred to the tennis ball, causing it to shoot upwards quickly.
objects, some
Set learners more complicated questions for practice. (F)
change in kinetic
energy may take Learners can investigate the conservation of momentum further using the Collision Lab simulation. (I)
place.
Resource Plus
Carry out the Conservation of Momentum experiment referring to the Teaching Pack for lesson plans and
resources.

Experiment notes from the IoP on the force used to kick a football:
https://spark.iop.org/force-used-kick-football

Extra bounce (and other demonstrations):


www.iop.org/resources/videos/physics-tricks/file_42432.pdf

Collision Lab simulation:


https://phet.colorado.edu/en/simulation/legacy/collision-lab

Past and specimen papers

Past/specimen papers and mark schemes are available to download at www.cambridgeinternational.org/support (F)

22
Scheme of Work

4 Forces

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

4.1 Turning effects of 4.1.1 Understand Videos of rock balancing art (popularised by Michael Grab) are a fascinating starter. How is it that the rocks are
forces that the weight of a stable? Learners can even try this themselves with small stones.
body may be taken
KC2 as acting at a single Define the centre of gravity as the point where all of an object’s weight appears to act.
point known as its
KC5 centre of gravity. Learners can find the centre of gravity of an irregular 2D cardboard shape by suspending it from an optical pin and
hanging a plumb line alongside. The centre of gravity of the shape will lie beneath the suspension point and the
4.1.2 Define and plumb line will show learners where to mark a line where this must be. Changing the suspension point should
apply the moment of allow them to find another line. Where these cross is the centre of gravity.
a force.
Learners can investigate their own centre of gravity. Without bending at the knees or waist, they can tip forwards
4.1.3 Understand while standing up, until they feel they are about to fall. When does this occur? Learners should identify that when
that a couple is a pair their centre of gravity is not supported by their base (their feet), they become unstable and fall. How can the
of forces that acts to learners be more stable? They may take up a position with a wide stance and a lowered centre of gravity by
produce rotation bending their knees.
only.
Learners can investigate the centre of gravity of other objects. When do they tip over? How does adding mass to
an object change its stability e.g. liquid in a wine glass or adding plasticine to a ruler.
4.1.4 Define and
apply the torque of a Show learners (pictures of) different-size wrenches and ask them which would be best for loosening a tight nut.
couple. Discuss the importance of a longer handle.

Introduce the definition and equation for torque.

Ask for two volunteers. Learners may want to declare themselves as the ‘strongest’ and ‘weakest’ in the class. Set
the ‘strongest’ learner outside the door and explain that they must open the door, but can only place their hands
on the door close to the hinge. The ‘weakest’ learner must try to stop them from coming in, but may use the
handle, far away from the hinge. The ‘strongest’ learner will struggle to open the door because, despite their large
force, the small distance from the hinge will decrease the turning effect and their ability to open the door.

Introduce the definition of a couple and ask learners to show its relationship to torque. Clarify that a couple has
two forces acting on an object that are parallel, in opposite directions, of equal size, but not along the same line of
action. Learners should understand that couples produce rotation and cannot cause linear movement.

23
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

Set learners questions for practice. (F)

Learners can investigate the turning effects of forces further using the Torque simulation. (I)

Torque simulation:
https://phet.colorado.edu/en/simulation/legacy/torque

4.2 Equilibrium of 4.2.1 State and apply Define equilibrium as when there is no resultant force and no resultant torque.
forces the principle of
moments. Present various examples of objects in equilibrium: a car being towed at an angle by a truck, a picture hanging on
KC1 a wall from two diagonal wires, a block on an inclined ramp, a shop sign supported by a cable and a rod, etc.
4.2.2 Understand Learners can identify forces and calculate missing values of forces. Simulations and demonstrations of these
KC2 that, when there is examples may aid understanding.
no resultant force
KC5 and no resultant Introduce the vector triangle and relate to the previous examples covered.
torque, a system is in
equilibrium. Set up the demonstration of the washing line problem (see tap.iop 202 link) using two learners, a rope and a
mass. If learners hold the rope at the same height, their force can be found by measuring the angle of the rope to
4.2.3 Use a vector the horizontal using a protractor and calculating the downwards gravitational force of the mass. Discuss whether
triangle to represent the rope can ever be horizontal. Encourage learners to draw a vector triangle. Learners should conclude that this
coplanar forces in is impossible.
equilibrium.
Set up the experiment to find the centre of mass of a learner (see tap.iop 203 link) using a brick, scales and plank
of wood. Take moments around the brick and calculate the missing value of distance.

Learners can investigate the forces on a bridge (see tap.iop turning effects link) using masses and Newtonmeters.

Set learners questions for practice. Learners may find questions with more than one pivot point particularly
interesting and challenging. (F)

Learners can investigate how a beam balances with more than one moment with the Balancing act simulation. (I)

Resource Plus
Carry out the Investigating coplanar forces experiment referring to the Teaching Pack for lesson plans and
resources.

The ramp simulation:


https://phet.colorado.edu/en/simulation/legacy/the-ramp

24
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

Balancing act simulation:


https://phet.colorado.edu/en/simulation/balancing-act

Teacher notes and learner worksheets from the IoP on forces in equilibrium and turning effects:
https://spark.iop.org/episode-202-forces-equilibrium
https://spark.iop.org/episode-203-turning-effects

Past and specimen papers

Past/specimen papers and mark schemes are available to download at www.cambridgeinternational.org/support (F)

25
Scheme of Work

5 Work, energy and power

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

5.2 Gravitational 5.1.1 Understand the Estimate values of work done for everyday activities such as lifting a cookie to your mouth, walking up one flight of
potential energy and concept of work, and stairs, picking up your bag, a plane taking off, climbing Mount Everest, etc.
kinetic energy recall and use
work done = force x Derive gravitational potential energy from work done.
KC1 displacement in the
direction of the force. Learners can investigate the work done in raising a block up a ramp with friction by using a pulley and masses to
KC2 provide the force.
5.2.1 Derive, using
W = Fs, the formula Learners can investigate the work done in raising a mass with a motor by calculating the electrical energy provided
KC3 by the motor and the gravitational potential gained by the mass.
ΔEP = mgΔh for
KC4 gravitational potential
Set learners questions for practice on work done and gravitational potential energy. Learners should be careful to
energy changes in a
consider the vertical distance moved. (F)
uniform gravitational
field. Introduce kinetic energy. Challenge learners to derive this using their knowledge of work done and the equations
of motion.
5.2.2 Recall and use
the formula Set learners questions for practice. (F)
ΔEP = mgΔh for
gravitational potential Learners can research information for calculations of the kinetic energy of everyday examples: a car on a
energy changes in a motorway, Concord, Halley’s comet, etc.
uniform gravitational
field.
Teacher notes and learner worksheets from the IoP on work done by a force:
5.2.3 Derive, using https://spark.iop.org/episode-214-work-done-force
the equations of
motion, the formula
for kinetic energy
EK = 1/2mv2.

5.2.4 Recall and use


EK = 1/2mv2.

26
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

5.1 Energy 5.1.2 Recall and Introduce energy conservation and transfer through the example of a rollercoaster. Learners may enjoy watching a
conservation apply the principle of video to accompany this discussion.
conservation of
KC1 energy. Consider everyday examples of energy transfer as covered at Cambridge IGCSE/O Level (or equivalent).

KC2 5.1.3 Recall and Use the conservation of energy to solve free fall questions. Show that the equations of motion produce the same
understand that the outcome through different equations.
KC3 efficiency of a
system is the ratio of Learners can investigate the energy transfer and efficiency of a tennis ball as it falls and bounces on the ground.
useful energy output They can measure and compare the initial and rebound heights, calculate the change in gravitational energy and
KC4 find an overall efficiency.
from the system to
the total energy
Learners can investigate the energy changes and thus find the frictional force of a marble on a curved track. They
input.
can measure mass, height and time and assume that the initial gravitational potential energy converts to kinetic
energy and work done against friction.
5.1.4 Use the
concept of efficiency Set learners questions for practice. (F)
to solve problems.
Learners can investigate energy conservation with the Energy Skate Park simulations. (I)

Teacher notes and learner worksheets from the IoP on conservation of energy:
https://spark.iop.org/episode-217-conservation-energy

Energy Skate Park simulations


https://phet.colorado.edu/en/simulation/energy-skate-park-basics
https://phet.colorado.edu/en/simulation/legacy/energy-skate-park

5.1 Energy 5.1.5 Define power Ask learners to define power. They may remember this from Cambridge IGCSE (or equivalent).
conservation as work done per
unit time. Derive P = Fv. Learners may be able to do this themselves.
KC2
5.1.6 Solve problems Discuss the efficiency of everyday items e.g. a light bulb, a hairdryer, etc.
KC3 using P = W / t.
Learners can use the school’s gym to find their power. They can perform simple exercises such as a goblet squat,
5.1.7 Derive P = Fv press up or pull up to calculate their power using a stop watch and a metre rule. They will need to calculate the
KC4 weight moved, the work done and the power. It is important the learners are supervised so that they perform these
and use it to solve
problems. exercises safely. Alternatively learners can calculate their power when climbing a flight of stairs.

27
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

Teacher notes and learner worksheets from the IoP on mechanical power:
https://spark.iop.org/episode-218-mechanical-power

Work, energy and power:


https://studynova.com/lecture/physics/mechanics/work-energy-power/

Past and specimen papers

Past/specimen papers and mark schemes are available to download at www.cambridgeinternational.org/support (F)

28
Scheme of Work

6 Density, pressure and deformation of solids

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

4.3 Density and 4.3.1 Define and use Ask learners to define density. They may remember this from Cambridge IGCSE (or equivalent).
pressure density.
Highlight the correct process for converting between g/cm3 and kg/m3. Learners may feel confident converting
KC2 4.3.2 Define and use between g and kg, but they may get confused with cm3 and m3. Using multiple metre rules to make a physical
pressure. metre cubed may help them to visualise and understand how squaring and cubing 1 m also squares and cubes
KC3 100 cm, producing a much larger number than they might expect.
4.3.3 Derive, from
the definitions of Learners can write their own simple methods for finding the density of a regular solid, a liquid and an irregular
KC5 solid. Discuss how the methods change in each case.
pressure and
density, the equation
for hydrostatic Learners can practise their practical skills by finding the density of aluminium foil. They will have to consider the
pressure Δp = ρgΔh. best method that minimises errors in measurements. Is it better to have more foil? Do the Vernier callipers give
measurements that can be considered precise? Should the learners fold the foil? Learners will likely find the
4.3.4 Use the biggest source of error is in the volume which depends on three separate measurements, with thickness (even
equation Δp = ρgΔh. when folded) being the biggest contributor of error.

Learners can investigate how density relates to an object floating with the Buoyancy simulation. (I)
4.3.5 Understand
that the upthrust Ask learners to define pressure. They may remember this from Cambridge IGCSE.
acting on an object in
a fluid is due to a Introduce the equation for hydrostatic pressure and derive this from pressure = force / area for a column of fluid
difference in with a certain height, density and cross-sectional area. This will prove that hydrostatic pressure does not depend
hydrostatic pressure. on the area of the fluid.

4.3.6 Calculate the Demonstrate how pressure in a fluid is the same in all directions by using a plastic bag filled with water and poking
upthrust acting on an small holes in it with a pin.
object in a fluid using
the equation Demonstrate how pressure in a fluid increases with depth by using a spouting can filled with water.
F = ρgV
(Archimedes’ Demonstrate examples of atmospheric pressure: a ruler largely covered by a piece of newspaper is hard to
principle). displace, suction cups can support significant force, a boiled egg can be sucked into a conical flask with a lighted
splint, a heated can implodes when cooled suddenly, Magdeburg hemispheres support significant force, etc.
These all help learners to understand the presence and strength of the air pressure around us.

29
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

Resource Plus
Carry out the Pressure and the imploding can experiment referring to the Teaching Pack for lesson plans and
resources. Note that the Teaching Pack and experiment video are available in Resource Plus for IGCSE/O
Level Physics.

Learners can feel how a mass on a string will feel lighter when placed into water. The mass does not float, but
learners may be able to explain why it feels lighter. They are feeling the upthrust of the water which supports some
of the mass’s weight, but not enough to allow it to float.

Derive upthrust by comparing the hydrostatic pressure on the top and bottom of a cuboid in a fluid. Introduce
Archimedes’ principle.

Learners can predict whether an object will float and what fraction will be below the water using the relationship
between upthrust and weight. Learners can then test their predictions and discuss any differences.

Learners can calculate the fraction of an iceberg that sits hidden beneath the water. They should realise that the
ratio of the mass below and above the water is the same as the ratio of the densities of ice and water.

Set learners questions for practice. (F)

Learners can investigate pressure by working with the Under Pressure simulation. (I)

Buoyancy simulation and Under Pressure simulation:


https://phet.colorado.edu/en/simulation/legacy/buoyancy
https://phet.colorado.edu/en/simulation/under-pressure

The power of words (and other demonstrations):


www.iop.org/resources/videos/physics-tricks/file_42432.pdf

Teacher notes from the IoP on imploding can demonstration:


https://spark.iop.org/gas-pressure-rises-temperature

6.1 Stress and strain 6.1.1 Understand Introduce the difference between a tensile force and compressive force (forces and deformations will be assumed
that deformation is to be in one dimension only). Learners may be able to give examples of each. Clarify that tensile forces produce
6.2 Elastic and caused by tensile or extension and compressive forces produce compression.
plastic behaviour compressive forces.

KC2 6.1.2 Understand


and use the terms

30
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

KC3 load, extension, Use a photo of a well-known or local suspension bridge and ask learners to identify the tensile and compressive
compression and forces. The Clifton Suspension Bridge in Bristol, UK, and the Golden Gate Bridge in San Francisco, USA, are
KC5 limit of good examples.
proportionality.
Learners can carry out an investigation into Hooke’s law using a helical spring and masses. Clarify the difference
6.1.3 Recall and use between length and extension. Learners should plot a graph of their results, identify the limit of proportionality and
Hooke’s law. find the spring constant, k. They can use the spring constant to make predictions for values of force that they did
not measure.
6.1.4 Recall and use
the formula for the Extension activity: As an extension task, they can consider what happens to the spring constant if springs are
spring constant placed in series or in parallel.
k = F / x.
Use a graph of force against extension to discuss the properties and differences between elastic and plastic
6.2.1 Understand deformation. Identify the elastic limit and link it to the limit of proportionality.
and use the terms
Learners can investigate Hooke’s law with the Hooke’s law simulation. They can use the simulation to collect, plot
elastic deformation,
and analyse results. (I)
plastic deformation
and elastic limit. What happens if you drop a slinky (or large spring) extended due to its own weight? Learners should be able to
present some different predictions. Learners can think about the forces acting on the spring. You could carry out
6.2.2 Understand the demonstration and make a video recording. and play back in slow motion (see youtube.com link). Discuss
that the area under what happens again so that learners understand what they have just seen and why it happens.
the force–extension
graph represents the Discuss how a rubber band can store energy. Learners can make simple rubber band launchers (see
work done. instructables.com link).

6.2.3 Determine the Ask learners how the elastic potential energy can be calculated. They may suggest calculating the work done in
elastic potential extending the rubber band. Consider that the force increases with extension so a constant force cannot be
energy of a material assumed. Suggest that learners consider Hooke’s law and the graph of force and extension for a helical spring.
deformed within its They may link the area under the graph and the work done. Use this to derive the equation for elastic potential
limit of proportionality energy. Express elastic potential energy in terms of the spring constant also.
from the area under
the force–extension Set learners questions for practice. (F)
graph.
Learners can investigate potential energy with the Hooke’s law simulation. (I)
6.2.4 Recall and use
EP = 1/2Fx = 1/2 kx2 Teacher notes and learner worksheets from the IoP on Hooke’s law:
for a material https://spark.iop.org/episode-227-hookes-law
deformed within its
Hooke’s law simulation:

31
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

limit of https://phet.colorado.edu/en/simulation/hookes-law
proportionality.
Veritasium YouTube channel: Does a Falling Slinky Defy Gravity?:
www.youtube.com/watch?v=uiyMuHuCFo4&list=PL16649CCE7EFA8B2F&index=21&t=0s

Rubber band launcher:


www.instructables.com/id/Rubber-Band-Launcher-1/

6.1 Stress and strain 6.1.5 Define and use Define stress. Relate to pressure and identify that the units are the same.
the terms stress,
KC2 strain and the Young Define strain. Identify that as it is a ratio, strain has no units and may be quoted as a percentage or a decimal.
modulus.
Introduce stress–strain graphs. Learners can analyse the stress–strain graph of common materials like steel, glass
KC5
6.1.6 Describe an and copper to identify the limits of proportionality, the region of elastic deformation, the region of plastic
experiment to deformation and the properties that these materials have, such as being malleable or brittle.
determine the Young
modulus of a metal in Discuss everyday items and the materials from which they are made. Consider an aeroplane: its tyres are made
the form of a wire. from rubber which deform elastically on landing and its wings are metal which deform very little.

Introduce the Young modulus as the ratio of stress and strain. Identify that the Young modulus has the same units
as stress, as strain is dimensionless. Derive the equation in terms of force and extension. Clarify that the Young
modulus is much more useful than the spring constant because it describes a material, rather than one specific
item like a steel helical spring of a certain length and diameter.

Analyse stress–strain graphs. The gradient is equal to the Young modulus. The area is related to the work done,
but is not equal to the work done due to the factors of original length and cross-sectional area.

Set learners questions for practice. (F)

Resource Plus
Carry out the The Young modulus experiment referring to the Teaching Pack for lesson plans and resources.

Teacher notes and learner worksheets from the IoP on stress–strain graphs and the Young modulus:
https://spark.iop.org/episode-229-stress-strain-graphs
https://spark.iop.org/episode-228-young-modulus

Past and specimen papers

Past/specimen papers and mark schemes are available to download at www.cambridgeinternational.org/support (F)

32
Scheme of Work

7 Waves and superposition

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

7.1 Progressive 7.1.1 Describe what Ask learners ‘What is a wave?’ They may be able to explain that a wave transfers energy, without transferring
waves is meant by wave matter. Clarify that this is what a progressive wave does and that they will learn about another type of wave that
motion as illustrated stores energy later.
KC2 by vibration in ropes,
springs and ripple Introduce longitudinal and transverse waves. Ask learners for examples of each. Ask learners what they all have in
KC4 tanks. common. Define the key properties of waves. Diagrams and simulations may aid this.

