BSC Trigno
BSC Trigno
BSC Trigno
com
Contents
Unit 1: Lesson
1. Expansions
2. Hyperbolic functions
3. Logarithm of Complex numbers
4. summation of series
Unit 2:
5. vector columns – an Introduction
6. Differential operators
7. Integration of vectors
8. Theorems of Gauss, Stokes and Green
Unit 3:
9. Fourier series
10. Polar coordinates
Unit 4: 11. Analytical Geometry of Three Dimensions
12. Sphere
Unit 5:
13. Cone, Cylinder
14. Coincoids
1
This watermark does not appear in the registered version - http://www.clicktoconvert.com
Unit I
Lesson - 1
Trigonometry
Contents
1.0 Aims and Objectives
1.1 Expansions
1.2 Examples
1.3 Let us sum up
1.4 Check your progress
1.5 Lesson End activities
1.6 Points for discussion
1.7 References
1.1 Expansions
1.1.1. Expansions of cos n q and sin n q
We know that
(cos q +i sin q )n = cos n q + i sin n q
cos n q + i sin n q = (cos q +i sin q )n
= cosn q +nc1 cosn-1 q sin q +nc2 cosn-2 q (i sin q )2 +
nc3 cosn-3 q (i sin q )3 +nc4 cosn-4 q (i sin q )4 +………….
= cosn q +i nc1 cosn-1 q sin q - nc2 cosn-2 q sin2 q -i nc3 cosn-3 q
sin3 q + nc4 cosn-4 q sin4 q + i nc5 cosn-5 q sin5 q ………..
= cosn q - nc2 cosn-2 q sin2 q + nc4 cosn-4 q sin4 q ……………
+ i (nc1 cosn-1 q sin q - nc3 cosn-3 q sin3 q + nc5 cosn-5 q
sin5 q ….)
2
This watermark does not appear in the registered version - http://www.clicktoconvert.com
1.2 Examples
6.5 6.5.4.3
= cos 6 q - cos 4 q sin 2 q + cos 2 q sin 4 q - sin 6 q
1.2 1 .2.3.4
= cos 6 q -15 cos 4 q sin 2 q +15cos 2 q sin 4 q - sin 6 q
= cos6 q - 15 cos 4 q (1- cos 2 q ) + 15 cos 2 q ( 1-cos 2 q )2 – (1-cos 2 q )3
= cos6 q - 15 cos 4 q +15 cos6 q + 15 cos 2 q (1+ cos 4 q -2 cos 2 q ) –
(1-cos 6 q - 3 cos 2 q + 3 cos 4 q )
= cos6 q - 15 cos 4 q +15 cos6 q + 15 cos 2 q + 15 cos 6 q - 30 cos 4 q -
1+cos 6 q + 3 cos 2 q - 3 cos 4 q
= 32 cos6 q - 48 cos 4 q +18 cos 2 q -1
sin 6q
2. Expand in powers of cos q
sin q
sin 6q
Prove that = 32 cos5 q - 32 cos 3 q +6 cos q
sin q
Proof : We know that
Sin n q = nc1 cosn-1 q sin q - nc3 cosn-3 q sin3 q + nc5 cosn-5 q sin5 q ……….
Put n = 6
3
This watermark does not appear in the registered version - http://www.clicktoconvert.com
Sin 6 q = 6c1 cos5 q sin q - 6c3 cos3 q sin3 q + 6c5 cos5 q sin5 q
6 .5 .4 .
= 6 cos 5 q sin q - cos3 q sin3 q + 6 cos q sin5 q
1 . 2 .3 .
