Volume Integrals
Volume Integrals
Volume Integrals
Let f be a scalar function and V is a volume enclosed by a surface S in xyz plane then the
integral of scalar function f over volume V is volume integral and is given by
x2 y 2 z 2
V= V
f dxdydz f dzdydx
x1 y1 z1
(OR)
Let F be a vector function and V is a volume enclosed by a surface S in xyz plane then the
integral of vector function F over volume V is volume integral and is given by
x2 y 2 z 2
V= V
F dxdydz F dzdydx
x1 y1 z1
PROBLEMS:
Limits of z: 0 to 4-2x-2y
Limits of y: 0 to 2-x
Limits of x: 0 to 2
2 2 x 4 2 x 2 y 2 2 x 4 2 x 2 y 2 2 x
Fdv
V
0
0
2 x dzdydx
0 0
2 x z
0
dydx
0
2 x 4 2 x 2 ydydx
0
0
2 2 x 2 2 x 2 x
2
y2
4
0
x 2 x ydydx 4
0 0
0 x ( 2 x ) xy dydx 4 0 x ( 2 x ) y x dx
2 0
2
(2 x) 2
2 2
4 x( 2 x) 2 x dx 2 x ( 2 x ) 2
dx 2 x(4 x 2 4 x)dx
0
2 0 0
2
2
x4 x3 32 32 8
2 (4 x x 4 x )dx 22 x 2
3 2
4 28 4 212
0 4 3 0 3 3 3
22
Dr. K.S. Balamurugan, RVR & JC College of Engineering, Guntur, A.P