7.1.2 Understand Mini-whiteboards can be used by learners to draw simple transverse waves. Ask them to draw two waves onto the
and use the terms board, with the second one having double the amplitude but half the frequency. Change other variables to test the
displacement, learners’ understanding. Ask learners whether they can label all of the following on one graph: wavelength, period,
amplitude, phase frequency, displacement and amplitude. Highlight the importance of labelling and reading graph axes. We can
difference, period, either show time on the x-axis (and therefore frequency and period can be labelled) or distance (and therefore
frequency, wavelength can be labelled).
wavelength and
speed. Introduce phase difference and show plenty of visual examples to help with the explanation. Give physical
examples of being ‘in phase’ such as two taps dripping at the same time, car indicators flashing in time or children
7.1.3 Understand the jumping ropes together. Ask learners to think of examples of being ‘in antiphase’. Relate a wavelength to a cycle,
use of the time-base to 360 degrees, to 2π radian and ensure learners understand how to describe the phase difference between two
and y-gain of a waves.
cathode-ray
Using two clear sheets with a transverse wave drawn on each, move the sheets such that they start in phase from
oscilloscope (CRO)
different positions and then meet. Changing the meeting point will change if they meet in phase or in antiphase. If
to determine
they travel the same distance (so path difference = 0) their phase difference is zero and they are in phase.
frequency and
However, they may travel a different distance (and have a path difference that is non zero) and have no phase
amplitude.
difference, as long as the path difference is a whole multiple of the wavelength. This visual demonstration may
help learners to understand path and phase difference. Allow the learners to trial different scenarios.
7.1.4 Derive, using
the definitions of Test learners’ understanding of phase difference by showing them diagrams of pairs of waves and asking them to
speed, frequency identify the phase difference. They can use the mini-whiteboards c to draw pairs of waves with specific phase
and wavelength, the differences. (F)
wave equation
v = f λ. Introduce the idea of phase difference to describe the difference between two points on one wave.

7.1.5 Recall and use

33
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

v = f λ. Ask learners to find an equation that links wave speed, frequency and wavelength starting with the definition for
speed. Remind them of the relationship between frequency and time period.
7.1.6 Understand
that energy is Set learners questions for practice. (F)
transferred by a
progressive wave. Learners can find the frequency and amplitude of a sound wave using a microphone and cathode-ray
oscilloscope. A signal generator and a loudspeaker can produce a sound wave of a specific and constant
7.1.7 Recall and use frequency and amplitude. Learners should be able to read the time-base and y-gain to determine the frequency
intensity = and amplitude.
power/area and
intensity ∝ Ask learners how they think a wave spreads out in a 3D space. How do they think this affects the intensity of the
(amplitude)2 for a wave? Define intensity and show diagrams to highlight the spreading out of a wave’s power through space. Cover
progressive wave. the inverse square law. Use a displacement–time graph to identify that the gradient is the velocity and kinetic
energy is proportional to the square of the velocity. A wave with double the amplitude produces a graph with
double the gradient but four times the energy. Considering the definition for power and intensity, this gives the
relationship intensity ∝ (amplitude)2 for a progressive wave.

Learners can make waves by each acting as a ‘particle’ within the wave and moving their arms up and down
around the equilibrium point of shoulder height. This can be used as a plenary task to test learners’ understanding.
Can they create a higher-frequency wave? Or perhaps a lower-amplitude one?

Learners can investigate water waves in a ripple tank further using the Ripple tank simulation. Learners can also
investigate progressive waves, like those travelling in a string, using the Travelling Waves simulation. (I)

Progressive waves:
www.s-cool.co.uk/a-level/physics/progressive-waves/revise-it/progressive-waves

Properties of waves, intensity and amplitude:


https://studynova.com/lecture/physics/waves/properties-of-waves/
https://studynova.com/lecture/physics/waves/intensity-and-amplitude/

Teacher notes and learner worksheets from the IoP on progressive waves:
https://spark.iop.org/collections/progressive-waves

Ripple tank simulation and Travelling Waves simulation:


www.falstad.com/ripple/
www.physicslab.co.uk/twave.htm

34
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

7.2 Transverse and 7.2.1 Compare Ask learners to describe longitudinal and transverse waves and ask for examples of each. Encourage learners to
longitudinal waves transverse and make comparisons between the two types. Learners should realise that they have the same properties such as
longitudinal waves. wavelength, frequency and amplitude. Concentrating on the movement of a single particle within a wave highlights
KC4 the simple oscillation it undergoes, but with other particles in succession creates a wave through the particles.
7.2.2 Analyse and Simulations and diagrams may aid this explanation.
interpret graphical
representations of Demonstrate transverse waves: water waves in a ripple tank, a wave in a rope, a wave through a line of people,
transverse and etc. Use the Waves Intro simulation to show water and light. Highlight the peaks and troughs.
longitudinal waves.
Demonstrate longitudinal waves using a large spring or slinky. Use the Waves Intro simulation to introduce sound
waves. Highlight the compressions and rarefactions.

You can use the ripple tank to demonstrate various wave phenomena that may aid learners’ general
understanding of waves. A motorised dipper produces water waves with clear wave fronts that appear
perpendicular to the direction of the wave’s motion. Reflection can be demonstrated with obstacles and refraction
by changing the depth of the water. Diffraction can be introduced by making a gap between two obstacles and
observing how the wave spreads out through the gap. Learners can consider whether the following variables
change in each of these phenomena: wavelength, wave speed, period, frequency, shape of wave front and
direction.

Set learners questions that focus on analysing and interpreting graphical representations of transverse and
longitudinal waves. (F)

Waves Intro simulation:


https://phet.colorado.edu/en/simulation/waves-intro

7.3 Doppler effect for 7.3.1 Understand Attach a buzzer to a piece of string and spin it in a circle with the learners standing a safe distance away in a circle
sound waves that when a source around the buzzer. They should notice the sound appears to change in pitch as it moves away and towards them,
of sound waves but can they explain this themselves? Alternatively make a Doppler ball (see spark.iop link) and throw it past the
KC3 moves relative to a learners. Can they hear the pitch change as it passes them?
stationary observer,
KC4 the observed Video or sound clips of vehicles passing a stationary observer clearly demonstrate the Doppler effect for sound
frequency is different waves.
from the source
frequency. Video clips or diagrams help to visualise the emitted sound waves and how a moving source changes the
wavelength and frequency.
7.3.2 use the
expression Use a long spring (a slinky or a bed spring works well) to demonstrate how the sound waves are being emitted
fo = fs v / (v ± vs) for uniformly by the source, but if the observer moves away or towards the source, the frequency of the sound waves

35
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

the observed passing them appears to change e.g. if they move away, they increase the time it takes before another wave
frequency when a passes them, because they are moving away from the source emitting the waves. Although learners do not have
source of sound to understand the Doppler effect for a stationary source and a moving observer, this demonstration helps learners
waves moves to understand the idea of relative motion and the change of frequency.
relative to a
stationary observer. Set learners questions to practice using the expression fo = fs v / (v ± vs). (F)

Play the Doppler shift song to learners (see astrocappella.com link), who may choose to join in with the singing.
The song refers to various examples and uses of the Doppler effect and extends beyond the content the learners
need to know.

Discuss how the Doppler effect can be used to find the speed of a variety of objects such as a tennis ball,
motorists, snow and rain, stars, etc.

Extension activity: As an extension task, learners can watch videos of aircraft creating sonic booms and discuss
the physics involved.

Experiment notes from the IoP on hearing the Doppler effect:


https://spark.iop.org/hearing-doppler-effect

Doppler shift song:


www.astrocappella.com/doppler.shtml

7.4 Electromagnetic 7.4.1 State that all Ask learners to order the spectrum (a card sort or large signs on the board) as a starter task.
spectrum electromagnetic
waves are transverse Ask learners to share the uses of the electromagnetic spectrum that they already know. If the lesson started with
KC4 waves that travel ordering the spectrum on the board, the uses can be added to it to build a mind map.
with the same speed
c in free space. Identify the properties that all electromagnetic waves share.

7.4.2 Recall the Draw or show a simple diagram of an electromagnetic wave as two waves interlocked at right angles to each other
approximate range of (see spark.iop 312 link). These waves are oscillations in the electric and magnetic fields and allow energy to pass
wavelengths in free through a vacuum.
space of the principal
Use a microwave and either chocolate or cheese to find the speed of light (see spark.iop 324 link). By removing
regions of the
the turntable the antinodes of the stationary wave created by the microwave oven should be visible as melted
electromagnetic
patches in the chocolate or cheese. Alternatively, carry out this experiment later, after stationary waves have been
spectrum from radio
covered.
waves to γ-rays.

36
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

7.4.3 Recall that Electromagnetic charades can be used as a simple plenary task. Learners pick a type of electromagnetic wave
wavelengths in the and act out either how it is produced (hands in a ball, then spreading out), how it is detected (place hand above
range 400–700 nm in eyes as if looking around) or how it is used (run one finger down the open palm of the other hand as if running
free space are visible through a checklist). For example, they might first act out the checklist to let learners know they will act a use and
to the human eye. then they could pretend to sunbathe as a clue for ultraviolet rays.

Teacher notes and learner worksheets from the IoP on electromagnetic waves, the electromagnetic spectrum and
measuring c:
https://spark.iop.org/episode-312-preparation-electromagnetic-waves-topic
https://spark.iop.org/electromagnetic-spectrum-0
https://spark.iop.org/episode-324-stationary-or-standing-waves

Radio Waves & Electromagnetic Fields simulation and Microwaves simulation:


https://phet.colorado.edu/en/simulation/legacy/radio-waves
https://phet.colorado.edu/en/simulation/legacy/microwaves

7.5 Polarisation 7.5.1 Understand Recap that an electromagnetic wave is made of two waves interlocked at right angles to each other.
that polarisation is a
KC2 phenomenon Introduce polarisers as optical filters that only allow oscillations in one plane, thus blocking some of the light.
associated with Demonstrate pairs of polarising filters such that they block out light entirely or, rotated at angles to each other,
KC3 transverse waves. allow some light through. With a third polariser you can let light through a pair of crossed polarisers. You could
also place polarisers in front of a calculator screen to change the colour of the screen.
KC4 7.5.2 Recall and use
Malus’s law Use diagrams to help illustrate how polarisers only allow part of a light wave to travel through.
(I = I0 cos2θ ) to
A useful analogy involves a rope passing through a fence. When the rope has vertical oscillations sent along it, in
calculate the
line with the fence panels, the oscillation passes through without a problem. When the rope has horizontal
intensity of a plane
oscillations sent along it, perpendicular to the fence panels, the oscillation is blocked and does not pass through
polarised
the gap. When at an angle, only a component of the original wave can get through. You can demonstrate this by
electromagnetic
using a rope and a pair of metre rulers. Encourage learners to investigate what happens with a pair of ‘polarisers’
wave after
e.g. two pairs of metre rulers at an angle to each other.
transmission through
a polarising filter or a Introduce Malus’s law to calculate the intensity of the transmitted light. Relate it to the relationship between
series of polarising intensity and amplitude.
filters.
Set learners questions for practice. (F)

37
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

Learners can investigate the polarisation of electromagnetic waves by using a microwave transmitter, a microwave
detector and a grill. The transmitter will emit polarised microwaves. Rotating the grill through 90 degrees will
reduce the detected signal from maximum to zero, demonstrating Malus’s law.

Discuss polarisation due to scattering. When light reflects off a shiny surface, such as glass, water or even snow,
the reflected light is partly polarised. This is why polarised sunglasses and goggles are sold to reduce light
reflected from the ocean or ski slopes.

Learners can research other common uses of polarisers such as photographic filters, liquid crystal displays and
optical fibre communications. (I)

Polarisation and Malus’s law:


https://studynova.com/lecture/physics/waves/polarization-and-malus-law/

Teacher notes and experiments from the IoP on polarisation:


https://spark.iop.org/episode-313-polarisation

8.1 Stationary waves 8.1.1 Explain and Ask learners to think about what happens when two waves meet each other. They do not behave the same way
use the principle of that two balls would when they collide. Demonstrate the combination of waves with a large spring (a slinky or a
KC2 superposition. bed spring works well). Ask learners to describe what they see. You could use slow motion video to spot the
moment when two wave pulses combine to create a large amplitude.
KC4 8.1.2 Show an
understanding of Introduce the principle of superposition.
experiments that
demonstrate Use diagrams and simulations to demonstrate the combination of different types of waves. Identify the nodes and
stationary waves antinodes.
using microwaves,
stretched Use a microwave transmitter and a metal sheet to reflect the microwaves back towards the transmitter to create a
strings and air stationary wave. Move the microwave detector along the line between the transmitter and the sheet to find two
columns. consecutive antinodes. Ask learners how this distance relates to the wavelength. Using the frequency of the
microwaves and measuring the wavelength, can they prove the wave speed is the speed of light?
8.1.3 Explain the
Demonstrate stationary waves in a string using an oscillating motor. You could use a strobe light to ‘freeze’ the
formation of a
string. Encourage learners to hold the stationary nodes or attempt to put their fingers ‘through’ the antinodes; of
stationary wave
course, this will interrupt the oscillations and highlight that the stationary wave only appears stationary; it is
using a graphical
constantly oscillating with stored energy. Use the Wave on a String simulation as an aid.
method, and identify
nodes and
antinodes.

38
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

8.1.4 Understand Introduce stationary waves in closed and open tubes. Relate the harmonics to the number of wavelengths that ‘fit’
how wavelength may inside the tube.
be determined from
the positions of Demonstrate the Ruben’s tube as an example of a stationary wave in a closed tube. There are videos of this
nodes or antinodes online. It might interest learners to watch the Veritasium video (see youtube.com link).
of a stationary wave.
Learners can investigate stationary waves in string instruments such as guitars, or wind instruments such as
recorders. The school’s music department may even help with demonstrations. (I)

Set learners questions for practice. (F)

Resource Plus
Carry out the Investigating stationary waves experiment referring to the Teaching Pack for lesson plans and
resources.

Learners can investigate stationary waves in a tube of air held upright in a bucket of water as an example of a
stationary wave in an open tube. Lifting the tube out of the water changes the length of the tube and tuning forks
or a loudspeaker can be used to find points of resonance for different frequencies. Learners can make calculations
based on the frequency of the emitted wave, the length of the column or air and the distance between subsequent
points of resonance. It will be assumed that end corrections are negligible; knowledge of the concept of end
corrections is not required.

Standing waves:
https://studynova.com/lecture/physics/waves/standing-waves/

Wave on a String simulation:


https://phet.colorado.edu/en/simulation/wave-on-a-string

Lesson plan and experiments from the IoP on stationary waves:


https://spark.iop.org/episode-324-stationary-or-standing-waves

Veritasium YouTube channel: Musical Fire Table:


www.youtube.com/watch?v=2awbKQ2DLRE&list=PL16649CCE7EFA8B2F&index=10&t=0s

8.2 Diffraction 8.2.1 Explain the Demonstrate the diffraction of white light using a distant light bulb and a tuning fork. Learners can investigate this
meaning of the term individually. Encourage them to turn the tuning fork so that the gap between the forks effectively changes.
KC2 diffraction.

KC4

39
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

8.2.2 Show an Demonstrate the diffraction of water waves using a ripple tank. You could use simulations to aid this, or as an
understanding of alternative.
experiments that
demonstrate Demonstrate the diffraction of monochromatic light using a laser and a single slit.
diffraction including
the qualitative effect Ask learners to summarise their findings from the demonstrations. They may note that the pattern of intensity is
of the gap width symmetrical, but there are areas of higher and lower intensity. Introduce the terms maxima and minima.
relative to the
wavelength of the Learners can investigate diffraction of light further using the Wave Interference simulation. (I)
wave.
Diffraction:
https://studynova.com/lecture/physics/waves/diffraction/

Teacher notes and learner worksheets from the IoP on diffraction:


https://spark.iop.org/episode-323-diffraction

Wave Interference simulation:


https://phet.colorado.edu/en/simulation/wave-interference

8.3 Interference 8.3.1 Understand the Introduce interference and link back to the principle of superposition.
terms interference
KC2 and coherence. It may help to quickly recap the definitions of phase difference and path difference.

KC4 8.3.2 Show an Learners can experiment with the interference of sound waves. Two loudspeakers can be set up attached to the
understanding of same signal generator to produce coherent sound waves. Place them a couple of metres apart such that a
experiments that noticeable interference pattern is heard when a listener walks in a line perpendicular to their emission.
demonstrate two-
source interference Highlight the differences between constructive and destructive interference. Both can be explained by the principle
using water waves in of superposition and require coherent wave sources but having different phase differences.
a ripple tank, sound,
Use a microwave transmitter and double slits set up to create two coherent sources and find areas of constructive
light and
and destructive interference. Move the microwave detector perpendicular to the microwaves’ emission and find
microwaves.
two consecutive points of constructive interference. Ask learners how this distance relates to the wavelength.
Using the frequency of the microwaves and, by taking measurements, the wavelength, they can prove the wave
8.3.3 Understand the
speed is the speed of light.
conditions required if
two-source Show simulations of interference of different types of waves (see phet.colorado link).
interference fringes
are to be observed.

40
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

8.3.4 Recall and use Test learners’ understanding of interference by offering different scenarios and asking what type of interference
λ = ax / D for double- occurs e.g. if a coherent wave has a path difference of half of the wavelength, what is the phase difference and
slit interference using what is the outcome? For two identical waves, constructive interference results in a wave with double the
light. amplitude of the original. Destructive interference only occurs when two identical waves are in antiphase. (F)

Demonstrate Young’s slits with monochromatic light from a laser and double slits. Learners should observe the
fringe pattern on the screen and try to explain what they see.

Derive the equation based on the experimental set up. Use diagrams that show the wave fronts to aid
understanding.

Learners can find the wavelength of the monochromatic light of the laser by using the equation and taking
measurements of the experimental set up of Young’s slits.

Point out that the coloured patterns you see in soap bubbles or in oil spills are the result of the interference of
white light. Demonstrate the interference of white light. Ask learners why this cannot be used to find the
wavelength of white light.

Interference:
https://studynova.com/lecture/physics/waves/interference/

Teacher notes and learner worksheets from the IoP on interference patterns:
https://spark.iop.org/episode-321-interference-patterns

Sound simulation and Wave Interference simulation:


https://phet.colorado.edu/en/simulation/legacy/sound
https://phet.colorado.edu/en/simulation/wave-interference

Veritasium YouTube channel: The Original Double Slit Experiment:


www.youtube.com/watch?v=Iuv6hY6zsd0

8.4 The diffraction 8.4.1 Recall and use Recap Young’s slits and ask learners what will happen with more slits. Learners may think more slits means more
grating d sin θ = nλ. light. It may surprise them to note that more slits results in more darkness and clearer separated points of light. If a
range of diffraction gratings are available, demonstrate by increasing the number of slits each time so that fewer
KC2 8.4.2 Describe the and fewer points of light are visible as more destructive interference occurs. Learners can count the number of
use of a diffraction bright spots, n, and observe as this value decreases with more slits. Can learners explain why less light is seen for
KC3 grating to determine a higher number of slits?
the wavelength of
KC4 light.