= 6 cos 5 q sin q - 20 cos3 q sin3 q + 6 cos q sin5 q
sin 6q
= 6 cos 5 q - 20 cos3 q sin2 q + 6 cos q sin4 q
sin q
= 6 cos 5 q - 20 cos3 q + 20 cos 5 q + 6 cos q (1+cos4 q -2cos2 q )
= 6 cos 5 q - 20 cos3 q + 20 cos 5 q + 6 cos q +6 cos5 q -12 cos3 q
= 32 cos 5 q - 32 cos3 q 6 cos q
4
This watermark does not appear in the registered version - http://www.clicktoconvert.com
Lesson – 2
HYPERBOLIC FUNCTIONS
CONTENTS
2.0 Aims and Objectives
2.2. Examples
2.3 Let us sum up
2.4 Check your progress
2.5 Lesson End activities
2.6 Points for discussion
2.7 References
5
This watermark does not appear in the registered version - http://www.clicktoconvert.com
6
This watermark does not appear in the registered version - http://www.clicktoconvert.com
= sin 2 α + i sinh2β
Denominator = 2 cos (α+iβ) cos (α- iβ)
= 2 cos A cos B; A = α+iβ
B = α- iβ
= cos (A+B) + cos (A-B)
= cos 2 α + cos (2iβ)
= cos 2 α + cos h2β
Using in 1
sin 2a + i sinh 2 b
tan (α+iβ) =
cos 2a + cosh 2 b
sin 2a sinh 2 b
= +i
cos 2a + cosh 2 b cos 2a + cosh 2 b
sin 2a
Real part =
cos 2a + cosh 2 b
sinh 2 b
Imaginary part =
cos 2a + cosh 2 b
f) sin h(α+iβ)
1
sin h(α+iβ) = [i sinh(a + ib )]
i
1
= [sin i (a + ib )]
i
1
= [sin(ia - b )]
i
= - i[sin(ia ) cos b - sin b cos(ia )]
= - i[i sinh a cos b - cosh a sin b ]
= sinh a cos b + i cosh a sin b
Real part = sin hα cos b ;
Imaginary part = cos hα sin b
g) cosh (α+iβ) = cos [i(α+iβ)]
= cos (iα-β)
7
This watermark does not appear in the registered version - http://www.clicktoconvert.com
Using in (1)
8
This watermark does not appear in the registered version - http://www.clicktoconvert.com
sin 2 b - i sinh 2a
tan h (α+iβ) = i
cos 2 b + cosh 2a
i sin 2 b + sinh 2a
=
cos 2 b + cosh 2a
sinh 2a sin 2 b
= +i
cos 2 b + cosh 2a cos 2 b + cosh 2a
sinh 2a
Real part =
cos 2 b + cosh 2a
sin 2 b
Imaginary part =
cos 2 b + cosh 2a
Examples:
1. Prove that sinh3x = 3 sin hx + 4 sin h3 x
Proof : sin 3 q = 3 sin q - 4 sin3 q
Put q = ix
Sin (3ix) = 3 sin(ix) – 4 [sin (ix)]3
i sinh3x = i3 sinhx – 4 [i3 sinh3 x]
= i 3sinhx – 4 i3 sinh3 x
i sinh3x = 3 i sinhx + 4 i sinh3 x
/ i; sinh3x = 3sinhx + 4 sinh3 x
2. Express sinh7 q interms of hyperbolic sines of multiples of q
Solution
eq - e -q
Sin h q =
2
2 sinh q = eq - e -q
( 2 sinh q ) 7 = ( eq - e -q )7
27 sinh7 q = e7 q - 7c1 e6 q e- q +7c2 e5 q e-2 q - 7c3 e4 q e-3 q +7c4 e3 q e-4 q -7c5
e2 q e-5 q +7c6 e q e- q 6-7c7 e-7 q
9
This watermark does not appear in the registered version - http://www.clicktoconvert.com
÷ 2;
We know
sec2 α – tan2 α = 1
cos2 q sinh2 q – sin2 q cosh2 q = 1
10
This watermark does not appear in the registered version - http://www.clicktoconvert.com
Sin2a Sinh2b
tan (α+iβ) =
cos2a+cosh2b cos2a+cosh2b
Sin2a Sinh2b
sin x coshy = -------------- (1)
cos2a+cosh2b cos2a+cosh2b
Sin2a Sinh2b
cosx sinhy = cos2a+cosh2b
cos2a+cosh2b -------------- (2)
(1) ¸ (2)
Sin2a
tanx cothy =
Sinh2b
11
This watermark does not appear in the registered version - http://www.clicktoconvert.com
l2 y2
(ii) + =1
sin 2 A cos 2 A
1
Answer : 2 : [cosh 6q + 6 cosh 4q + 15 cosh 2q + 10]
32
2.7 References
Trigonometry by Rasinghamic and Aggarval
12
This watermark does not appear in the registered version - http://www.clicktoconvert.com
Lesson - 3
Logarithm of a complex number
Contents
3.0 Aim and Objectives
3.1 To find log e (x+iy)
3.2 Examples
3.3 Let us sum up
3.4 Check your progress
3.5 Lesson End activities
3.6 References
In this lesson we are going to see the definition of logarithm of a complex number
using the fundamental concepts of logarithm of a function.
Definition 1: Let Z = x+iy, if log z = u, then
Z = eu
In general the logarithm of a complex number is also a complex number
13
This watermark does not appear in the registered version - http://www.clicktoconvert.com
= e 2α (cos2 β + sin2 β)
x2 + y2 = e 2α
2 α = loge (x2 + y2 )
Α = ½ log (x2 + y2 )
y
2 ¸ 1 gives = tan b
x
b = tan -1 æç y ö÷
è xø
1
\ l +oe xg (=i ) ly o+ xg2 ( y+)2 t i a1 -n y
2 x ( )
To find general logarithm of a complex number
Let log e ( x + iy ) = a + ib
x+iy = e α +iβ
= e α e iβ
= e α cos β + i sin β
x+iy = e α (cos (2nπ+β) +i sin (2nπ+β)) n=1,2,3,..
= e α e i(2nπ+β)
= e α +2nπi+iβ
x+iy = e α + iβ +2nπi
\ + L o ex= g i +( ya ) i+b 2n p i
2 êë x úû
14
This watermark does not appear in the registered version - http://www.clicktoconvert.com
Note :
1. log Z is infinitely many valued function. This is called the general logarithm of Z.
2. If n = 0, we get the principal value of log Z
Important
1
1. log( x + iy ) = log( x 2 + y 2 ) + i tan -1 æç y ö÷
2 è xø
2. log e ( x + iy ) = log( x + iy ) + 2npi
3.2 Examples
1. find log (1+i)
1 + I = x + iy \ x = 1, y = 1
x2 +y2 = 2
1
= l o+ gi p 2+ n( p
2 )
2 4
3. Log i
i=0+1i \ x = 0, y = 1
è xø 0
( )
q = tan -1 æç y ö÷ = tan -1 1 = tan -1 a = p
2
x2 + y2 = 1 = 1
1
Log i = log( x 2 + y 2 ) + iq
2
1
= log 1 + i p
2 2
15
This watermark does not appear in the registered version - http://www.clicktoconvert.com
Log i = i p {\ log 1 = 0}
2
4. Log i = log i + 2nπi
= ip + 2npi
2
5. Prove that log (cos q + i sin q ) = i q , - p < q < p
Solution :
log (cos q + i sin q ) = log (x+iy)
x = cos q ; y = sin q
x 2 + y 2 = 1; q = tan -1 æç y ö÷
è xø
1
\ log(cosq + i sin q ) = log 1 + iq
2
= iq
6. Find a power series for tan-1 x using logarithm of complex number
Proof: if x is real
1
log ( 1+ix) = log(1 + x 2 ) + i tan -1 x
2
tan-1 x = Imaginary part of log (1+ix)
-1 i 2 x2 i3 x3
tan x = IP of ix - + + ......
2 3
x2 i3 x3
= IP of ix + - + ......
2 3
éæ x 2 x 4 ö æ x3 x5 öù
= IP of êçç + ..... ÷÷ + içç x - + + ...... ÷÷ú
ëè 2 4 ø è 3 5 øû
x3 x5
\ t= a-1 xn - . x . +. . . . . .