41
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

Explain how the multiple slits produce more cases of destructive interference. Use diagrams as an aid.

Derive the equation that relates wavelength and the diffraction spacing.

Learners can find the wavelength of the monochromatic light of the laser by using the equation and taking
measurements of the experimental set up.

Learners can write notes on the use of diffraction gratings to determine the wavelength of light. They should note
that this experiment is superior to Young’s slits because it is easier to measure between the bright dots of light
than the indistinct fringes. They do not need to be familiar with the structure and use of the spectrometer.

Set learners questions for practice. (F)

Learners can investigate interference further using the Wave Interference simulation. (I)

Slit diffraction:
https://studynova.com/lecture/physics/waves/slit-diffraction/

Teacher notes and learner worksheets from the IoP on diffraction gratings:
https://spark.iop.org/episode-322-diffraction-gratings

Wave Interference simulation:


https://phet.colorado.edu/en/simulation/wave-interference

Past and specimen papers

Past/specimen papers and mark schemes are available to download at www.cambridgeinternational.org/support (F)

42
Scheme of Work

8 Electricity and d.c. circuits

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

9.1 Electric current 9.1.1 Understand Introduce elementary charge. Ask learners to calculate how many electrons are in 1 coulomb of charge.
that an electric
KC1 current is a flow of Demonstrate the ‘spooning of charge’ with a high voltage power supply, a coulomb meter and an insulated spoon.
charge carriers. Investigate different-sized spoons and which way up the spoon should face (see spark.iop link).
KC4
9.1.2 Understand Demonstrate the shuttling ping-pong ball with a Van de Graaff generator. Use a milliammeter to measure the
that the charge on current. Direct learners to calculate how many electrons are carried by the ball each time it moves.
charge carriers is
quantised. Discuss the charge of an electron and how the movement of this charge produces current. Relate to the previous
demonstrations. Define current and introduce the equation.
9.1.3 Recall and use
Ask learners for alternative situations that allow current to flow other than metal conductors. Learners may suggest
Q = It. lightning through ionised air, fluorescent lights through plasma, protons through a vacuum in a particle accelerator,
ions in an electrolyte, etc. Discuss the dangers of electricity and our role as a conductor.
9.1.4 Use, for a
current-carrying Why can charges in a vacuum travel so much faster than in a circuit? Clarify that delocalised electrons in metals
conductor, the are also known as conduction electrons and they are what makes metals such good conductors.
expression I = Anvq,
where n is the Demonstrate conduction by ‘coloured’ ions (see tap.iop link). The ions move remarkably slowly. Can the speed be
number density of measured? How could the resistance of the paper be measured?
charge carriers.
Clarify that charges in circuits move very slowly and this happens as they are actually drifting through the metal’s
lattice and continually colliding with the atoms in the lattice.

Derive the equation that allows calculation of the mean drift velocity v as related to current. Relate it to the length
and diameter of a conductor and conclude that as these variables change in a circuit, the speed of the electrons
does too to ensure a constant current around the circuit. Remind learners that the drift velocity is a mean and not
representative of every individual electron moving in the circuit.

Insulators have low numbers of conduction electrons, if any, whereas semiconductors have around a millionth of
the numbers metals have. Adding impurities increases n, allowing the electrons to travel much faster in a
semiconductor than a conductor.

Set learners questions for practice. (F)

43
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

Teacher notes and learner worksheets from the IoP on current as a flow of charge and drift velocity:
https://spark.iop.org/episode-102-current-flow-charge
https://spark.iop.org/episode-104-drift-velocity

9.2 Potential 9.2.1 Define the Define potential difference across as a component as the energy transferred per unit charge. Ask learners to recall
difference and power potential difference how potential difference behaves in series and parallel circuits. Learners can investigate this with simple circuits
across a component and a voltmeter.
KC3 as the energy
transferred per unit Ask learners what it means when an appliance is labelled as ‘650W’? They should recall that W is the unit Watt,
KC4 charge. for power. They may explain that 650W means that 650J of energy is transferred every second. Ask them to
explain what the difference is when an appliance has a higher power rating. Encourage learners to make links
9.2.2 Recall and use between everyday items and the electrical energy they use. Learners may have ‘smart meters’ (electricity meters
V = W / Q. that provide real-time information on energy usage) or power meter sockets in their homes that monitor energy
usage. What happens when they turn on an electric kettle?
9.2.3 Recall and use
P = VI, P = I2 R and Define power and derive equations for power in terms of voltage, current and resistance using the definition of
P = V2 / R. power from Unit 5 Work, energy, and power and Ohm’s law from Cambridge IGCSE (or equivalent).

Set learners questions for practice. (F)

9.3 Resistance and 9.3.1 Define Discuss the qualitative effect that resistance has on a circuit. Adding components to a circuit increases the overall
resistivity resistance. resistance and decreases the current. Alternatively, it can be considered that resistance increases the ‘volts per
amp’ needed to maintain the current, thus higher-resistance circuits require more voltage.
KC2 9.3.2 Recall and use
V = IR. Learners can carry out the Ohm’s law experiment to collect results of current and voltage and prove the direct
KC3 proportionality. They can plot an I-V graph and find values of resistance from points on the graph. They can repeat
9.3.3 Sketch the I–V this for a filament lamp and a diode. Alternatively learners can investigate different components and then share
KC4 characteristics of a their findings with each other. They should be able to sketch the appropriate I-V graphs. Learners may be
metallic conductor at interested in discussing LEDs in terms of their uses and their advantages in comparison to light bulbs.
constant
temperature, a Define Ohm’s law and state the equation.
semiconductor diode
and a filament lamp. Link learners’ understanding of resistance to the mean drift velocity. When a filament lamp gets hot, the electrons
have more kinetic energy and have more collisions with the positive metal ions. This reduces the current, showing
9.3.4 Explain that the that the resistance has increased.
resistance of a
Learners can investigate Ohm’s law further using the Ohm’s Law simulation. (I)
filament lamp
increases as current

44
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

increases because Introduce resistivity as a measure of a specific material’s resistance to the flow of current.
its temperature
increases. Discuss how the variation with length and area affects the resistance of a wire. Use the analogy of a water pipe
and how its length and area affects the flow of water.
9.3.5 State Ohm’s
law. Learners can investigate resistance using conducting paper or putty. You could make conducting putty, or play
dough, in advance of the lesson (see instructables.com link).
9.3.6 Recall and use
R = ρL / A. Introduce the equation for resistivity and its variables. Ask learners to derive the unit of resistivity.

Learners can investigate the resistivity of a material by measuring distance, voltage and current. Changing the
9.3.7 Understand
length of the wire connected to the power supply changes the voltage and current. They should measure diameter
that the resistance of
of the wire to allow calculation of the area and this should be done in at least three different places, and in different
a light-dependent
directions, along the wire. Note: Warn learners that to avoid overheating the wire they should keep the voltage low
resistor (LDR)
and turn off the circuit when not collecting results.
decreases as the
light intensity Ask learners to predict how a light-dependent resistor functions as light intensity changes. A simple analogy of
increases. how humans like the sunshine, making them happier and less ‘resistive’ or grumpy, might help learners to
remember how an LDR works. You could demonstrate an LDR and discuss uses.
9.3.8 Understand
that the resistance of Ask learners to predict how a thermistor functions as temperature changes. Learners need only be familiar with
a thermistor negative temperature coefficient thermistors. They should notice that the I-V graph is like an inverted I-V graph of
decreases as the a filament lamp. Relate this to their understanding of semiconductors and how increasing the temperature
temperature increases the number density of charge carriers. You could demonstrate a thermistor and discuss uses.
increases.
Set learners questions for practice. (F)

Learners can investigate resistivity further using the Resistance in a wire simulation. (I)

Teacher notes and learner worksheets from the IoP on electrical resistance, Ohm’s law and resistivity:
https://spark.iop.org/electrical-resistance
https://spark.iop.org/collections/ohms-law-and-resistance
https://spark.iop.org/episode-112-resistivity

Ohm’s Law simulation:


https://phet.colorado.edu/en/simulation/ohms-law

How to make conductive play dough:


www.instructables.com/id/How-to-make-conductive-play-dough/

45
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

Resistance in a wire simulation:


https://phet.colorado.edu/en/simulation/resistance-in-a-wire

10.1 Practical circuits 10.1.1 Recall and Show a diagram of the circuit symbols shown in the syllabus without the names and ask learners to identify as
use the circuit many as possible. You can test learners later to ensure they have learnt the symbols. (F)
KC2 symbols shown in
the syllabus. Show circuit diagrams and ask learners to build the circuits. These can be simple series circuits, more complicated
KC4 parallel circuits or a combination of the two types. Common misconceptions include the correct placement of the
10.1.2 Draw and meters, how to add additional items, like a switch, into a parallel branch and understanding that current may be
interpret circuit flowing through a filament lamp even if it is not visibly bright. Ensure all learners are comfortable interpreting circuit
diagrams. diagrams.

10.1.3 Define and Learners can test each other on their interpretation of circuit diagrams by working in pairs. One learner draws a
use the electromotive circuit diagram and the other must build it. They can then swap over and increase the difficulty of the circuits.
force (e.m.f.) of a
source as energy Learners can investigate simple circuits further using the Circuit Construction Kit DC simulation. (I)
transferred per unit
Define the electromotive force and clarify that it is not a force, it is the energy per unit charge supplied by the
charge in driving
power supply. Learners may be able to link the volt to the joule through this definition. Clarify the difference
charge around a
between e.m.f. and p.d. The potential difference is the electrical energy per unit charge transferred into other
complete circuit.
forms e.g. into light and heat when the electrons pass through a lamp.
10.1.4 Distinguish Demonstrate the e.m.f. of a human. This can be done as a demonstration with one volunteer, or you can give
between e.m.f. and every learner equipment. The human between the zinc and copper plates is the electrolyte and the multimeter
potential difference reads their e.m.f. Link this to the first battery ever made by Alessandro Volta. The simplicity of this may surprise
(p.d.) in terms of learners; it was basically layers of ‘salty sponges’ sandwiched between zinc and copper plates.
energy
considerations. Many items can be used as cells, as well as humans, such as lemons and potatoes (see spark.iop link). However,
they have high internal resistance. What does this mean? Ask learners to explain what effect internal resistance
10.1.5 Understand has on the usefulness of a battery.
the effects of the
internal resistance of Compare the energy transfer in a circuit to the energy transfer in a water wheel. Charge carriers are pushed
a source of e.m.f. on around a circuit by the e.m.f. of the cell and do work in the lamp. They are not moved vertically but they do lose
the terminal potential potential energy. The charge ‘falls’ from high electrical potential energy to lower potential electrical potential
difference. energy, like water in a water wheel. Energy, current and charge must all be conserved.

Learners can investigate internal resistance further using the Internal Resistance simulation. (I)

46
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

Hand battery demonstration:


www.stem.org.uk/resources/elibrary/resource/28161/hand-battery
Teacher notes and learner worksheets from the IoP on e.m.f. and internal resistance:
https://spark.iop.org/collections/emf-and-internal-resistance
https://spark.iop.org/internal-resistance-fruit-and-vegetable-cells

Circuit Construction Kit DC – Virtual Lab simulation:


https://phet.colorado.edu/en/simulation/circuit-construction-kit-dc-virtual-lab

Internal Resistance simulation:


www.physicslab.co.uk/emfandpd.htm

10.2 Kirchhoff’s laws 10.2.1 Recall Introduce Kirchhoff’s first law by showing simple junction diagrams with the current labelled in all wires except one.
Kirchhoff’s first law Learners can calculate the missing value, as well as the direction, of the current. Remind learners that charge is
KC1 and understand that conserved in a circuit. Kirchhoff’s first law is an expression of this basic principle.
it is a consequence
KC2 of conservation of Use example questions to demonstrate to learners how Kirchhoff’s first law can be used to find the missing values
charge. of current.
KC3
10.2.2 Recall Ask learners what they would expect to find if they added all the e.m.f. in a circuit and all of the p.d. in a circuit.
KC4 Kirchhoff’s second They may suggest that these values would be the same, which is Kirchhoff’s second law and a consequence of
law and understand the conservation of energy. In reality, some electrical energy from the battery may be used to heat the battery
that it is a itself, due to internal resistance.
consequence of
conservation of Use example questions to demonstrate to learners how Kirchhoff’s second law can be used to find the missing
energy. values of e.m.f. and p.d. Encourage learners to consider each ‘loop’ within the circuit.

Using Kirchhoff’s laws, derive formulae for the combined resistance of two or more resistors in series and in
10.2.3 Derive, using
parallel.
Kirchhoff’s laws, a
formula for the Learners can test the equations for combined resistance by connecting the resistors and measuring their
combined resistance resistance with a multimeter. Alternatively learners can use measurements of voltage and current along with
of two or more Ohm’s law to find the combined resistance of resistors in a circuit.
resistors in series.
Set learners simple circuit problems for practice. (F)
10.2.4 Use the
formula for the Learners can more build circuits in reality or simulate their construction with the Circuit Construction Kit DC
combined resistance simulation to aid understanding. (I)

47
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

of two or more Kirchhoff’s laws:


resistors in series. https://studynova.com/lecture/physics/electricity-and-magnetism/kirchhoffs-laws/

10.2.5 Derive, using Teacher notes and learner worksheets from the IoP on Kirchhoff’s laws:
Kirchhoff’s laws, a https://spark.iop.org/episode-117-kirchhoffs-laws
formula for the
combined resistance Circuit Construction Kit DC – Virtual Lab simulation:
of two or more https://phet.colorado.edu/en/simulation/circuit-construction-kit-dc-virtual-lab
resistors in parallel.

10.2.6 Use the


formula for the
combined resistance
of two or more
resistors in parallel.

10.2.7 Use
Kirchhoff’s laws to
solve simple circuit
problems.

10.3 Potential 10.3.1 Understand Introduce a simple example of a potential divider e.g. a circuit with a cell and two resistors. Ask learners what
dividers the principle of a values of p.d. would be measured by a voltmeter around each resistor if they are identical. How does this value
potential divider change if the resistance of one is double the other? What would the values of p.d. be as a fraction of the e.m.f. of
KC2 circuit. the cell? Learners may be able to explain that the ratio of the potential differences is the same as the ratio of the
resistances.
KC4 10.3.2 Recall and
use the principle of Introduce the term ‘potential divider’ and explain that it can be used for any circuit with multiple components that
the potentiometer as effectively ‘divide’ the e.m.f. of the power supply according to the resistances of the components. Thus, each
a means of component can have a different value of p.d. The potential divider can be used to supply a p.d. of between zero
comparing potential and maximum, where the maximum value depends on the e.m.f. of the power supply. This creates a varying
differences. power supply or a lower p.d. than the power supply.

10.3.3 Understand Set learners questions to find the voltage for different components in simple circuits for practice. (F)
the use of a
galvanometer in null Introduce a variable resistor, thermistor or LDR into the circuit instead of one of the fixed resistors. Ask learners to
methods. discuss how each component would affect the circuit and the values of voltage. Learners may forget that not only

48
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

10.3.4 Explain the will these components cause the values of p.d. to change, but that changing their resistance will change the
use of thermistors overall resistance of the circuit and thus the current that flows too.
and light-dependent
resistors in potential Remind learners about how thermistors and LDRs can be used to automatically trigger switches. Look at
dividers to provide a examples of circuits that ‘turn on’ when outside variables change and affect the resistance of the components in a
potential difference circuit.
that is dependent on
temperature and light Ask learners to explain why an ammeter should have zero resistance. They should consider how its presence
intensity. could affect the current and the voltage given to the other components if it had a higher resistance.

Ask learners to explain why a voltmeter should have infinite resistance. They should consider what a voltmeter
measures and how its presence could affect current if it had a lower resistance.

Ask learners if it is likely for an ammeter to have zero resistance and a voltmeter to have infinite resistance. These
imperfections add uncertainties into measurements. Explain how a galvanometer can be used in null methods.

Learners can investigate dividing the voltage further using the Voltage divider simulation. (I)

Potential divider:
https://alevelphysics.co.uk/notes/potential-divider/

Voltage divider simulation:


www.falstad.com/circuit/e-voltdivide.html

Past and specimen papers

Past/specimen papers and mark schemes are available to download at www.cambridgeinternational.org/support (F)

49
Scheme of Work

9 Motion in a circle

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

12.1 Kinematics of 12.1.1 Define the Introduce motion in a circle by demonstrating a spinning bucket with water inside. Learners can volunteer to try
uniform circular radian and express this. The bucket can be spun horizontally or vertically and as long as it moves fast enough, no water is spilt. Ask
motion angular displacement learners to identify the forces acting on the water, which force is essential to keep the water in place, whether the
in radians. bucket is accelerating and what happens if you let go. Relate this last question to the Olympic field sports of the
KC1 hammer throw or discus throw.
12.1.2 Understand
KC3 and use the concept Introduce the radian as the measure of angular displacement. Relate it to degrees and revolutions, making the link
of angular speed. to learners’ understanding of wavelength from Unit 7 Waves and superposition. Make use of diagrams and the
Ladybug revolution simulation.
KC5 12.1.3 Recall and
use ω = 2π/T and Direct learners to derive an equation for linear speed in a circle by using the definition of speed and substituting in
v = rω. the circumference and time period.

Introduce angular velocity and relate to linear velocity. Relate to the sensation of being on a playground
roundabout when you lean out and then pull your body in. Other examples that could be discussed are a record
player and a carousel. Does every part of the object travel at the same speed?

Set learners simple questions for practice. (F)

Ladybug revolution simulation:


https://phet.colorado.edu/en/simulation/legacy/rotation

Teacher notes and learner worksheets from the IoP on circular motion:
https://spark.iop.org/episode-224-describing-circular-motion
https://spark.iop.org/episode-225-quantitative-circular-motion

12.2 Centripetal 12.2.1 Understand Return to the example of the bucket of water spinning in a circle. What was the force that held the water in place?
acceleration that a force of In which direction does the force act? Where does the acceleration act? Learners may identify that the force and
constant magnitude the acceleration acts towards the centre of the circular path. This is the centripetal force and centripetal
KC2 that is always acceleration that produces circular motion. Ask learners to comment on the angular velocity. For a constant
perpendicular to the centripetal acceleration, the angular speed is constant, but the linear velocity is constantly changing.
KC3 direction of motion
causes centripetal Derive the centripetal acceleration equation using radians.
acceleration.