3 5
7. Obtain the general value of L o ii g
Solution : Let L o ii g= a + ib
i = i a+ib
16
This watermark does not appear in the registered version - http://www.clicktoconvert.com
= e(a+ib) log i
= e(a+ib) [i(2nπ+π/2)]
i = e -b(2nπ+π/2) e ia(2nπ+π/2)
taking modulus on both sides
1 = e -b(2nπ+π/2)
b=0
i = e ia(2nπ+π/2)
i = cos [a(2nπ+π/2)] + i sin [a(2nπ+π/2)]
= cos [a(2nπ+π/2)] = 0
a(2nπ+π/2) = 2m+π/2
æ 4 np + p ö 4 np + p
aç ÷=
è 2 ø 2
4m + 1
a= ; m, n ¬ Z
4n + 1
4m + 1
\ log ii =
4n + 1
Method 2
L o ieg
L o ii g= (1)
L o ieg
L o ieg= lnie o + g ip
2
= ip + 2npi
2
=ip ( 2
+ 2np )
æ p + 4npö
= iç n÷Î ; Z
è 2 ø
i æ 4np +öp
Similarly L o e = i çg m÷Î, Z
è 2 ø
Using in (1)
17
This watermark does not appear in the registered version - http://www.clicktoconvert.com
æ 4np + p ö
iç ÷
i è 2 ø
log i =
æ 4mp + p ö
iç ÷
è 2 ø
(4n + 1)p
= ; n, m Î Z
(4m + 1)p
18
This watermark does not appear in the registered version - http://www.clicktoconvert.com
19
This watermark does not appear in the registered version - http://www.clicktoconvert.com
Lesson - 4
Summation of Series
Contents
4.0 Aims and Objectives
4.1 Summation of Series
4.2 Examples
4.3 Let us sum up
4.4 Check your progress
4.5 Lesson End activities
4.6 References
In this lesson, we are going to study trigonometric series using the concept of
arithmetic series using the concept of arithmetic progression, Geometric progression,
Binominal theorem, exponential Theorem and logarithmic theorem.
Model 1 :
Summation of series when angles are in Arithmetic progression
Sine series
1.4.1 Find the sum to n terms of the series
sin a + sin(a + b ) + sin(a + 2 b ) + sin(a + 3b ) + ......
Proof :
Let s n = sin a + sin(a + b ) + sin(a + 2 b ) + .... + sin(a + n - 1b )
20
This watermark does not appear in the registered version - http://www.clicktoconvert.com
2 sin(a + n - 12 b ) sin b
2
( ( )) ( (
= cos a + n - 3 b - cos a + n - 1 b
2 2
))
Adding the above we get
2 sin b
2
S n = cosæça - b ö÷ - cos a + n - 1 b
è 2ø 2
( ( )) ---(2)
A =a - b
2
;B =a + n - 1 b
2
( )
\ A+ B =a - b
2
(
+a + n - 1 b
2
)
= 2a - b + nb - b
2 2
= 2a + nb - b
= 2a + ( n - 1)
A+ B n -1
\ =a + b
2 2
A- B =a - b
2
(
-a - n - 1 b
2
)
=a - b - a - nb + b
2 2
= - nb
A- B b
\ = -n
2 2
21
This watermark does not appear in the registered version - http://www.clicktoconvert.com
(2) becomes
æ æ n - 1 ö ö æ - nb ö
2 sin b S n = -2 sin çça + ç ÷ b ÷÷ sin ç ÷
2 è è 2 ø ø è 2 ø
æ æ n - 1 ö ö æ nb ö
= 2 sin çça + ç ÷ b ÷÷ sin ç ÷
è è 2 ø ø è 2 ø
æ æ n - 1 ö ö æ nb ö
sin çça + ç ÷ b ÷÷ sin ç ÷
è è 2 ø ø è 2 ø
\ Sn =
sin æç b ö÷
è 2ø
Results
1. But b =a
\ sin a + sin 2a + sin 3a + ....... + sin na
æ æ n + 1 ö ö æ na ö
sin çç ç ÷a ÷÷ sin ç ÷
è è 2 ø ø è 2 ø
=
( )
sin a
2
4.2. Examples
Find the sum to n terms of the series
cos a + cos(a + b ) + cos(a + 2 b ) + cos(a + 3b ) + .......... .......... ..