50
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

KC5 Consider other examples of circular motion and identify the centripetal force in each case: cars travelling around
12.2.2 Understand bends, cars travelling over a hill, planets orbiting stars, electrons in orbit of a nucleus, a bung on a string, the
that centripetal London Eye, a cyclist on a banked track, etc.
acceleration causes
circular motion with a Learners can investigate the centripetal force by whirling a bung above their head. Varying the angular frequency
constant angular and the length of the string affects how much mass can be lifted (see spark.iop 225 link).
speed.
Set learners more challenging questions for practice. (F)
12.2.3 Recall and
use a = rω2 and Learners may find it interesting to watch videos of vehicles attempting a loop-the-loop, athletes performing
a = v2 / r. Olympic throws and ice skaters changing their speed as they bring their arms in during spins.

Learners may find it interesting to watch videos of circular motion in a weightless environment, such as those
12.2.4 Recall and
made by Tim Peake on the International Space Station (see stem.org link). They can then carry out analysis of
use F = mrω2 and
data. (I)
F = mv2 / r.
Teacher notes and learner worksheets from the IoP on circular motion:
https://spark.iop.org/episode-225-quantitative-circular-motion

Circular motion and mission Principia:


www.stem.org.uk/resources/elibrary/resource/228680/circular-motion-ball-tether-released-vertical-plane

Past and specimen papers

Past/specimen papers and mark schemes are available to download at www.cambridgeinternational.org/support (F)

51
Scheme of Work

10 Gravitational fields

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

13.1 Gravitational 13.1.1 Understand Ask learners to define a field. Explain that a field is a region where a force is felt. Ask them to name types of fields.
fields that a gravitational Learners may name gravitational, electric and magnetic. Ask learners what makes gravitational fields different to
field is an example of the other two. Highlight that all masses attract. Define gravitational field strength as the force per unit mass.
KC1 a field of force and Highlight that gravitational field strength is a vector and has direction.
define gravitational
KC4 field as force per unit Ask learners how fields can be represented. They may suggest field lines, which they may recall from Cambridge
mass. IGCSE (or equivalent). Ask a volunteer to draw the gravitational field around the Earth. They may draw the
magnetic field instead. Give hints: field lines tell us the strength and direction of the field, think about where all the
13.1.2 Represent a Earth’s field lines would meet, think about where an object with mass would move when placed in any position
gravitational field by above the Earth’s surface, etc.
means of field lines.
Ask learners to draw the gravitational field lines to scale for the room they are in. They may try to draw radiating
13.2.1 Understand lines again, but may realise that on our scale the field appears uniform so the lines are parallel.
that, for a point
outside a uniform Introduce the inverse square law for the gravitational field strength around a point object or a sphere like an
sphere, the mass of astronomical body. You can clarify this with a diagram showing the field lines spreading out in 3D space. Highlight
the sphere may be that for a point outside a uniform sphere, the mass of the sphere may be considered to be a point mass at its
considered to be a centre.
point mass at its
Set learners simple questions for practice. (F)
centre.
Teacher notes and learner worksheets from the IoP on fields, field lines and field strength:
https://spark.iop.org/episode-402-fields-field-lines-and-field-strength

13.2 Gravitational 13.2.2 Recall and Ask learners to estimate their gravitational attraction to any other person in the room. This may be a complete
force between point use Newton’s law of guess or they may consider what their gravitational attraction is to the Earth, their weight, and estimate it as much
masses gravitation smaller than that. Do not provide any affirmation this stage; return to the answer later.
F = Gm1m2 / r2 for
13.3 Gravitational the force between Ask learners to suggest the variables that will affect the gravitational force felt between two objects with mass.
field of a point mass two point masses. They may be able to correctly identify mass and distance.

KC1 13.2.3 Analyse Introduce Newton’s law of gravitation in words and as an equation.
circular orbits in
KC3 gravitational fields by

52
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

relating the Introduce the gravitational constant and highlight its small scale. This helps to explain why only very large masses
KC4 gravitational force to produce significant forces.
the centripetal
acceleration it Ask learners to calculate their gravitational attraction to any other person in the room. They can compare their
causes. result to their initial guess. Was anyone close?

13.2.4 Understand Give learners the distance between the Sun and the Earth and ask them to calculate the mass of the Sun. They
that a satellite in a may be able to link their understanding of Unit 9 Motion in a circle to Newton’s law of gravitation. By equating the
geostationary orbit gravitational force to the centripetal force, the mass of the Sun can be found by assuming that the Earth has a
remains at the same circular orbit, the time period is 365.25 days and the Sun is stationary. It may interest learners to know that the
point above the Sun has a slight wobble and astronomers look for this when trying to spot stars that have planetary systems.
Earth’s surface,
with an orbital period Highlight that when there are more than two objects with mass, the resultant gravitational force can be calculated
of 24 hours, orbiting through vector addition.
from west to east,
Set learners simple questions for practice. (F)
directly above the
Equator. Learners can investigate Newton’s law of gravitation further using the Gravity force lab simulation. (I)
13.3.1 Derive, from Show learners a picture of Sputnik 1. Can any of the learners identify what it is and provide its name? Introduce a
Newton’s law of satellite as an object orbiting a planet and explain the properties of a geostationary satellite.
gravitation and the
definition of Ask learners to explain why a geostationary satellite must orbit at a specific height above the Earth. Learners can
gravitational field, the calculate this height knowing the Earth’s mass and radius.
equation g = GM / r2
for the gravitational Learners may find it interesting to watch live data of satellites orbiting our planet (see n2yo.com link).
field strength due to
a point mass. Direct learners to derive an equation for the gravitational field strength using the definition and Newton’s law of
gravitation. This is the gravitational field strength due to a point mass.
13.3.2 Recall and
use g = GM / r2. Direct learners to calculate the gravitational field strength of the Earth using its mass and radius, considering Earth
as a point mass.
13.3.3 Understand
why g is Direct learners to calculate the gravitational field strength of the Earth at the top of Mount Everest. Highlight that
approximately even at the top of the highest mountain on our planet, there is no significant change to the gravitational field
constant for small strength. We can consider the gravitational field strength to be approximately constant for small changes in height
changes in height near the Earth’s surface.
near the Earth’s
surface.

53
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

Learners may find it interesting if you show them a diagram of the Earth with the varying values of gravitational
field strength marked. In reality there are small variations in the gravitational field strength around the planet. Ask
learners to suggest why this might be the case. They could also look at diagrams of other planets.

Set learners more challenging questions for practice. (F)

Gravity force lab simulation:


https://phet.colorado.edu/en/simulation/gravity-force-lab

Why only one geostationary orbit?


https://spark.iop.org/why-only-one-geostationary-orbit

Live satellite tracking:


www.n2yo.com

13.4 Gravitational 13.4.1 Define Define gravitational potential. Ask learners to suggest what the units are and whether it is a vector or a scalar.
potential gravitational potential Show learners a diagram and a worked example to clarify the new definition. A graph of gravitational potential
at a point as the work against distance may also be helpful.
KC3 done per unit mass
in bringing a small Show learners a graph of gravitational potential against distance for the Earth and the Moon. Ask them to explain
KC4 test mass from how and why it changes. When Apollo 8 astronauts first travelled around the Moon, NASA scientists amused
infinity to the point. themselves by calculating the precise moment the astronauts would reach equipotential. This is the point where
the gravitational potential between the Earth and the Moon is closest to zero and the gravitational force felt from
13.4.2 Use each is equal and opposite.
ϕ = –GM / r for the
gravitational potential Show a video of a rocket launch. Relate this to the concept of doing work to escape the Earth’s gravitational field.
in the field due to a Highlight that we take the potential as zero at infinity and increasingly negative as we move towards a mass. This
point mass. ‘negative energy’ is the amount of energy required to escape a gravitational field. The more mass an object has,
the more energy it requires, but all objects experience the same gravitational potential as this is defined as the
13.4.3 Understand work done per unit mass.
how the concept of
gravitational potential Learners may be able to derive the gravitational potential energy using the definition of gravitational potential, the
leads to the definition of work done from Unit 5 Work, energy and power and Newton’s law of gravitation.
gravitational potential
Return to the graph of gravitational potential against distance and highlight that the area under the line is the work
energy of two
done in moving the mass.
point masses and
use EP = –GMm / r. Set learners questions for practice. (F)

54
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

Teacher notes and learner worksheets from the IoP on field strength and energy:
https://spark.iop.org/episode-408-field-strength-and-energy

Past and specimen papers

Past/specimen papers and mark schemes are available to download at www.cambridgeinternational.org/support (F)

55
Scheme of Work

11 Temperature, ideal gases and thermodynamics

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

14.1 Thermal 14.1.1 Understand Demonstrate the transfer of thermal energy via convection. Set up two pairs of bottles of heated and coloured
equilibrium that (thermal) energy water (see stevespanglerscience.com link). Placing the two mouths together, observe how when the heated water
is transferred from a is in the bottom bottle it rises and mixes with the cool water, but when it is in the top bottle, it barely mixes at all.
14.2 Temperature region of higher Relate this to Unit 6 Density, pressure and deformation of solids and learners’ understanding of convection.
scales temperature to a
region of lower Ask learners to explain how thermal energy is transferred. They may explain that energy is transferred from a
KC4 temperature. region of higher temperature to a region of lower temperature and this can be done through a number of
processes.
14.1.2 Understand
that regions of equal Introduce thermal equilibrium. Highlight that zero resultant energy is transferred between two regions of equal
temperature are in temperature. Discuss simple examples e.g. the objects left in the room overnight will be in thermal equilibrium with
thermal equilibrium. each other.

14.2.1 Understand Discuss physical properties that vary with temperature that may be used for the measurement of temperature.
that a physical Examples include the density of a liquid, volume of a gas at constant pressure, resistance of a metal and e.m.f. of
property that varies a thermocouple. The first two will link to later parts of this topic and the last two can be related to Unit 8 Electricity
with temperature and d.c. circuits.
may be used for the
Introduce the scale of thermodynamic temperature in kelvin. This scale is independent of any property of any
measurement of
particular substance. Highlight that zero kelvin is absolute zero and there is no temperature lower than this.
temperature and
Learners may find it interesting to discuss what the degrees Celsius and Fahrenheit scales are based on as they
state examples of
are commonly used in everyday life.
such properties.
Link some key numerical values in degrees Celsius to kelvin e.g. absolute zero, ice point, room temperature, etc.
14.2.2 Understand
that the scale of Set learners simple questions to practise conversions between kelvin and degrees Celsius. Remind learners that it
thermodynamic is impossible to get negative values of temperature in kelvin. (F)
temperature does not
depend on the Learners can investigate how temperature is transferred in a substance using the States of Matter simulation.
property of any They can increase or decrease the temperature and observe how this affects the behaviour of the atoms or
particular substance. molecules. (I)

14.2.3 Convert Colourful convection currents:


temperatures www.stevespanglerscience.com/lab/experiments/colorful-convection-currents/

56
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

between kelvin and States of Matter simulation:


degrees Celsius and https://phet.colorado.edu/en/simulation/states-of-matter
recall that T / K =
θ / °C + 273.15.

14.2.4 Understand
that the lowest
possible temperature
is zero kelvin on the
thermodynamic
temperature scale
and that this is
known as absolute
zero.

14.3 Specific heat 14.3.1 Define and Introduce specific heat capacity by defining its meaning and clarifying that ‘specific’ refers to any value per unit
capacity and specific use specific heat mass. In this case, although slightly unclear, ‘heat’ refers to energy. Link to the equation.
latent heat capacity.
Relate the specific heat capacity values of everyday materials to their properties. Water is a particularly interesting
KC2 14.3.2 Define and example and plays an important role in regulating the temperature of our planet.
use specific latent
KC3 heat and distinguish Ask learners which substance stores more energy when in thermal equilibrium, a substance with a high specific
between specific heat capacity or a substance with a lower specific heat capacity. Relate this to cooking e.g. a cake and its tin are
KC4 latent heat of fusion in thermal equilibrium in a hot oven, but touching the tin will burn but touching the cake probably will not. It might
and specific latent interest learners to watch the Veritasium video (see youtube.com link) exploring misconceptions about heat.
heat of vaporisation.
Learners can find the specific heat capacity of a solid block of metal or a liquid, such as water, using a simple
circuit and an immersion heater (see spark.iop 607 link). They can take measurements of time, p.d. and current to
calculate the electrical energy and combine with measurements of temperature change and mass to find the
specific heat capacity.

Introduce specific latent heat. Define latent as ‘hidden’ and clarify it refers to the energy required to change the
state, which does not produce a change in temperature. Introduce the terms fusion and vaporisation to refer to
melting and evaporating.

Resource Plus
Carry out the Finding specific latent heat using electrical methods experiment referring to the Teaching Pack for
lesson plans and resources.

57
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

Set learners questions for practice. (F)

Learners can investigate changes of state further using the States of Matter simulation. (I)

Veritasium youtube channel: Misconceptions About Heat


www.youtube.com/watch?v=hNGJ0WHXMyE

Teacher notes and learner worksheets from the IoP on specific heat capacity and specific latent heat:
https://spark.iop.org/episode-607-specific-heat-capacity
https://spark.iop.org/episode-608-latent-heat

States of Matter simulation:


https://phet.colorado.edu/en/simulation/states-of-matter

15.1 The mole 15.1.1 Understand Introduce the mole as the amount of substance that simplifies certain calculations and is commonly used by
that amount of chemists. Relate it to the number of molecules and the Avogadro constant.
15.2 Equation of substance is an SI
state base quantity with Introduce Boyle’s law as the relationship between pressure and volume for a fixed temperature and mass of gas.
the base unit mol. Ask learners to explain how this relationship might work. Learners can carry out a simple experiment to verify this
KC1 law and plot results in a graph (see spark.iop 601 link).
15.1.2 Use molar
KC2 quantities where one Introduce Charles’ law as the relationship between temperature and volume for a fixed pressure and mass of gas.
mole of any Ask learners to explain how this relationship might work. Show various simple demonstrations of temperature
KC3 substance is the changing the volume of an object e.g. the ball and hoop demonstration (see preproom.org link).
amount containing a
KC4 number of particles Introduce the pressure law as the relationship between pressure and temperature for a fixed volume and mass of
of that substance gas. Ask learners to explain how this relationship might work. Learners can verify this with a conical flask with a
equal to the thermometer and pressure gauge inserted through the bung that seals the opening. The flask can be submerged
Avogadro constant in various heat baths to produce changes in temperature and pressure. Relate the law back to the imploding can
NA. demonstration from Unit 6 Density, pressure and deformation of solids where the decreased temperature caused a
decrease of pressure, producing a large pressure difference and resulting in the implosion. A temperature-
15.2.1 Understand pressure graph can be extrapolated to find the y-intercept, giving absolute zero.
that a gas obeying
Show a set of pV against T axes and ask learners to sketch the line of the graph. Ask learners how the line
pV ∝ T, where T is
changes for more mass or less mass. What does the gradient represent?
the thermodynamic
temperature, is Define an ideal gas and explain that the gas laws describe ideal gases.
known as an ideal
gas. Combine all three laws to make the ideal gas law, expressed in terms of the number of moles and the number of

58
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

molecules, and introduce the molar gas constant and the Boltzmann constant. Link these two constants via the
15.2.2 Recall and Avogadro constant.
use the equation of
state for an ideal gas Set learners questions for practice. (F)
expressed as
pV = nRT, where Learners can investigate the gas laws further using the Ideal Gas Behaviour simulation. (I)
n = amount of
substance (number Teacher notes and learner worksheets from the IoP on ideal gases and imploding can demonstration:
of moles) and as https://spark.iop.org/episode-601-brownian-motion-and-ideal-gases
pV = NkT, where https://spark.iop.org/episode-602-ideal-gases-and-absolute-zero
N = number of https://spark.iop.org/gas-pressure-rises-temperature
molecules.
Ball and hoop demonstration:
15.2.3 Recall that the www.preproom.org/equipment/eq.aspx?eqID=5001
Boltzmann constant
k is given by Ideal Gas Behaviour simulation:
k = R / NA. www.physicslab.co.uk/gas.htm

15.3 Kinetic theory of 15.3.1 State the Introduce the constant motion of molecules in a gas using the Gas Properties simulation.
gases basic assumptions of
the kinetic theory of Recap the key properties of solids, liquids and gases. Discuss the potential and kinetic energies each has.
KC1 gases.
A gas can be described in terms of mass, volume, pressure, etc on the macroscopic scale, or it can be described
KC3 15.3.2 Explain how in terms of the motion of its large number of molecules on the microscopic scale. Introduce the basic assumptions
molecular movement of the kinetic theory of gases and explain each so they are clear for learners. Link to the conservation of energy
KC4 causes the pressure from Unit 5 Work, energy and power and momentum from Unit 3 Dynamics.
exerted by a gas and
derive and use the Derive a statement for pressure starting from the change of momentum and relating it to the force of an individual
relationship molecule on the container wall.
pV = 1/3Nm<c2>,
Introduce the idea that molecules in a gas move at a range of speeds in different directions. Finding the mean
where <c2> is the
velocity would give an answer of zero. Introduce the root-mean-square speed as an alternative value that reflects
mean-square speed.
the range of velocities and links to other useful equations. Show how the root-mean-square speed can be
calculated.
15.3.3 Understand
that the root-mean- Derive the equation that explains how molecular movement causes the pressure exerted by a gas using the mean-
square speed cr.m.s. is square speed. A simple model considering one-dimensional collisions and then extending to three dimensions
given by <c2>. using 1/3<c2> = <cx2> is sufficient (see spark.iop link).

59
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

15.3.4 Compare Introduce the Maxwell-Boltzmann distribution of the speeds of particles where higher temperatures have a wider
pV = 1/3Nm<c2> spread of values. The root-mean-square speed is higher than the mean speed and the most probable speed.
with pV = NkT to
deduce that the Derive the equation for the average translational kinetic energy using the previous equation and the ideal gas law
average translational for molecules. This shows that energy and temperature are directly proportional for an ideal gas.
kinetic energy of a
molecule is 3/2 kT. Link this idea to how certain gases escape our atmosphere e.g. helium atoms travel faster than carbon dioxide
molecules due to the difference in mass, despite being in thermal equilibrium with the atmosphere.

Set learners questions for practice. (F)

Gas Properties simulation:


https://phet.colorado.edu/en/simulation/gas-properties

Teacher notes and learner worksheets from the IoP on the kinetic model:
https://spark.iop.org/episode-603-kinetic-model-ideal-gas

16.1 Internal energy 16.1.1 Understand Define internal energy and check learners’ understanding by asking simple questions e.g. if a container of gas is
that internal energy taken for a drive on the motorway, does this increase the gas’s internal energy? External changes cannot affect
KC1 is determined by the the internal energy of the molecules of a system.
state of the system
KC4 and that it can be Relate internal energy to the changes of state and ideal gas laws already covered. Cooling a substance decreases
expressed as the the internal energy and reduces the pressure. Heating a substance increases kinetic energy and may increase the
sum of a random potential energy if the substance changes state.
distribution of kinetic
and potential Ask learners to sketch a temperature against time or energy graph. Identify where changes of kinetic energy take
energies associated place, linking to the average translational kinetic energy equation, and where changes of potential energy take
with the molecules of place, linking to the changes of state.
a system.
Learners can investigate changes of state for water by starting with ice in a beaker and taking measurements of
16.1.2 Relate a rise time and temperature as it heats to boiling over a Bunsen burner. Learners can plot a temperature– time graph
in temperature of an and qualitatively describe the changes observed.
object to an increase
Alternatively, learners can investigate changes of state using a substance that is solid at room temperature e.g.
in its internal energy.
cetyl alcohol. Heat the substance in a test tube by placing in a warm water bath, remove from the bath and
observe the drop of temperature over time as it solidifies. Learners can plot a temperature–time graph.

Demonstrate changes of state using the States of Matter simulation.

60
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

Clarify the factors that can affect the internal energy and link to the ideal gas law. Clarify that internal energy
cannot be affected by external changes.

Set learners qualitative and quantitative questions for practice. (F)

States of Matter simulation:


https://phet.colorado.edu/en/simulation/states-of-matter

16.2 The first law of 16.2.1 Recall and Introduce the first law of thermodynamics and link to the conservation of energy as covered in Unit 5 Work, energy
thermodynamics use W = pΔV for the and power.
work done when the
KC1 volume of a gas Introduce the example of a fixed mass of gas trapped in a container with a tightly fitting piston that moves up and
changes at constant down, compressing the gas or allowing the gas to expand. Ask learners to suggest how the temperature, or the
KC3 pressure and internal energy, of the gas can be increased. They may suggest compressing the gas, which requires work to be
understand the done on the system, or heating the container, which requires energy to be added to the system.
KC4 difference between
the work done by the Direct learners to consider how the internal energy changes as heat enters/exits the system and as
gas and the work positive/negative work is done on the gas.
done on the gas.
Direct learners to derive W = pΔV for the work done when the volume of a gas changes at constant pressure from
16.2.2 Recall and the definition of work done from Unit 5 and pressure from Unit 6 Density, pressure and deformation of solids.
use the first law of
Set learners quantitative and qualitative questions for practice. (F)
thermodynamics
ΔU = q + W Teacher notes and learner worksheets on the first law of thermodynamics:
expressed in terms https://spark.iop.org/episode-605-first-law-thermodynamics
of the increase in
internal energy, the The first law of thermodynamics:
heating of the system www.khanacademy.org/science/physics/thermodynamics/laws-of-thermodynamics/a/what-is-the-first-law-of-
(energy transferred thermodynamics
to the system by
heating) and the
work done on the
system.

Past and specimen papers

Past/specimen papers and mark schemes are available to download at www.cambridgeinternational.org/support (F)

61
Scheme of Work

12 Oscillations

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

17.1 Simple 17.1.1 Understand Introduce the topic by demonstrating simple harmonic oscillations with examples e.g. a pendulum, a mass on a
harmonic oscillations and use the terms spring, a dynamics trolley tethered by springs between two retort stands, etc.
displacement,
KC1 amplitude, period, Ask learners to describe what they notice about these examples of motion. They may use terms from Unit 7
frequency, angular Waves and superposition and Unit 9 Motion in a circle to explain their observations.
KC3 frequency and phase
difference in the Define displacement, amplitude, period, frequency, angular frequency and phase difference in the context of
KC4 context of oscillations. Relate these to learners’ understanding of terms from Unit 7 and Unit 9.
oscillations, and
express the period in Explain that simple harmonic motion occurs when acceleration is proportional to displacement from a fixed point
terms of both and in the opposite direction. Ask learners to draw this relationship on an acceleration–displacement graph.
frequency and
Learners can demonstrate simple harmonic motion by setting up a funnel hanging from string such that it oscillates
angular frequency.
up and down. They place water or sand in the funnel and with a long piece of paper running underneath, the
oscillating funnel creates a sinusoidal pattern (see spark.iop 305 link).
17.1.2 Understand
that simple harmonic Learners can investigate simple harmonic motion further by using the dynamics trolley tethered by springs
motion occurs when between two retort stands and a motion sensor connected to a datalogger to track the oscillation.
acceleration is
proportional to An oscillation circus can be set up for learners to observe more examples (see spark.iop 301 link).
displacement from a
fixed point and in the Introduce equations that allow description of simple harmonic motion and calculation of variables. Relate to the
opposite direction. mathematical treatment of Unit 9 Motion in a circle.

17.1.3 Use a = –ω2x Analyse displacement–, velocity– and acceleration–time graphs and relate them to the equations.
and recall and use,
as a solution to this Set learners qualitative questions on graphical representation of simple harmonic motion and quantitative
equation, questions using the equations that describe the variables of motion. (F)
x = x0 sin ωt.
Learners can investigate oscillations further using the Simple Harmonic Motion simulation. (I)
17.1.4 Use the
equations Teacher notes and learner worksheets from the IoP on simple harmonic motion and its mathematical treatment:
v = v0 cos ωt and https://spark.iop.org/episode-305-energy-simple-harmonic-motion
https://spark.iop.org/episode-301-recognising-simple-harmonic-motion

62
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

v = ± ω (x02 – x2). https://spark.iop.org/episode-302-getting-mathematical

17.1.5 Analyse and Simple Harmonic Motion simulation:


interpret graphical www.physicslab.co.uk/shm.htm
representations of
the variations of
displacement,
velocity and
acceleration for
simple harmonic
motion.

17.2 Energy in 17.2.1 Describe the Ask learners to describe qualitatively what happens in terms of energy during simple harmonic motion. A simple
simple harmonic interchange between demonstration may aid explanation as learners observe and explain what is happening e.g. a mass on a spring
motion kinetic and potential demonstrates the change of potential energy to kinetic energy as it bounces.
energy during simple
KC3 harmonic motion. Use the Energy Skate Park simulation to set up a simple harmonic oscillation of a skater on a frictionless track.
The simulation can show the change in potential, kinetic and total energy as the skater moves. Learners can
KC4 17.2.2 Recall and predict what the graph will look like before releasing the skater or you can ask them to explain the graph once it
use E = ½mω2x02 for has been plotted.
the total energy of a
system undergoing Introduce the equation for energy and relate to learners’ understanding of kinetic energy from Unit 5 Work, energy
simple harmonic and power.
motion.
Set learners questions for practice. (F)

Teacher notes and learner worksheets from the IoP on energy in simple harmonic motion:
https://spark.iop.org/episode-305-energy-simple-harmonic-motion

Energy Skate Park simulation:


https://phet.colorado.edu/en/simulation/legacy/energy-skate-park

17.3 Damped and 17.2.1 Understand Demonstrate examples of oscillations dying away due to friction e.g. water in a U-tube, a marble on a curved track,
forced oscillations, that a resistive force a skateboarder on a half pipe, etc. Introduce this loss of energy in an oscillatory system as damping.
resonance acting on an
oscillating system Ask learners to sketch the displacement–time graph for damping. Learners may identify the exponential nature of
KC1 causes damping. damping, but need not calculate this.

KC4 17.2.2 Understand Learners can investigate damped oscillations using a mass on a spring and a motion sensor connected to a

63
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

and use the terms datalogger (see spark.iop datalogging link).


light, critical and
heavy damping and Introduce light, critical and heavy damping and provide examples of each. Direct learners to sketch appropriate
sketch displacement–time graphs for each example.
displacement–time
graphs illustrating Learners may be interested to learn more about the uses of damping e.g. shock absorbers, dampers on fire doors,
these types of etc. They can relate these examples to the appropriate type of damping.
damping.
Demonstrate Barton’s pendulums to introduce resonance.
17.2.3 Understand
Explain resonance and relate to an oscillating system’s natural frequency.
that resonance
involves a maximum Discuss examples of forced oscillations e.g. a cyclist turning the pedal, pushing a child on a swing, etc.
amplitude of
oscillations and that Show video clips of extreme cases of resonance such as a wine glass breaking, the Tacoma bridge collapse and
this occurs when an the ‘wobbly’ Millennium Bridge in London.
oscillating system is
forced to oscillate at Set learners questions for practice. (F)
its natural frequency.
Learners can investigate oscillations further using the Free and Forced Oscillations simulation. (I)

Teacher notes and learner worksheets from the IoP on datalogging simple harmonic motion, damped simple
harmonic motion and resonance:
https://spark.iop.org/datalogging-shm-mass-spring
https://spark.iop.org/episode-306-damped-simple-harmonic-motion
https://spark.iop.org/episode-307-resonance

Free and Forced Oscillations simulation:


www.physicslab.co.uk/Pull-it.htm

Past and specimen papers

Past/specimen papers and mark schemes are available to download at www.cambridgeinternational.org/support (F)

64
Scheme of Work

13 Electric fields

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

18.1 Electric fields 18.1.1 Understand Introduce electric fields. It may help to recap the key elements of static electricity e.g. how insulators can be
and field lines that an electric field charged by friction, how like charges repel and opposites attract, etc. Demonstrate the shuttling ping-pong ball
is an example of a with a Van de Graaff generator and ask learners to explain why the ball moves back and forth.
KC1 field of force and
define electric field Ask learners to define electric field strength based on their understanding of Unit 10 Gravitational fields. Instead of
KC5 as force per unit the force being felt by any object with mass, the force is felt by any object with charge. However, masses always
positive charge. attract each other but charged objects can attract or repel depending on their charge. Define a test charge as a
small positive charge that feels the force of the electric field without distorting it. Highlight that electric field strength
18.1.2 Recall and is a vector quantity and the positive or negative symbol links to the direction the charge moves.
use F = qE for the
force on a charge in Explain that electric field lines: show the path a small positive test charge would take, point from positive charges
an electric field. to negative charges, are at right angles to the surface of a conductor and are more closely packed when the field
is stronger. A uniform field is shown by equally spaced parallel field lines. Ask learners to draw the field lines for
18.1.3 Represent an different combinations of point charges, charged spheres and charged plates.
electric field by
means of field lines. Demonstrate an electric field’s effect on semolina in castor oil using a high voltage power supply (see spark.iop
link).

Set learners simple questions for practice. (F)

Learners may enjoy watching NASA astronaut Don Pettit build a Van de Graaff generator with LEGO on the
International Space Station (see youtube.com link). Most fascinating of all, towards the end of the video clip,
astronaut Don Pettit gets a small piece of polystyrene to orbit the charged Van de Graaff generator, only
achievable in a weightless environment.

Learners can investigate electric fields further using the Charges and Fields simulation. (I)

Experiment notes from the IoP on electric field patterns:


https://spark.iop.org/electric-field-patterns

Observe the force between charged objects in space with NASA astronaut Don Pettit:
www.youtube.com/watch?v=m0Ei6h3LVb0&feature=emb_logo

Charges and Fields simulations:

65
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

https://phet.colorado.edu/en/simulation/charges-and-fields

18.2 Uniform electric 18.2.1 Recall and Return to the idea that parallel plates with opposite charges create a uniform field.
fields use E = ΔV / Δd to
calculate the field The rearrangement of the equation for the force on a charge in an electric field gives one way to calculate the
KC3 strength of the electric field strength. Consider the definition for work done and direct learners to derive the electric field strength
uniform field between between two parallel plates, distance d apart and with a p.d. V across them.
KC5 charged parallel
plates. Highlight that this equation gives an alternative set of units for electric field strength: Vm-1.

18.2.2 Describe the Ask learners to suggest what happens to a charged particle when placed into the uniform field between a pair of
effect of a uniform oppositely charged parallel plates. They may suggest that the charged particle will move. Ask them to explain the
electric field on the motion of the charged particle mathematically. They may make the link between electric field strength, force and
motion of charged acceleration. A uniform field creates a constant force and acceleration.
particles.
Demonstrate or show a video of an electron gun that uses a cathode and an anode to accelerate a beam of
electrons.

Relate a charged particle’s acceleration due to an electric field to linear particle accelerators, or linacs, like the
Stanford Linear Accelerator Laboratory in the USA.

Set learners qualitative and quantitative questions for practice. (F)

18.3 Electric force 18.3.1 Understand Introduce Coulomb’s law and highlight similarities to Newton’s law of gravitation. The much larger constant of
between point that, for a point proportionality suggests that electric forces are stronger and indeed on the scale of individual particles electric
charges outside a spherical forces are much more significant than gravitational forces. However, on the scale of astronomical bodies such as
conductor, the stars and planets, electric forces are negligible.
charge on the sphere
KC2 may be considered Set learners qualitative and quantitative questions for practice. (F)
to be a point charge
at its centre. Learners can investigate the force between charged objects using conductive spheres charged by a Van de Graaff
KC3
generator (see stem.org link). Alternatively, an insulated charged sphere can be placed on a top pan balance while
18.3.2 Recall and another is brought close to it. The force of repulsion should produce a small change in mass on the top pan
KC5 use Coulomb’s law balance, which will allow calculation of the force. The distance can be measured by using a light source and a
F = Q1Q2 / (4πε0r2) shadow board. Charge will dissipate quickly by ionising the air, but learners may be able to collect enough results
for the force between of force and distance to plot a graph and prove Coulomb’s law.
two point charges in
free space. Learners can investigate the force between charges further using the Coulomb’s Law simulation. (I)

66
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

Teacher notes and learner worksheets from the IoP on Coulomb’s law:
https://spark.iop.org/episode-407-coulombs-law

Teacher notes and experimental procedure on Coulomb’s law:


www.stem.org.uk/resources/elibrary/resource/27904/unit-3-field-and-potential

Coulomb’s Law simulation:


https://phet.colorado.edu/en/simulation/coulombs-law

18.4 Electric field of 18.4.1 Recall and Direct learners to substitute Coulomb’s law into the definition of electric field strength to derive the equation for the
a point charge use E = Q / (4πε0r2) electric field strength due to a point charge in free space.
for the electric field
KC3 strength due to a Highlight that point charges are a convenient expression for a charged object in a situation where the distance, r,
point charge in free away from the charge is considered much larger than the size of the charged object.
KC5 space.
Recap the field patterns for point charges.

Compare the electric field of a point charge to the gravitational field of a mass.

Set learners qualitative and quantitative questions for practice. (F)

18.5 Electric 18.5.1 Define electric Ask learners what would happen if you were able to push two identically charged objects together. They may
potential potential at a point as compare this to compressing a spring; the charges will store potential energy and need more and more work as
the work done per they get closer together. What happens if you let go? The charges would spring apart and the energy would be
KC3 unit positive charge recovered.
in bringing a small
KC5 test charge from Show learners a force–separation graph. Due to the inverse square law, this does not give a straight line. The
infinity to the point. area underneath the graph gives the work done in moving a charge between two points. The total area is the work
done to move a charge from infinity. The work done is equal to the electric potential energy.
18.5.2 Recall and
use the fact that the Direct learners to derive an equation for work done using the definition and work done and Coulomb’s law.
electric field at a Highlight that if one of the charges is negative, the work done will be negative. This is not a negative energy but
point is equal to the represents the amount of external energy required to completely separate the charged particles. This is what
negative of potential happens when atomic or molecular bonds are broken.
gradient at that point.
Define electric potential as the work done per unit positive charge in bringing a small test charge from infinity to
18.5.3 Use that point. Direct learners to derive an equation for electric potential in terms of distance, r, using this new
V = Q / (4πε0r) for definition and the previous equation for work done.
the electric potential

67
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

in the field due to a Ask learners to identify the units of electric potential. Have they in fact worked with electric potential before? Link
point charge. this new concept to learners’ understanding of potential difference from Unit 8 Electricity and d.c. circuits.

18.5.4 Understand Explain that the electric potential difference between two points is the difference between the two values of electric
how the concept of potential at those points. Placing a voltmeter between two points a distance away from a charged sphere should
electric potential show the work done per unit charge, but voltmeters do not function in empty space. A diagram may aid
leads to the electric explanation.
potential energy of
two point charges Link the definition of electric field strength to the concept of potential gradient. Analogous comparisons to contour
and use lines on a map may aid understanding.
EP = Qq / (4πε0r).
Set learners questions for practice. (F)

Notes and explanation of electric potential:


www.khanacademy.org/science/electrical-engineering/ee-electrostatics/ee-fields-potential-voltage/a/ee-electric-
potential-voltage
www.physicsclassroom.com/class/circuits/Lesson-1/Electric-Potential

Past and specimen papers

Past/specimen papers and mark schemes are available to download at www.cambridgeinternational.org/support (F)

68
Scheme of Work

14 Capacitance

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

19.1 Capacitors and 19.1.1 Define Introduce a simple capacitor as insulator sandwiched between two conducting plates. This can be made more
capacitance capacitance, as compact by adding another layer of insulator and rolling it all up into a cylinder. A capacitor can be charged easily
applied to both and its stored electrical energy can be easily retrieved. Relate the design of a capacitor to learners’ understanding
KC1 isolated spherical of Unit 13 Electric fields.
conductors and to
KC3 parallel plate Define capacitance and how it can be calculated. Introduce the Farad as its unit. Highlight how 1 Farad is a very
capacitors. large capacitance and most capacitors tend to be in the microfarad region. Explain how a perfect capacitor builds
up charge almost instantaneously.
KC5 19.1.2 Recall and
use C = Q / V. Electrolytic capacitors need their positive terminal connected to the positive terminal of a power supply or it will be
destroyed, so highlight the need to check the terminal symbols carefully.
19.1.3 Derive, using
C = Q / V, formulae With a high p.d. the insulator may break down so capacitors are also marked with their maximum p.d.
for the combined
Demonstrate the breakdown of a capacitor using a heat mat and a safety screen. A small 47 microfarad capacitor
capacitance of
at 25V will produce an impressive bang. Alternatively a video clip could be shown.
capacitors in series
and in parallel. Learners can find the capacitance of a capacitor by measuring p.d. and charge (see spark.iop 126 link). Plotting
charge against p.d. and finding the gradient will allow the capacitance to be found.
19.1.4 Use the
capacitance formulae Demonstrate the breakdown of a capacitor by building a simple capacitor with tin foil ,a bin bag or plastic wrap.
for capacitors in Use a high voltage power supply and ensure learners are a safe distance away as it sparks.
series and in parallel.
Derive formulae for the combined capacitance of capacitors in series and in parallel.