Solution
S n = cos a + cos(a + b ) + cos(a + 2 b ) + ....... + cos(a + n - 1b )
22
This watermark does not appear in the registered version - http://www.clicktoconvert.com
-------------------------------------------------------
-------------------------------------------------------
é æ 1ö ù
2 sin b S n = sin êa + ç n - ÷ b ú - sin æça - b ö÷ ----(2)
2 ë è 2ø û è 2ø
( )
Here A = a + n - 1 b ; B = a - b
2 2
A + B = a + (n - 1 )b + a - b
2 2
= a + nb - b +a - b
2 2
= 2a + nb - b
= 2a + ( n - 1) b
A+ B n -1
\ =a + b
2 2
1
A - B = a + nb - b -a + b
2 2
= nb
A - B nb
\ =
2 2
\ using in (2)
é æ n - 1 ö ù æ nb ö
2 sin b S n = 2 cos êa + ç ÷ b ú sin ç ÷
2 ë è 2 ø û è 2 ø
23
This watermark does not appear in the registered version - http://www.clicktoconvert.com
é æ n - 1 ö ù æ nb ö
cos êa + ç ÷ b ú sin ç ÷
ë è 2 ø û è 2 ø
\ Sn =
sin æç b ö÷
è 2ø
Cor 1: Put b = a
æ n + 1ö æ na ö
cosç ÷a sin ç ÷
è 2 ø è 2 ø
\ cos a + cos 2a + cos 3a + ... + cos na =
sin a
2
( )
1. First the sum to n terms of the series
Sin2 a +sin2 2 a +sin2 3 a +……………..
Solution
Sn = Sin2 a +sin2 2 a +sin2 3 a +…………+sin2 n a
= ½ [2 Sin2 a +2 sin2 2 a +2 sin2 3 a +…………+2 sin2 n a ]
But we know 2sin2 a = 1 – cos 2 a
1
\ S n= [(1 - cos 2a ) + (1 - cos 4a ) + (1 - cos 6a ) + ...... + (1 - cos 2na )]
2
1
= [n - (cos 2a + cos 4a + cos 6a + ...... + cos 2na )]
2
We know
é æ n - 1 ö ù æ nb ö
cos êa + ç ÷ b ú sin ç ÷
ë è 2 ø û è 2 ø
cosa + cos(a + 2 b ) + ..... + cos(a + n - 1b ) =
sin æç b ö÷
è 2ø
Hence ‘ a ’=2 a ; b = 2a
24
This watermark does not appear in the registered version - http://www.clicktoconvert.com
é é n - 1 ù æ n - 2a ö ù
ê cos ê2a + 2a ú sin ç ÷ú
1 ë 2 û è 2 øú
\ S n = ên -
2ê sin 2a ú
ê 2 ú
ë û
1é cos( n + 1)a sin( na ) ù
= ê n- úû
2ë sin a
Proof:
Let
Sn = cos2 a +cos2 2 a +cos2 2 a +…………+cos2 n a
= ½ [2 cos2 a +2 cos2 2 a +2 cos2 2 a +…………+2 cos2 n a ]
25
This watermark does not appear in the registered version - http://www.clicktoconvert.com
Proof:
We know sin3 a = 3 sin a - 4 sin3 a
\ 4sin3 a =3 sin a - sin3 a
Let Sn = Sin3 a +sin3 2 a +sin3 3 a +…………+sin3 n a
= ¼ [4 Sin3 a +4 sin3 2 a +4 sin3 3 a +…………+4 sin3 n a ]
1 é(3 sin a - sin 3a ) + (3 sin 2a - sin 6a ) + (3 sin 3a - sin 9a )ù
=
4 êë +......... + (3 sin na - sin 3na ú
û
1
= [3(sin a + sin 2a + sin 3a + ......... + sin na )]
4
-[sin 3a + sin 6a + sin 9a + ......... + sin 3na ]
3
= [sin a + sin 2a + sin 3a + ......... + sin na ]
4
1
- [sin 3a + sin 6a + sin 9a + ......... + sin 3na ]
4
é n -1 ù æ n ö é n - 1 ù æ 3na ö
sin êa + a ú sin ç a ÷ sin ê3a + 3a ú sin ç ÷
3 ë 2 û è 2 ø -1 ë 2 û è 2 ø
= -
4 sin a
2
( ) 4 sin 3a
2
( )
æ n + 1ö æ na ö - 1 é (n + 1)3a ù æ 3na ö
sin ç ÷a sin ç ÷ sin ê úû sin çè 2 ÷ø
3 è 2 ø è 2 ø 4 ë 2
= -
4 ( )
sin 3a
2
sin 3a
2
( )
26
This watermark does not appear in the registered version - http://www.clicktoconvert.com
1
= [cos 3a + cos 6a + cos 9a + ......... + cos 3na ] +
4
3[cos a + cos 2a + cos 3a + ......... + cos a ]
1
= [cos 3a + cos 6a + cos 9a + ......... + cos 3na ]
4
3
+ [cos a + cos 2a + cos 3a + ......... + cos na ]
4
é n - 1 ù æ 3na ö é n -1 ù æ n ö
cos ê3a + 3a ú sin ç ÷ cos êa + a ú sin ç a ÷
1 ë 2 û è 2 ø 3 ë 2 û è2 ø
= +
4 sin 3a
2
( ) 4 sin a
2
( )
1
cos
(n + 3)a sinæ 3na ö cosæ (n + 1)a ö sinæ na ö
ç ÷ ç ÷ ç ÷
=
4 2 è 2 ø+3 è 2 ø è 2 ø
sin 3a
2
( ) 4 sin a
2
( )
Model 3 C+is method)
-x x x2 x3
2. e = 1- + - + ......................¥
1! 2! 3!