Set learners calculation questions for practice. (F)

Learners can test the equations for combined capacitance by connecting the capacitors and measuring their p.d.
and charge. Plotting charge against potential difference and finding the gradient will allow the combined
capacitance to be found.

Learners can research common uses of capacitors such as a camera flash, cardiac defibrillators, audio equipment
and accelerometers. (I)

69
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

Teacher notes and learner worksheets from the IoP on a bin-bag capacitor demonstration, capacitance and
capacitors in series and in parallel:
https://spark.iop.org/bin-bag-capacitor
https://spark.iop.org/episode-126-capacitance-and-equation-qcv
https://spark.iop.org/episode-127-capacitors-series-and-parallel

19.2 Energy stored in 19.2.1 Determine the Explain that capacitance does not depend on p.d. and that as the charge stored on a capacitor increases, more
a capacitor electric potential work has to be done to add more charges.
energy stored in a
capacitor from the Show learners a charge against p.d. set of axes. Ask them to sketch the graph line on the axes. They may be able
KC3 area under the to explain that as capacitance is constant, and the gradient is equal to the capacitance, there is a direct
potential–charge proportionality between charge and p.d. producing a straight diagonal line on the graph. Ask learners what the
KC5 graph. area under the graph represents. They may link this to the work done, or the energy stored by the capacitor,
through their understanding of Unit 8 Electricity and d.c. circuits. Links can also be made with the energy stored by
19.2.2 Recall and a spring from Unit 6 Density, pressure and deformation of solids.
use
W = ½QV = ½CV2. Direct learners to derive alternative formulae for work done using the definition of capacitance and the definition of
voltage from Unit 8.

Set learners calculation questions for practice. (F)

19.3 Discharging a 19.3.1 Analyse Ask learners to suggest what happens as a capacitor discharges. You could show a circuit with a capacitor,
capacitor graphs of the resistor, ammeter and voltmeter to prompt discussion. Learners may recognise that the resistor will cause the
variation with time of capacitor to discharge more slowly and the ammeter and voltmeter will read decreasing values over time. Some
KC2 potential difference, learners may even recognise that the values will decrease at a decreasing rate.
charge and current
KC3 for a capacitor Ask learners to sketch graphs of the current against time in a circuit for a capacitor discharging through a resistor.
discharging through Ask them to sketch graphs of charge and potential difference also. They may identify that these graphs will look
a resistor. the same and all show an exponential decrease.
KC5
19.3.2 Recall and Explain that for exponential decay, the time taken to reach half the original value is always the same. Introduce the
use τ = RC for the time constant and show example graphs to aid understanding.
time constant for a
capacitor discharging Ask learners to find the units for CR (capacitance multiplied by resistance). They may be able to prove that a farad
through a resistor. ohm is the same as a second and make the link to the time constant.

Introduce the exponential equations that explain the exponential decay of current, charge and potential difference.
19.3.3 Use equations
of the form
x = x0 e–(t / RC) where

70
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

x could represent Learners can collect measurements of current and voltage over time by slowly charging and/or discharging a
current, charge or capacitor through a resistor. Results can be plotted such that the exponential pattern is verified (see spark.iop link
potential difference 129). With sufficient results, the time constant can also be verified.
for a capacitor
discharging through Set learners calculation questions for practice. (F)
a resistor.
Learners can investigate charging and discharging a capacitor through a resistor further using the Capacitor
simulation. (I)

Teacher notes and learner worksheets from the IoP on the discharge of a capacitor:
https://spark.iop.org/episode-129-discharge-capacitor

Capacitor simulation:
www.falstad.com/circuit/e-cap.html

Past and specimen papers

Past/specimen papers and mark schemes are available to download at www.cambridgeinternational.org/support (F)

71
Scheme of Work

15 Magnetic fields and alternating currents

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

20.1 Concept of a 20.1.1 Understand Introduce magnetic fields. It may help to recap the key elements of magnetism e.g. the difference between a
magnetic field that a magnetic field magnetic material and a magnetised material, how to magnetise and demagnetise a magnetic material, what
is an example of a happens when different poles are brought together, etc.
20.4 Magnetic fields field of force
due to currents produced either by Ask learners to draw the magnetic field patterns around different combinations of poles. They can investigate the
moving charges or magnetic field patterns around bar magnets using iron filings and plotting compasses (see spark.iop links).
KC1 by permanent Highlight that the direction of the field arrows go from North to South.
magnets.
Ask learners to define a magnetic field based on their understanding of Unit 10 Gravitational fields and Unit 13
KC2
20.1.2 Represent a Electric fields. Focus on what makes the field, rather than what is affected by it.
magnetic field by
KC5 field lines. Demonstrate the magnetic field pattern around a single current-carrying wire using plotting compasses or iron
filings. Demonstrate the magnetic field pattern around a loop of wire. Demonstrate the magnetic field pattern
20.4.1 Sketch around a solenoid. Show diagrams to clarify the patterns and link each pattern to the next to show how they build
magnetic field to create a field similar to that around a bar magnet.
patterns due to the
Ask learners to identify where a magnetic field pattern is uniform.
currents in a long
straight wire, a flat Set learners simple qualitative questions for practice. (F)
circular coil and a
long solenoid. Learners may enjoy watching video clips of incredibly strong magnets destroying everyday items like pieces of
fruit.
20.4.2 Understand
that the magnetic Learners can investigate magnetic fields further using the Magnet and Compass simulation. (I)
field due to the
current in a solenoid Learners can investigate magnets and electromagnets further using the Magnets and Electromagnets simulation.
is increased by a (I)
ferrous core.
It might interest learners to watch the Veritasium video (see youtube.com link) exploring whether humans can
20.4.3 Explain the sense magnetic fields.
origin of the forces
between current- Teacher notes from the IoP on representing magnetic fields:
carrying conductors https://spark.iop.org/representing-magnetic-fields-practice
and determine the https://spark.iop.org/drawing-magnetic-field-patterns-activity

72
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

direction of the Magnet and Compass simulation:


forces. https://phet.colorado.edu/en/simulation/legacy/magnet-and-compass

Magnets and Electromagnets simulation:


https://phet.colorado.edu/en/simulation/legacy/magnets-and-electromagnets

Veritasium youtube channel: Can Humans Sense Magnetic Fields?


www.youtube.com/watch?v=dg3pza4y2ws

20.2 Force on a 20.2.1 Understand Demonstrate the catapult field. Ask learners to explain what they see. They may explain that the two magnetic
current-carrying that a force might act fields are interacting and this results in motion.
conductor on a current-carrying
conductor placed in a Introduce Fleming’s left-hand rule and direct learners to use it to predict the resulting motion. Swap the magnetic
KC1 magnetic field. poles and the direction of current flow to demonstrate how these changes affect the motion. Encourage learners to
use their left hand to predict the outcome each time to practise and improve recall of how to use Fleming’s left-
KC2 20.2.2 Recall and hand rule.
use the equation
F = BIL sin θ, with Show diagrams of the set up of equipment for the catapult field demonstration, the separate magnetic fields and
KC3 the resultant magnetic field.
directions as
interpreted by
KC5 Ask learners what variables cause more ‘motion’ or force. They may identify the strength of the magnetic field, the
Fleming’s left-hand
size of the current and how many coils there are, or rather, the length of the conductor in the field. Introduce the
rule.
equation that links these variables and explain that if there is an angle between zero and 90 degrees between the
direction of the current and the direction of the magnetic field, this must be included in the calculation. At zero
20.2.3 Define
degrees there is no force and at 90 degrees there is a maximum force. Use diagrams to help explain this.
magnetic flux density
as the force acting Introduce the term magnetic flux density as the correct term for magnetic field strength. This can be defined using
per unit current per the equation just introduced.
unit length on a wire
placed at right- Learners can investigate the force on a current-carrying wire in a magnetic field by using a metal rod, a top pan
angles to the balance and a pair of magnadur magnets in a rectangular yoke (see cyberphysics.co.uk link). Learners take
magnetic field. measurements of current, length of wire in the field and mass and calculate the magnetic flux density of the pair of
magnadur magnets.

Set learners calculation questions for practice. (F)

Teacher notes and learner worksheets from the IoP on the catapult magnetic field and F = BIL:
https://spark.iop.org/catapult-magnetic-field
https://spark.iop.org/episode-412-force-conductor-magnetic-field

73
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

An experiment to illustrate the force on a wire in a magnetic field:


www.cyberphysics.co.uk/topics/magnetsm/electro/expt.htm

20.3 Force on a 20.3.1 Determine the Start the lesson with a simple diagram showing a single charged particle moving at right angles to a magnetic
moving charge direction of the force field. Ask learners what will happen. They may explain that due to the particle’s charge, it will feel a force at right
on a charge moving angles to its motion due to Fleming’s left-hand rule. Highlight that a particle with the opposite charge would be
KC2 in a magnetic field. pushed in the opposite direction.

KC3 20.3.2 Recall and Ask learners to derive an equation for force that describes the force felt by a charged particle rather than a current-
use F = BQv sin θ. carrying wire of length, l.
KC5 20.3.3 Understand You could demonstrate the deflection of charged particles by a magnetic field using an electron gun and a strong
the origin of the Hall bar magnet or a Teltron tube and a Helmholtz coil. Alternatively, show a video clip can. A Teltron tube can also be
voltage and derive used to demonstrate the combined effect of an electric field and a magnetic field, which is the basis of velocity
and use the selection. This is the first stage in a Bainbridge mass spectrometer. The velocity of the particles that pass straight
expression through a velocity selector is equal to the ratio of the electric field strength to the magnetic flux density.
VH = BI / (ntq),
Ask learners what happens when a charged particle moves in a uniform magnetic field perpendicular to the
where t = thickness.
direction of motion of the particle, without being pushed out of the field. Learners may link the motion to Unit 9
Motion in a circle. They may be able to derive an expression for the radius a particle describes within the magnetic
20.3.4 Understand
field of flux density, B, in terms of its mass, m, velocity, v, and charge, Q.
the use of a Hall
probe to measure Relate a charged particle’s circular motion due to magnetic field to circular particle accelerators like the Large
magnetic flux Hadron Collider at CERN in Switzerland.
density.
Set learners calculation questions for practice. (F)
20.3.5 Describe the
motion of a charged Link the origin of the Hall voltage to learners’ understanding of the force on a charge moving in a magnetic field.
particle moving in a
uniform magnetic Return to the concept of velocity selection and link to the Hall voltage. Direct learners to derive an expression for
field perpendicular to the voltage starting from the electric force and the magnetic force.
the direction of
motion of the Learners may find it interesting to discuss some common uses of Hall probes such as wheel speed sensors,
particle. proximity sensors, automotive fuel level indicator, etc.

20.3.6 Explain how Velocity selector notes:


electric and magnetic http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/maspec.html#c3

74
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

fields can be used in How an accelerator works:


velocity selection. https://home.cern/science/accelerators/how-accelerator-works

Hall effect notes:


http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/Hall.html

20.5 Electromagnetic 20.5.1 Define Learners can investigate electromagnetic induction with three simple experiments. Pass a length of wire
induction magnetic flux as the connected to a multimeter measuring d.c. voltage between a pair of magnadur magnets in a rectangular yoke.
product of the Pass a bar magnet through the same length of wire now looped into coils with the ends connected to a multimeter
KC1 magnetic flux density measuring d.c. voltage. Turn the shaft of a 12V d.c. motor connected to a multimeter measuring d.c. voltage. Ask
and the cross- learners to share what they notice and to provide explanation. Can they link the changing direction of motion to the
KC2 sectional area negative and positive symbol seen on the multimeter? Ask them to explain ways that they can increase the
perpendicular to the induced e.m.f. shown on the multimeter. Does it matter if it’s the wire or the magnet that moves?
direction of the
KC3 magnetic flux Introduce electromagnetic induction and explain the simple experiments the learners have carried out. Link the
density. motion of the charges that produces charge separation to learners’ understanding of F = BQv. Diagrams and
KC5 simulations may aid this. Ask learners to identify the variables that can increase the induced e.m.f.
20.5.2 Recall and
use Φ = BA. Introduce and define magnetic flux and flux linkage. Relate them to learners’ understanding of magnetic flux
density. Show diagrams to aid explanation.
20.5.3 Understand
and use the concept Introduce Faraday’s law of electromagnetic induction. Explain the variables and highlight the negative symbol.
of magnetic flux This will be explained later with Lenz’s law.
linkage.
Demonstrate Faraday’s law using a strong magnet (a stack of neodymium magnets works well), a Helmhotlz coil
and a sensitive ammeter or voltmeter connected to a datalogger. Drop the magnets through the coil and record the
20.5.4 Understand
results of induced current or e.m.f. using the datalogger. Ask learners to explain the non-symmetrical pattern that
and explain
is created. Learners can investigate this further by moving the magnet near the Helmholtz coil and observing the
experiments that
datalogger’s plotted data.
demonstrate:
• that a changing It might interest learners to hear about the scientist Michael Faraday’s expansive work in electromagnetism and
magnetic flux can electrochemistry, as well as his less privileged background.
induce an e.m.f. in a
circuit Introduce Lenz’s law. Show diagrams and ask learners to identify which type of pole will be made by the coil as a
• that the induced magnetic pole is moved towards or away from it. Ask learners to explain what would happen if the opposite
e.m.f. is in such a happened. They may identify that a ‘magnet gun’ would be created and the conservation of energy would be
direction as to broken. Explain the importance of the conservation of energy and the idea of doing work. A force must be exerted
oppose the change
producing it

75
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

• the factors affecting on the magnet to move it and energy is transferred to the electrical circuit through the medium of the magnetic
the magnitude of the field.
induced e.m.f.
Set learners qualitative and quantitative questions for practice. (F)
20.5.5 Recall and
use Faraday’s and Resource Plus
Lenz’s laws of Carry out the Investigating electromagnetic induction experiment referring to the Teaching Pack for lesson plans
electromagnetic and resources.
induction.
Learners can measure the magnetic field strength of the Earth using a sensitive voltmeter and a long wire (around
30 metres). A trundle wheel and compass can be used to mark out an area where the movement of one side of
the wire will cut through the angled magnetic field of the Earth. The movement can be timed with a stopwatch and
carried out both vertically and horizontally. Measurements of induced e.m.f. can be collected using a multimeter
and the magnetic flux density can be calculated.

Learners can investigate Faraday’s law further using the Faraday’s Law simulation and Faraday’s Electromagnetic
Lab simulation. (I)

Notes on Faraday’s law and induction from a magnet moving through a coil:
www.khanacademy.org/science/physics/magnetic-forces-and-magnetic-fields/magnetic-flux-faradays-law/a/what-
is-faradays-law

Veritasium YouTube channel: Electromagnetic Induction:


www.youtube.com/watch?v=txmKr69jGBk&list=PL16649CCE7EFA8B2F&index=17&t=0s

Faraday’s Law simulation:


https://phet.colorado.edu/en/simulation/faradays-law

Faraday’s Electromagnetic Lab simulation:


https://phet.colorado.edu/en/simulation/legacy/faraday

21.1 Characteristics 21.1.1 Understand Introduce the alternator as a generator of alternating current. As the coil moves up and down through a magnetic
of alternating current and use the terms field, alternating current is induced due to Faraday’s law and Lenz’s law. The direction of current continuously
period, frequency changes.
21.2 Rectification and peak value as
and smoothing applied to an Ask learners to identify the variables that will increase the induced e.m.f. in a generator. Link this to the variables
alternating current or in Faraday’s law.
KC3 voltage.

76
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

Learners can investigate generators further using the Generator simulation. (I)
KC5 21.1.2 Use equations
of the form Direct learners to use the terms period, frequency and peak value to explain how an alternator works. Learners
x = x0 sin ωt should recall definitions of period and frequency from Unit 12 Oscillations. Clarify any misconceptions and
representing a definitions.
sinusoidally
alternating current or Ask learners to sketch voltage–time and current–time graphs. These are sinusoidal and give an average value of
voltage. zero. Introduce the equation that represents alternating current or voltage. Introduce the root-mean-square value
of current and voltage. Introduce how to calculate these and link to the graphs. Link to the root-mean-square
21.1.3 Recall and speed from Unit 11 Temperature, ideal gases and thermodynamics.
use the fact that the
mean power in a Ask learners to sketch a power–time graph for an alternator. Highlight the maximum power and the mean power.
resistive load is half The mean power is what is actually used and is half of the maximum.
the maximum power
Ask learners to explain what would happen if you placed a diode in an a.c. circuit. Learners may recall the
for a sinusoidal
properties of a diode from Unit 8 Electricity and d.c. circuits. They may sketch a voltage–time or current–time
alternating current.
graph to show their answer. This is the basis of half-wave rectification.
21.1.4 Distinguish Ask learners for suggestions of how the half-wave rectified current and e.m.f. of an alternating current could be
between root-mean- smoothed. This means it is made more like the constant value d.c. provides. If they cannot suggest any ideas, hint
square (r.m.s.) and at Unit 14 Capacitors.
peak values and
recall and use Introduce the use of a capacitor in smoothing. The capacitor charges when the diode allows current to flow and
Ir.m.s. = I0 / √2 and discharges when the diode does not allow current to flow. Show the voltage–time graph to clarify. Link the time
Vr.m.s. = V0 / √2 for a constant, dependent on the load resistance and the capacitance of the capacitor, to the time frequency of a.c. The
sinusoidal alternating time constant needs to be much larger than the time period. Ask learners to explain why this is the case.
current.
Introduce full-wave rectification as a method that allows both ‘halves’ of the a.c. sinusoidal pattern to be made
21.2.1 Distinguish positive. With the capacitor charging and discharging continuously, the pattern can be smoothed and begins to
graphically between appear more like a d.c. constant value of voltage.
half-wave and full-
wave rectification. Introduce four diodes, known as a bridge rectifier, for the full-wave rectification of an alternating current. This also
produces a rectified and smoothed e.m.f. Use diagrams to aid the explanation of how it works. Be aware that
21.2.2 Explain the some learners may be intimidated or confused by how complicated the circuit appears.
use of a single diode
for the half-wave Generator simulation:
rectification of an https://phet.colorado.edu/en/simulation/legacy/generator
alternating current.
Alternating current:

77
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

21.2.3 Explain the https://studynova.com/lecture/physics/electromagnetic-induction/alternating-current/


use of four diodes
(bridge rectifier) for Half-wave rectification and smoothing (from 5:49):
the full-wave https://studynova.com/lecture/physics/electromagnetic-induction/transformers-and-half-wave-rectification/
rectification of an
alternating current. Full wave rectification (and diode bridge):
https://studynova.com/lecture/physics/electromagnetic-induction/full-wave-rectification-and-diode-bridge/
21.2.4 Analyse the
effect of a single
capacitor in
smoothing, including
the effect of the
values of
capacitance and the
load resistance.