Problems
1. Find the sum to infinity of the series
x2
sin a + x sin(a + b ) + sin(a + 2 b ) + ......................¥
2!
Proof:
x2
Let S = sin a + x sin(a + ib ) + sin(a + 2 b ) + ......................¥
2!
x2
C = cos a + x cos(a + ib ) + cos(a + 2 b ) + ......................¥
2!
27
This watermark does not appear in the registered version - http://www.clicktoconvert.com
x2
C + iS = (cos a + i sin a ) + x cos(a + b ) + ix sin(a + b ) + cos(a + 2 b ) +
2!
x2
i cos(a + 2 b )......................¥
2!
ia i (a + b ) x 2 i (a + 2 b )
=e + xe + e + ......................¥
2!
x 2 ia i 2 b
= e ia + x e ia e ib + e e + ......................¥
2!
é xe ib x 2 i 2 b ù
= e ia ê1 + + e + ......................¥ ú
ë 1! 2! û
é xe ib 1 ù
= e ia ê1 +
1!
+ xe ib
2!
( )2
+ ......................¥ ú
ë û
[ ]
= e ia e xe
ib
= e ia e x (cos b + i sin b )
= e ia e x cos b +ix sin b
= e x cos b e ia e ix sin b
= e x cos b e i (a + x sin b )
= e x cos b [cos(a + x sin b ) + i sin(a + x sin b )]
Proof
1 1
S = sin a + sin 2a + + sin 3a + ..................¥
2! 3!
28
This watermark does not appear in the registered version - http://www.clicktoconvert.com
Let
1 1
C = 1 + cos a + cos 2a + + cos 3a + ..................¥
2! 3!
1 1
\ C + is = 1 + (cos a + i sin a ) + (cos 2a + i sin 2a ) + + (cos 3a + i sin 3a ) + ..................¥
2! 3!
1 i 2a 1 i 3a
= 1 + e ia + e + e + ..................¥
2! 3!
1 ia 1 ia
= 1 + e ia + ( )
2!
e
2
+ ( )
3!
e
3
+ ..................¥
1 2 1 3
= 1+ y + y + y + ..................¥ where y = e ia
2! 3!
= ey
ia
= ee
= e cos a + i sin a
= e cos a e i sin a
= e cos a [cos(sin a ) + i sin(sin a )]
29
This watermark does not appear in the registered version - http://www.clicktoconvert.com
sin a
\ C + is = (cos a + i sin a ) + (cos 2a + i sin 2a )
1!
sin 2 a
+ (cos 3a + i sin 3a ) + .........................¥
2!
sin a i 2a sin 2 a i 3a
ia
=e + e + e + .........................¥
1! 2!
é sin a ia sin 2 a i 2a ù
= e ia ê1 + e + e + .........................¥ ú
ë 1! 2! û
é sin a ia
ia
= e ê1 + e +
sin a e ia ( )2
ù
+ .........................¥ ú
ëê 1! 2! ûú
é y y2 ù
= e ia ê1 + + + .........................¥ ú where y = sin ae ia
ë 1! 2! û
= e ia e y
ia
= e ia e sin ae
= e ia e sin a (cos a +i sin a )
sin a cos a + i sin 2 a
= e ia +
2
= e sin a cos a e i (a +sin a)
[
= e sin a cos a cos(a + sin 2 a ) + i sin(a + sin 2 a ) ]
30
This watermark does not appear in the registered version - http://www.clicktoconvert.com
sin 2q sin 4q
S= + + ..................¥
2! 2!