Past and specimen papers

Past/specimen papers and mark schemes are available to download at www.cambridgeinternational.org/support (F)

78
Scheme of Work

16 Quantum physics

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

22.1 Energy and 22.1.1 Understand Introduce the topic by discussing different types of models: concrete, abstract and mathematical. Give examples
momentum of a that electromagnetic for each. Highlight that for light there are two models that explain its behaviour. Sometimes these models appear
photon radiation has a to contradict each other. Introduce the quantum model of light where light is considered as photons, massless
particulate nature. particles of energy, as opposed to waves.
KC1
22.1.2 Understand Introduce the energy of a photon and E = hf. Introduce the Planck constant, h, and highlight its smallness. The
KC2 size of Planck’s constant is related to why the effects of quantum mechanics mainly appear on the atomic scale
that a photon is a
and were only discovered more recently with advances in technology. Relate the damaging effects of high-
quantum of
frequency electromagnetic waves to the idea that they carry more energy.
KC4 electromagnetic
energy. Demonstrate the Geiger-Muller counter as an example of discrete measurement of radiation, some of which are
gamma photons.
22.1.3 Recall and
use E = hf. Introduce the electronvolt as an alternative unit for energy. Ask learners why it’s used. Relate its name to its
definition. Demonstrate how to convert between joules and electrovolts. Highlight common prefixes used with the
22.1.4 Use the electronvolt such as keV, MeV and GeV.
electronvolt (eV) as
a unit of energy. Set learners more questions for practice, including conversions between units. (F)

Introduce the concept of an LED emitting photons of light due to the energy provided by an electron passing
22.1.5 Understand through it.
that a photon has
momentum and that Learners can find Planck’s constant, h, using LEDs of different wavelengths and a milliammeter (see
the momentum is scienceinschool.org link). Improve accuracy of results by making the room as dark as possible and using a black
given by p = E / c. cardboard viewing tube around the LED. Learners use a variable resistor to vary the voltage across the LED and
measure the current and voltage for when the LED lights. Learners should use results to plot a graph and find a
value for Planck’s constant. Learners can complete an error analysis and evaluation of their results.

Ask learners what the momentum of a photon would be. They may suggest it has no momentum as it has no
mass. Introduce p = E / c as an alternative method for calculating the momentum of a photon.

Measuring the Planck constant:


www.scienceinschool.org/2014/issue28/planck

79
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

22.2 Photoelectric 22.2.1 Understand Demonstrate the photoelectric effect by using a gold leaf electroscope, a zinc plate and a UV light source (see
effect that photoelectrons stem.org link). This simple demonstration can be repeated with visible light (nothing happens) and with a piece of
may be emitted from glass between the UV source and the plate (nothing happens). Encourage learners to think about what is
KC1 a metal surface when happening and to try and explain it.
it is illuminated by
KC2 electromagnetic Explain the photoelectric effect step by step. Use animations and diagrams as an aid.
radiation.
Relate the photoelectric effect to the phenomenon of surface charging, a particular problem for the International
KC5 22.2.2 Understand Space Station. The build up of positive charge can damage electronic components inside of the spacecraft due to
and use the terms high-energy electromagnetic radiation from the Sun causing electrons to be emitted from the metal surfaces.
threshold frequency
and threshold Ask learners to explain the photoelectric effect using the wave model. They should reason that, according to the
wavelength. wave model, high-intensity red light should release photoelectrons but dim blue light would not, but this is not the
case. In fact, the energy a photoelectron receives is independent of the light’s intensity.
22.2.3 Explain
Reiterate the concept of the photoelectric effect being a one-to-one interaction between a photon and an electron.
photoelectric
However, if a photon does not have enough energy, the electron will not be released.
emission in terms of
photon energy and Define the work function, the threshold frequency and the threshold wavelength.
work function energy.
Use an analogy to explain the photoelectric effect. Place a football on a small cardboard tube so that it balances in
22.2.4 Recall and a stable position. The football represents an electron at the surface of the metal plate. Learners can throw multiple
use hf = Φ + ½ ping-pong balls at the football, which represent lower energy photons, but they won’t have enough energy to knock
mvmax2. the football off and their energies cannot add together. Learners can throw a single tennis ball at the football,
which represents a higher-energy photon, and just one of these will knock the football off.
22.2.5 Explain why
the maximum kinetic An analogy of a well can be used to explain how the electrons require a certain amount of energy, the work
energy of function, to be free, but it must be delivered in one photon. It’s like having the right-sized ladder to escape the well.
photoelectrons is Multiple small ‘ladders’ cannot be added together to escape.
independent of
intensity, whereas Ask learners what happens to any ‘extra’ energy left over from the photon that releases the photoelectron.
the photoelectric Introduce the idea of this giving the photoelectron kinetic energy and explain the equation.
current is
proportional to Analyse the graph of the photon’s energy against the photon’s frequency. The gradient is found to be the Planck
intensity. constant, the x-intercept is the threshold frequency and the y-intercept is the work function. Ask learners to explain
why different metals will shift the line, but it will always have the same gradient.

Set learners more questions for practice. (F)

80
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

Learners can investigate the photoelectric effect further using the simulation. This is particularly helpful as it very
accurately simulates how photoelectric current is proportional to intensity. (I)

Teacher notes and learner questions from the IoP on the photoelectric effect:
https://spark.iop.org/wholesale-photoelectric-effect
https://spark.iop.org/episode-502-photoelectric-effect

Photoelectric effect demonstration:


www.stem.org.uk/resources/elibrary/resource/28841/photoelectric-effect

Photoelectric Effect simulation:


https://phet.colorado.edu/en/simulation/legacy/photoelectric

22.3 Wave-particle 22.3.1 Understand Introduce the idea that, if waves can behave as particles, perhaps particles can behave as waves.
duality that the photoelectric
effect provides Demonstrate or show videos of an electron gun with a crystalline diffraction grating. The fluorescent screen should
KC1 evidence for a show a circular diffraction pattern. Ask learners to predict what they will see, giving them the full information in
particulate nature of advance, or ask them to explain what they see as it is demonstrated. Learners may need to be reminded how an
electromagnetic electron gun works. It may help to show a diagram of the crystalline structure that is diffracting the electrons.
KC2 Relate the work done in accelerating the electrons to the kinetic energy gained by the electrons. Highlight the
radiation while
phenomena such as significance of the experiment as the electrons accelerate as particles by the high voltage, diffract as waves and
KC4 interference and hit the screen as discrete particles.
diffraction provide
evidence for a wave Relate the pattern seen on the electron gun screen to Young’s slits. Ask learners to explain the difference in the
nature. patterns observed.

22.3.2 Describe and Introduce the de Broglie equation and the idea that all particles can be treated as waves. Discuss the largest atom
interpret qualitatively that has been diffracted to date.
the evidence
Learners can calculate their own wavelength. Ask them to explain why they could not be diffracted. They should
provided by electron
recall their understanding of diffraction and the importance of the size of the gap.
diffraction for the
wave nature of Highlight the practical use of this phenomenon, such as in crystallography and electron microscopes.
particles.
Set learners more questions for practice. (F)
22.3.3 Understand
the de Broglie Teacher notes and learner questions from the IoP on particles as waves and the De Broglie wavelength:
wavelength as the https://spark.iop.org/episode-506-particles-waves
wavelength https://spark.iop.org/de-broglie-wavelength

81
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

associated with a
moving particle.

22.3.4 Recall and


use λ = h / p.

22.4 Energy levels in 22.4.1 Understand Scatter white light on the surface of a CD to create rainbows as a starter. Why does this happen?
atoms and line that there are
spectra discrete electron Remind learners of the classical model of an atom like a miniature solar system. If this was the case, orbiting
energy levels in electrons radiating energy would spiral towards the nucleus as they lost energy, resulting in a catastrophic
KC1 isolated atoms. collapse of the atom. The Bohr atomic structure has quantised orbits with discrete energy levels for the electrons.

KC4 22.4.2 Understand Introduce energy levels and spectra. Electrons can move between these levels by absorbing or emitting photons
the appearance and of specific energies.
formation of emission
and absorption line Clarify that the electrons do not have negative energy; rather the negative energies refer to the amount of energy
spectra. an electron would need to be released from the atom.

Learners can use spectroscopes to observe the spectra from different light sources: a sodium lamp, a mercury
22.4.3 Recall and
lamp, a candle, a Bunsen burner, the Sun, a fluorescent light, etc. They should notice differences between the
use hf = E1 – E2.
patterns that they see. For example, the Sun has a lot of higher-energy violet light and a sodium lamp has a lot of
lower-energy red light.

Relate the energy levels to the photoelectric effect. Remind learners that electrons required specific amounts of
energy to be freed from the surface of a metal plate and this energy had to be delivered in a single photon.

Discuss the excitation and de-excitation of electrons e.g. an electron in a neon light is excited to a higher energy
level by the p.d. across the tube and then it transitions to a lower energy level, releasing a photon with a specific
frequency. Relate to E = hf. Use animations and diagrams as an aid.

Introduce spectroscopy as the study of spectra produced when matter interacts with or emits electromagnetic
radiation. Although we have not visited the stars, we are able to analyse their starlight to determine their elements.
It might interest learners and enthuse the girls in particular to hear about scientist Cecilia Payne-Gaposchkin’s
discovery that stars are mainly made of hydrogen and helium.

Learners can analyse the absorption line spectra of various stars and identify various elements present.

Introduce the relationship between the energy emitted or absorbed and the change in energy levels.

82
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

Set learners more questions for practice using the real energy levels of elements such as hydrogen. (F)

Learners can investigate models of the atom further with the Models of the Hydrogen Atom simulation. (I)

Models of the Hydrogen Atom simulation:


https://phet.colorado.edu/en/simulation/legacy/hydrogen-atom

Teacher notes and learner questions from the IoP on spectra and energy levels:
https://spark.iop.org/episode-501-spectra-and-energy-levels

Past and specimen papers

Past/specimen papers and mark schemes are available to download at www.cambridgeinternational.org/support (F)

83
Scheme of Work

17 Particle physics and nuclear physics

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

11.1 Atoms, nuclei 11.1.1 Infer from the Introduce the atom, originating from the Greek word ‘atomos’, as the name of what was once considered an
and radiation results of the α- indivisible particle. Henri Becquerel’s discovery of radioactivity in 1896 inspired many scientists to work in this area
particle scattering of physics and Rutherford’s scattering experiment was conceived as a result. It may interest learners to discuss
KC1 experiment the more of the history of the discovery of the atom and its components.
existence and small
KC2 size of the nucleus. Introduce the set up of Rutherford’s scattering experiment and the expected results. Share the observations that
were made and ask learners to link them to our current understanding of the atom.
11.1.2 Describe a
KC5 simple model for the Learners can calculate the size of the nucleus using their understanding of Unit 13 Electric fields (see spark.iop
nuclear atom to 522 link).
include protons,
neutrons and orbital Define the nucleon number and proton number of a nuclide. Learners may remember this from Cambridge IGCSE
electrons. (or equivalent). Give examples of isotopes and discuss the difference between an isotope and an atom.

Introduce the unified atomic mass unit, u, as a unit of mass.


11.1.3 Distinguish
between nucleon Recap the electronvolt as an alternative unit for energy. The Large Hadron Collider at CERN in Switzerland
number and proton functions in the TeV range.
number.
Explain that an antiparticle has the same mass but opposite charge to the corresponding particle. The first
11.1.4 Understand antiparticle predicted and discovered was the positron, the antiparticle of an electron.
that isotopes are
forms of the same Set learners simple nuclear process questions to practise their use of nucleon numbers, proton numbers and the
element with different conservation of charge. (F)
numbers of neutrons
in their nuclei. Learners may be interested to see the nuclear equations for historically important reactions such as Becquerel’s
first observation of radioactivity, the first artificial transmutation of nitrogen to oxygen, the nuclear fission of
11.1.5 Understand Uranium, the collision of protons inside the Large Hadron Collider at CERN, etc. You could edit the nuclear
and use the notation equations to allow learners to work out the missing values. (F)
𝑍𝑍𝑋𝑋 for the
𝐴𝐴

representation of Introduce the three types of radioactivity: α, β and γ. They are easily distinguished by their behaviour in an electric
nuclides. field, which learners may be able to explain using their understanding of Unit 13. Describe the composition, mass
and charge of each and show the nuclear equations for α- and β-decay. Highlight the production of neutrinos and
11.1.6 Understand antineutrinos in β-decay; the emission of antineutrinos in β-decay allows for a continuous range of energies but α-
that nucleon number

84
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

and charge are particles have discrete energies.


conserved in nuclear
processes. Ask learners how magnetic fields affect the three types of radioactivity. They may be able to use their
understanding of Unit 15 Magnetic fields and alternating currents to explain how the charges of α- and β-particles
11.1.7 Describe the will cause deflection in a magnetic field.
composition, mass
and charge of α-, β- Learners can investigate the penetrating powers of α-, β- and γ-sources under supervision. Alternatively you can
and γ-radiations. demonstrate this.

11.1.8 Understand Learners can investigate radioactive decay further using the Alpha Decay simulation and the Beta Decay
that an antiparticle simulation. (I)
has the same mass
Teacher notes and learner worksheets from the IoP on Rutherford’s experiment, the size of the nucleus and
but opposite charge
particles:
to the corresponding
https://spark.iop.org/episode-521-rutherfords-experiment
particle, and that a
https://spark.iop.org/episode-522-size-nucleus
positron is the
https://spark.iop.org/episode-533-particle-zoo
antiparticle of an
electron.
Alpha Decay simulation:
https://phet.colorado.edu/en/simulation/legacy/alpha-decay
11.1.9 State that
(electron)
Beta Decay simulation:
antineutrinos are
https://phet.colorado.edu/en/simulation/legacy/beta-decay
produced during β–
decay and (electron)
neutrinos are
produced during β+
decay.

11.1.10 Understand
that α-particles have
discrete energies but
that β-particles have
a continuous range
of energies because
(anti)neutrinos are
emitted in β-decay.

11.1.11 Represent α-

85
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

and β-decay by a
radioactive decay
equation of the form
238 234
92𝑈𝑈 → 90𝑇𝑇ℎ + 2𝛼𝛼 .
4

11.1.12 Use the


unified atomic mass
unit (u) as a unit of
mass.

23.2 Radioactive 23.2.1 Understand Demonstrate a Geiger-Muller counter and highlight the random nature of the radiation it detects. It is measuring
decay that fluctuations in background radiation and does not distinguish between α-, β- or γ-radiation.
count rate provide
KC1 evidence for the Learners may find it interesting to discuss some of the common sources of background radiation.
random nature of
radioactive decay. Learners can measure the average background radiation using the Geiger-Muller counter and a stopwatch. They
KC2
can measure the radiation from a radioactive source, supervised, and calculate the corrected count rate by
23.2.2 Understand subtracting the average background radiation.
KC3 that radioactive
decay is both Define the terms random and spontaneous and highlight their importance in describing the nature of radioactive
KC5 spontaneous and decay. Learners may be able to explain that radioactive decay cannot be predicted.
random.
Define activity and the decay constant and relate them together with the equation. Use graphs and examples to
aid explanation.
23.2.3 Define activity
and decay constant, Define the half-life as the average time taken for the radioactivity to fall to half of its original value. This allows
and recall and use different samples to be compared regardless of size or concentration.
A = λN.
Relate the half-life to decay constant and introduce the exponential decay equation. Direct learners to consider the
23.2.4 Define half- unit for the decay constant and how it relates to the half-life. Relate the exponential decay equation for
life. radioactivity to learners’ understanding of Unit 14 Capacitance and the discharging of capacitors.

23.2.5 Use Learners can model radioactive decay using dice (see spark.iop link) to investigate its random and exponential
λ = 0.693 / t1/2. nature. They can plot a graph of results and calculate the half-life.

23.2.6 Understand Set learners qualitative and quantitative questions on radioactive decay using graphs and calculations. (F)
the exponential
nature of radioactive
decay, and sketch

86
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

and use the Learners may be interested to watch the Veritasium video (see youtube.com link) on the most radioactive places
relationship x = x0e-λt, on Earth. (I)
where x could
represent activity, Learners can investigate radioactivity further by using the Radioactive Decay simulation. (I)
number of
undecayed nuclei or Teacher notes and learner worksheets from the IoP on radioactive decay formula:
received count rate. https://spark.iop.org/episode-515-radioactive-decay-formula

Veritasium YouTube channel: The Most Radioactive Places On Earth:


www.youtube.com/watch?v=TRL7o2kPqw0&t=604s

Radioactive Decay simulation:


www.physicslab.co.uk/decay.htm

11.2 Fundamental 11.2.1 Understand Introduce the standard model. All particles are either leptons or hadrons. Hadrons are made up of quarks. All of
particles that a quark is a these particles have antiparticles with opposite charges, including quarks. No knowledge of any other properties of
fundamental particle quarks is required. One quark and one antiquark make a meson, and three quarks make a baryon. Learners may
KC1 and that there are six find it difficult to learn multiple new names of particles all at once; they could do some pre-reading ahead of the
flavours (types) of lesson. The definitions of each may need to be repeatedly recapped for them to feel confident with the new
KC5 quark: up, down, language.
strange, charm, top
and bottom. Explain the quark composition of a neutron and a proton. Direct learners to calculate the charge of each, based on
the component quarks’ charge.
11.2.2 Recall and
use the charge of Reiterate that an electron is a fundamental particle known as a lepton.
each flavour of quark
and understand that Refer to the Large Hadron Collider at CERN in Switzerland. It collides hadrons, specifically protons which are
its respective baryons. Previously the same tunnel housed the Large Electron-Positron Collider, which collided leptons.
antiquark has the
Introduce β-decay as an example of quarks changing flavour and thus changing the baryon. Go through the
opposite charge.
particle equation, the quark equation and the simplified quark equation for both β– and β+ decay. Show learners
how to check that charge, baryon number, lepton number, strangeness and mass (or energy) are conserved.
11.2.3 Recall that
protons and neutrons Learners can consolidate their understanding of β-decay by using the Beta Decay simulation. (I)
are not fundamental
particles and Learners may find it interesting to learn more about particle detectors and the analysis of particle tracks (see
describe protons and spark.iop 519 link).
neutrons in terms of
their quark The standard model:

87
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

composition. https://home.cern/science/physics/standard-model

11.2.4 Understand Beta Decay simulation:


that a hadron may be https://phet.colorado.edu/en/simulation/legacy/beta-decay
either a baryon
(consisting of three Teacher notes and learner worksheets from the IoP on antiparticles, leptons and particle detectors:
quarks) or a meson https://spark.iop.org/episode-534-antiparticles-and-lepton-family
(consisting of one https://spark.iop.org/episode-519-particle-detectors
quark and one
antiquark).