1
C + is = 1 + [cos 2q + i sin 2q ] + 1 [cos 4q + sin 4q ] + ..................¥
2! 4!
1 i 2q 1 i 4q
= 1+ e + e + ..................¥
2! 4!
1 iq 1 iq
= 1+
2!
( )
e
2
+ ( )
4!
e
4
+ ..................¥
1 2 1 4
= 1+ x + x + ..................¥ where x = e iq
2! 4!
e x + e-x
= = cosh x
2
=
2
[
1 e iq iq
]
e + e -e = cosh(e iq )
= cos(cos q + i sin q )
= cos[i (cosq + i sin q )]
= cos[i cosq - sin q )]
= cos(i cos q ) cos(sin q ) + sin(i cos q ) sin(sin q )
= cosh(cos q ) cos(sin q ) + i sinh(cos q ) sin(sin q )
C = cosh(cos q ) cos(sin q )
Type 2 Summation of series based on logarithmic series
31
This watermark does not appear in the registered version - http://www.clicktoconvert.com
FORMULA
x2 x3 x4
1. log(1 + x) = x - + - + ........¥
2 3 4
x2 x3 x4
2. log(1 - x) = - x - - - - ........¥
2 3 4
iqa 2 i 2q a 3 i 3q
= ae + ae + ae + ...........¥
2 3
x2 x3
= x+ + + ...........¥
2 3
Where x = ae iq
= - log(1 - x )
= - log(1 - ae iq )
= - log[1 - a (cosq + i sin q )]
= - log[1 - a cosq - isainq ]
é1 æ - a sin q öù
[ ]
= - ê log 1 - a cosq ) 2 + a 2 sin 2 q + i tan -1 ç ÷ú
ë2 è 1 - a cosq øû
32
This watermark does not appear in the registered version - http://www.clicktoconvert.com
= e i (a - b ) log(1 + ce ib )
33
This watermark does not appear in the registered version - http://www.clicktoconvert.com
é1 ù
( 2 2 2
ê 2 log (1 + c cos b ) + c sin b + ú )
= [cos(a - b ) + i sin(a - b )]ê ú
ê -1 æ c sin b öú
ê i tan çç ÷÷ú
ë è 1 + c cos b øû
34
This watermark does not appear in the registered version - http://www.clicktoconvert.com
p = 1; p+q =3 \ q=2
x e iq
=
q 2
x e iq
=
2 2
x = e iq
-p
q
\ C + is = (1 + x)
-1
= (1 + e iq ) 2
-1
2
C + is = (1 + cos q + i sin q )
[
= 2 cos 2 q
2
+ i 2 sin q cos q
2 2
]
-1
2
(
= 2 cos q
2
) [cos(q 2 ) + i sin (q 2 )]
-1
2
-1
2
-1
[ ( 2 )]
= 2 cos q
-1
2 æç e iq 2 ö÷
è ø
2
[ ( 2 )] æçè e ö÷ø
= 2 cos q
-1
2 iq
4
C = (2 cos q )
-1
2
cos q ( 4)
4.3 Let us sum up
So far we have studied the concept of finding a trigonometric series using ap, gp,
etc. Also we have seen the sum to arrive a certain trigonometric series using the
fundamental forms of sin3x, cos3x, sin3 x, cos3 x, sin2 x, cos2 x
4.4. Check you progress
(a) Find sum for cos2a+cos4a+cosba+….a
(b) Find sum for sin2a+sin4a+sinba+….a
35
This watermark does not appear in the registered version - http://www.clicktoconvert.com
4.7 Sources
36
This watermark does not appear in the registered version - http://www.clicktoconvert.com
Unit II
Lesson - 5
Vector Calculus
Contents
5.0 Aims and Objectives
5.1 Scalar and Vector point functions – differential vectors
5.2 Examples
5.3 Let us sum up
5.4 Check your progress
5.5 Lesson End activities
5.6 References
the scalar variable ‘a’. Here f (a ) is a vector quantity and f is a vector function.