11.2.5 Describe the


changes to quark
composition that take
place during β– and
β+ decay.

11.2.6 Recall that


electrons and
neutrinos are
fundamental particles
called leptons.

23.1 Mass defect 23.1.1 Understand Introduce Einstein’s principle of equivalence of mass and energy. Learners may be interested in how this relates to
and nuclear binding the equivalence Einstein’s theory of relativity.
energy between energy and
mass as represented Recap the unified atomic mass unit, u, as a unit of mass.
KC1 by E = mc2 and recall
and use this Recap the importance of the conservation of mass (or energy) and charge. This is used to balance nuclear
equation. equations.
KC3
23.1.2 Represent Introduce the famous equation and explain how it can be used. Learners can calculate the energy equivalent to
KC5 simple nuclear 1kg of mass and 1u of mass to give an idea of scale.
reactions by nuclear
Direct learners to calculate the total mass of an atom from its individual components e.g. knowing that an atom of
equations of the form
14 4 17 calcium has of mass of 39.9626u and that it is made up of 20 protons, 20 neutrons and 20 electrons, find the total
7𝑁𝑁 + 2𝐻𝐻𝐻𝐻 → 8𝑂𝑂 + mass in u. Learners will find a difference in the answers.
1𝐻𝐻 .
1

88
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

23.1.3 Define and Introduce mass defect and binding energy and relate to the difference between the mass of the separate particles
use the terms mass and the mass of the whole atom due to the work done in separating the particles.
defect and binding
energy. Introduce the binding energy values for other atoms via the binding energy per nucleon against nucleon number
graph. Ask learners to suggest what iron’s significance is and what happens to atoms that are heavier/lighter than
23.1.4 Sketch the iron. Learners may identify that atoms heavier than iron may undergo fission, whilst atoms lighter than iron may
variation of binding undergo fusion.
energy per nucleon
with nucleon number. Introduce nuclear fusion and nuclear fission. Explain their processes. Link the atoms that undergo theses
reactions to the binding energy per nucleon available. Highlight that these reactions are induced, not spontaneous
23.1.5 Explain what like α-, β- and γ-radiations.
is meant by nuclear
fusion and nuclear Learners may find it interesting to learn more about fission reactors, current research into fusion on Earth as an
fission. energy resource and some of the historical accidents that have occurred, such as Chernobyl or Fukushima
Daiichi.
23.1.6 Explain the
Set learners more complicated nuclear reaction questions to calculate the energy released using Einstein’s
relevance of binding
equivalence of mass and energy. (F)
energy per nucleon
to nuclear reactions, Learners can investigate fission further using the Nuclear Fission simulation. (I)
including nuclear
fusion and nuclear Teacher notes and learner worksheets from the IoP on binding energy, fission and fusion:
fission. https://spark.iop.org/episode-525-binding-energy
https://spark.iop.org/episode-527-nuclear-transmutation
23.1.7 Calculate the https://spark.iop.org/episode-528-controlling-fission
energy released in
nuclear reactions Nuclear Fission simulation:
using E = c2Δm. https://phet.colorado.edu/en/simulation/legacy/nuclear-fission

Past and specimen papers

Past/specimen papers and mark schemes are available to download at www.cambridgeinternational.org/support (F)

89
Scheme of Work

18 Medical physics

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

24.1 Production and 24.1.1 Understand What are the advantages of an ultrasound scan? Learners may know a little about this diagnostic procedure and
use of ultrasound that a piezo-electric be able to explain that it is non-invasive and does not involve ionising radiation.
crystal changes
KC3 shape when a p.d. is Explain that ultrasound imaging uses frequencies above the human hearing range and they are created by piezo-
applied across it and electric crystals. A piezoelectric transducer on the body’s surface directs the pulses of ultrasound into the body.
KC4 that the crystal These reflect off internal boundaries e.g. between tissue and bone. The probe can detect the reflected pulses and
generates an e.m.f. the information is converted into an image. A piezo-electric crystal changes shape when a p.d. is applied across it
when its shape and the crystal generates an e.m.f. when its shape changes. Thus, a p.d. is applied across the crystal, causing it
changes. to vibrate at high frequency and produce ultrasonic pulses. The same crystal changes shape when the reflected
pulses return, generating an e.m.f. Use diagrams and animations to aid this explanation.
24.1.2 Understand
how ultrasound Show learners a simple ultrasound and accompanying diagram, e.g. scan data for an eye and a diagram of an
waves are generated eye, and ask them to relate the echoes to the boundaries in media.
and detected by a
piezoelectric Define specific acoustic impedance and introduce the equation that relates it to the medium. Ask learners to find
transducer. the units of acoustic impedance. Ultrasound reflects at internal boundaries between media because the acoustic
impedance of such media differ. Show diagrams to illustrate this.
24.1.3 Understand
Ask learners why they think a gel is used with the transducer. Many will have seen this used in TV shows and films
how the reflection of
for pre-natal sonograms. They may be able to explain that it is used to ensure the ultrasound enters the body and
pulses of ultrasound
does not reflect from the boundary between air and skin. This is known as impedance matching and is important to
at boundaries
ensure good transmission values.
between tissues can
be used to obtain Introduce the relationship between acoustic impedance and intensity. This can be used to calculate the reflected
diagnostic intensity of the ultrasound or the specific acoustic impedance, allowing identification of media.
information about
internal structures. Introduce the exponential equation for attenuation (the reduction of the intensity of the ultrasound).

24.1.4 Define the Set learners questions for practice on acoustic impedance and attenuation. (F)
specific acoustic
impedance of a Show learners ultrasound images. Learners may enjoy trying to identify what they are looking at in the images.
medium as Z = ρc,
where c is the speed Teacher notes and learner worksheets from the IoP on ultrasound:
of sound in the https://spark.iop.org/ultrasound-scans

90
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

medium.
Video from the IoP on ultrasound with notes and worksheets:
24.1.5 Use IR / I0 = www.stem.org.uk/elibrary/resource/31828
(Z1 – Z1)2 / (Z1 + Z1)2
for the intensity How equipment works: Ultrasound:
reflection coefficient www.howequipmentworks.com/ultrasound_basics/
of a boundary
between two media.

24.1.6 Recall and


use I = I0e-μx for the
attenuation of
ultrasound in matter.

24.2 Production and 24.2.1 Explain that Show learners the first known X-ray image of the hand of Wilhelm Roentgen’s wife from 1895. Can they identify
use of X-rays X-rays are produced what the lump is on the second finger? Mrs Roentgen exclaimed ‘I have seen my death’ upon seeing the image. It
by electron may interest learners to learn that the use of X-rays quickly spread around the world and became a media
KC3 bombardment of a sensation.
metal target and
KC4 calculate the Recap the key properties of X-rays asking learners to share what they recall from Unit 7 Waves and superposition.
minimum wavelength Highlight their high energy and thus their danger to living cells.
of X-rays produced
from the accelerating Explain how X-rays are produced and make use of a diagram to show the process. Direct learners to link the
p.d. energy the electrons gain from the accelerating p.d. to the energy of the X-ray photons produced. Learners can
calculate the wavelength of the photons knowing the accelerating p.d.
24.2.2 Understand
the use of X-rays in Discuss the uses of X-rays and the use of contrasts. Learners will be familiar with X-rays being used to image
imaging internal body bones and may have experienced this diagnostic procedure themselves. Explain how a contrast can be used to
structures, including improve the imaging of soft tissues, which would normally be indistinguishable. Discuss barium meals and the use
an understanding of of iodine dye in the bloodstream.
the term contrast in
Introduce the exponential equation for attenuation (the reduction of the intensity of the X-rays). Link it to equation
X-ray imaging.
for the attenuation of ultrasound.
24.2.3 Recall and Explain that the attenuation coefficient depends on the density of the media. Ask learners to explain why an X-ray
use I = I0e-μx for the appears to create a ‘shadow’ of bones.
attenuation of X-rays
in matter.

91
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

24.2.4 Understand Link the attenuation coefficient to learners’ understanding of half-life from Unit 17 Particle physics and nuclear
that computed physics by asking learners to calculate the half-value thickness of a material e.g. the thickness of bone that causes
tomography (CT) the intensity to drop to half of the original X-ray.
scanning produces a
3D image of an Set learners questions on attenuation for practice. (F)
internal structure by
first combining Show learners X-ray images. Learners may enjoy trying to identify what they are looking at in the images.
multiple X-ray Highlight the limitations of X-rays. They are superimposed images of information from different depths within the
images taken in the body and they do not show clear differences in soft tissue. Explain how X-rays can be used to produce a 3D
same section from image, known as computed tomography (CT). The word ‘tomos’ comes from the Greek for ‘slice’; a CT scan builds
different angles to up the 3D image by scanning in layers. Videos and/or diagrams may help explain this process.
obtain a 2D image of
the section, then Teacher notes and learner worksheets from the IoP on X-rays:
repeating this https://spark.iop.org/x-ray-imaging
process along an
axis and combining Videos from the IoP on X-rays with notes and worksheets:
2D images of www.stem.org.uk/resources/elibrary/resource/31829/x-ray-imaging
multiple sections.
Computed Tomography (CT):
www.radiologyinfo.org/en/info.cfm?pg=bodyct

24.3 PET scanning 24.3.1 Understand Introduce a tracer as a substance containing radioactive nuclei that can be introduced into the body and is then
that a tracer is a absorbed by the tissue being studied.
KC3 substance containing
radioactive nuclei Ask learners to explain β+ decay as covered in Unit 17 Particle physics and nuclear physics. Explain that this is the
that can be type of radioactivity used in positron emission tomography.
KC4
introduced into the
body and is then Ask learners what they think happens when a particle meets an antiparticle, e.g. a positron and an electron. They
absorbed by the may suggest that this results in annihilation when both particles cease to exist and their mass is converted into
tissue being studied. energy in the form of photons.

24.3.2 Recall that a When the positron, emitted by β+ decay of the tracer, meets an electron, it annihilates and produces a pair of
tracer that decays by gamma-ray photons travelling in opposite directions.
β+ decay is used in
Learners can calculate the energy of the gamma-ray photons emitted during the annihilation of an electron-
positron emission
positron pair using the equivalence between energy and mass covered in Unit 17.
tomography.
Ask learners to use their understanding of the nature of gamma-ray photons from Unit 17 to explain what happens
24.3.3 Understand after the annihilation. They may be able to explain that the gamma-ray photons will travel out of the body due to

92
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

that annihilation their high penetrating power. Explain that the gamma-ray photons can be detected and their arrival times allow an
occurs when a image of the tracer concentration in the tissue to be created.
particle interacts with
its antiparticle and Show learners PET images. Learners may enjoy trying to identify what they are looking at in the images.
that mass-energy Set learners questions for practice. (F)
and momentum are
conserved in the Teacher notes and learner worksheets from the IoP on Positron Emission Tomography (PET):
process. https://spark.iop.org/positron-emission-tomography-pet

24.3.4 Explain that, Video from the IoP on Positron Emission Tomography (PET) with notes and worksheets:
in PET scanning, www.stem.org.uk/elibrary/resource/31832
positrons emitted by
the decay of the Positron Emission Tomography (PET):
tracer annihilate www.radiologyinfo.org/en/info.cfm?pg=PET
when they interact
with electrons in the
tissue, producing a
pair of gamma-ray
photons travelling in
opposite directions.

24.3.5 Calculate the


energy of the
gamma-ray photons
emitted during the
annihilation of an
electron-positron
pair.

24.3.6 Understand
that the gamma-ray
photons from an
annihilation event
travel outside the
body and can be
detected, and an
image of the tracer
concentration in the

93
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

tissue can be created


by processing the
arrival times of the
gamma-ray photons.

Past and specimen papers

Past/specimen papers and mark schemes are available to download at www.cambridgeinternational.org/support (F)

94
Scheme of Work

19 Astronomy and cosmology

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

25.1 Standard 25.1.1 Understand Introduce the term luminosity and relate to learners’ knowledge of power from Unit 5 Work, energy and power.
candles the term luminosity Highlight that luminosity is independent of how far away we are from the star. Stars may have a high luminosity
as the total power of but appear less bright because they are further away.
KC1 radiation emitted by
a star. Recap the inverse square law for intensity of electromagnetic waves as covered in Unit 7 Waves and
KC2 superposition. The radiant flux intensity can be calculated in a similar way in terms of the luminosity of the source.
25.1.2 Recall and
use the inverse Introduce standard candles. These are astronomical objects with known luminosities that can be used to
KC5 square law for determine how far away these objects, and the surrounding galaxy, are from Earth. Learners may be interested to
radiant flux intensity learn about some of the commonly used types of stars that can act as standard candles. It might enthuse the girls
F in terms of the in particular to hear about the scientist Henrietta Swan Leavitt’s work in discovering the relationship between the
luminosity L of the luminosity and the period of Cepheid variables, the first standard candle used in astronomy.
source
F = L / (4πd2). Set learners simple questions for practice. (F)

Learners can investigate the inverse square law of light through an experiment using a point light source and
25.1.3 Understand
shade boxes (see nasa.gov link).
that an object of
known luminosity is Learners can investigate the inverse square law of light using a light intensity metre and a point light source.
called a standard
candle. Stellar luminosity calculator:
https://astro.unl.edu/naap/hr/hr_background2.html
25.1.4 Understand
the use of standard Standard candles:
candles to determine www.astro.ex.ac.uk/people/hatchell/rinr/candles.pdf
distances to
galaxies. The inverse square law of light experiment:
www.nasa.gov/pdf/583137main_Inverse_Square_Law_of_Light.pdf

25.2 Stellar radii 25.2.1 Recall and Show a video of a metal being heated until it begins to melt and direct learners to observe the change in colour of
use Wien’s the metal over time. Does the colour of the metal relate to its temperature? Learners may link colour to
KC1 displacement law wavelength.
λmax ∝ 1 / T to
estimate the peak

95
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

KC3 surface temperature Introduce Wien’s law as the relationship between temperature and wavelength. Specifically it links the temperature
of a star. in kelvin to the inverse of the peak wavelength at which its intensity is maximum.
KC5
25.2.2 Use the Show learners an intensity–wavelength graph of blackbody radiation at various temperatures so they understand
Stefan–Boltzmann what is meant by ‘peak wavelength’.
law L = 4πσr2T4.
Learners can use Wien’s displacement law to estimate the wavelengths emitted by various everyday items. They
25.2.3 Use Wien’s can first estimate, measure or research temperature and then calculate a wavelength. Items can include: a
displacement law Bunsen burner, a log fire, a human being, a filament lamp, the Sun, etc.
and the Stefan–
Boltzmann law to Learners can investigate Wien’s displacement law further with the Blackbody spectrum simulation. (I)
estimate the radius
Introduce the Stefan–Boltzmann law and the variables on which luminosity depends.
of a star.
Ask learners to combine Wien’s displacement law and the Stefan–Boltzmann law to find the radius of a star. Give
learners the Sun’s peak wavelength at which its intensity is maximum, and its luminosity. Learners may link this
wavelength to the colour green, its abundance on our planet and a human’s eye’s sensitivity to the visible light
spectrum.

Set learners questions for practice. (F)

Wien’s displacement law and the temperature of a star:


www.schoolphysics.co.uk/age16-19/Astrophysics/text/Luminosity_and_brightness/index.html

Blackbody spectrum simulation:


https://phet.colorado.edu/en/simulation/blackbody-spectrum

25.3 Hubble’s law 25.3.1 Understand Remind learners of the Doppler effect for sound waves as covered in Unit 7 Waves and superposition. Any wave
and the Big Bang that the lines in the can be Doppler shifted and the Doppler effect for light waves can be used to find the speed of astronomical
theory emission spectra objects.
from distant objects
KC1 show an increase in Remind learners of the equation for the Doppler effect from Unit 7 and relate it to wavelength.
wavelength from
their known values. Introduce Edwin Hubble as the scientist who showed that there were many more galaxies in the Universe than
KC2
people thought and who investigated the motion of distant galaxies.
25.3.2 Use Δλ / λ ≈
KC5 Δf / f ≈ v / c for the How did Hubble investigate the motion of distant galaxies? Remind learners about line spectra from Unit 16
redshift of Quantum physics. Hubble knew what line spectra the stars should have, but he found them to be redshifted and
electromagnetic calculated their velocity. It may help to show images of line spectra. Remind learners of Henrietta Swan Leavitt’s

96
Scheme of Work

Syllabus ref. and


Learning objectives Suggested teaching activities
Key Concepts (KC)

radiation from a work on standard candles, which were used by Edwin Hubble to find the distance to galaxies.
source moving
relative to an Show learners a graph of Hubble’s results. Ask learners to make their own conclusion. They may explain that
observer. galaxies that are further away move faster, suggesting that everything is moving away from everything else, which
leads to the conclusion that the Universe is expanding.
25.3.3 Explain why
redshift leads to the Introduce Hubble’s law and the equation. Hubble’s law can be expressed in alternative units, but candidates will
idea that the only be required to use SI units.
Universe is
expanding. Set learners questions for practice. (F)

Ask learners what else can be deduced by Hubble’s evidence of redshift. What happens if we run time
25.3.4 Recall and
backwards? The Universe would be a lot smaller, denser and hotter than it is now, until eventually it is all in a
use Hubble’s law
single point. This is the basis of the Big Bang theory and Hubble’s law is a key piece of evidence.
v ≈ H0d and explain
how this leads to the Learners can investigate the Big Bang theory using a balloon and coloured stickers (see schoolsobservatory.org
Big Bang theory.
link). This models the balloon as space–time, which expands, and the stickers as galaxies. Learners measure the
distances between each galaxy and a home galaxy using string and a ruler before and after a period of expansion
and plot the results on a graph.

Learners can investigate the Big Bang theory with metal rings and rubber bands (see spark.iop link). This models
the metal rings as galaxies, held together by their own gravity, and the rubber bands as the space between them,
which expand as the Universe expands. The rubber bands can be looped through the metal rings to create a
straight chain of ‘galaxies’. Learners measure the distances between each galaxy and a home galaxy with a ruler
before and after a period of expansion and plot the results on a graph.

Learners may enjoy looking at images captured by the Hubble Space Telescope, as named after Edwin Hubble. (I)

Teacher notes and learner worksheets from the IoP on the expanding universe:
https://spark.iop.org/episode-704-expanding-universe

Big Bang demo:


www.schoolsobservatory.org/discover/quick/uniball

Past and specimen papers

Past/specimen papers and mark schemes are available to download at www.cambridgeinternational.org/support (F)

97
Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom
t: +44 1223 553554
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES March 2020

You might also like