5.1.3. Derivative of a vector function with respect to a scalar
37
This watermark does not appear in the registered version - http://www.clicktoconvert.com
dr
If exists, there r is said to be differentiable.
dt
dr d 2r d 3r
is denoted by r . Similarly , ........ are denoted by r , r …….
dt dt 2 dt 3
respectively.
5.1.4. Some results on differentiation of vectors.
Let a, b, c be differentiable vector function of a scalar t. let f be a differentiable
scalar point function of the same variable ‘t’ , then
d d a db
a. ( a + b) = +
dt dt dt
d db da
b. (a.b) = a. + .b
dt dt dt
d db d a
c. ( a ´ b) = a ´ + ´b
dt dt dt
d d a df
d. (f a ) = f + a
dt dt dt
éd a ù é db ù é dc ù
e.
d
dt
[ ]
abc = ê bc ú + ê a
dt dt
c ú + ê ab ú
ëê ûú ëê ûú ëê dt ûú
æ db ö æ dc ö
f.
d
dt
[ ]
a ´ (b ´ c) =
da
dt
´ (b ´ c) + a ´ ç
ç dt
´ c÷ + a ´ çb ´ ÷
÷ ç dt ÷ø
è ø è
5.1.5. Derivative of a constant vector.
A vector is said to be constant only if both its magnitude and direction are fixed.
Let r be a constant vector function of the scalar variable t
\ r +dr = c
\ r +dr - r = 0
dr =0
38
This watermark does not appear in the registered version - http://www.clicktoconvert.com
dr
\ =0
dt
dr
\ l im =0
dt ® 0 dt
dr
\ = 0 (zero vector)
dt
d r dx dy dz
Then = i+ j+ k
dt dt dt dt
Results
(1) The necessary and sufficient condition for the vector point function a (t ) to be
da
constant is that =0
dt
(2) If a is a differentiable vector point function of the scalar variable ‘t’ and if a = a, than
then
d æ 2ö da
a. ç a ÷ = 2a
dt è ø dt
da da
b. a. =a
dt dt
da da
c. if a has constant length, then a. ^ r , if =0
dt dt
d. The necessary and sufficient condition for the vector a (t ) to have constant
da
magnitude is a. =0
dt
39
This watermark does not appear in the registered version - http://www.clicktoconvert.com
5.2 Examples
d æç d a ö÷ d2a
a´ = a´ 2
dt çè dt ÷ø dt
Proof :
d æç d a ö÷ d a d a d æ d a ö÷
a´ = ´ + ç
+a´
dt çè dt ÷ø dt dt dt çè dt ÷ø
d2a
= 0+ a´
dt 2
d2a
= a´ 2
dt
{\ a ´ a = 0}
2. The necessary and sufficient condition for the vector a (t) to have a constant direction
da
is a ´ = 0.
dt
\ a = a aˆ
r
d a r d ˆ a rd
\ = a + a aˆ
d t d t d t
r
r d ra d ér a ˆ rd ù
\ a ´ a = .aˆ ´ê a + aˆ ú a
d t d ë t d ût
2
daˆ r
a aˆ ´ +0
dt
2 daˆ
= a aˆ ´ (1)
dt
The condition is necessary
40
This watermark does not appear in the registered version - http://www.clicktoconvert.com
d
\ (aˆ ) = 0
dt
da
\ using in (1) a ´ =0
dt
\ The condition is necessary
The condition is sufficient
da
Suppose a ´ =0
dt
2 daˆ
From (1), a aˆ ´ =0
dt
daˆ
\ aˆ ´ =0 ---(2)
dt
Since â is of constant length,
daˆ
\ aˆ. =0 ---(3)
dt
3. Find a unit tangent vector to the curve x = 3t+2; y=5t2 , z=2t-1 at t=1
dr dr
Solution : Unit tangent vector is defined as ¸ï ï
dt dt
r = xi + y j + z k
dr
= 3i + 10t j + 2k
dt
dr ù
\ ú = 3i + 10t j + 2k
dt ûú
t =1
dr
= 9 + 100 + 4 = 113
dt
41
This watermark does not appear in the registered version - http://www.clicktoconvert.com
3i + 10t j + 2k
\ unit tangent vector =
113
4. A particle moves along a curve whose parametric equations are x = e-t ; y = 2 cos3t, z =
2sin3t, where t is the time. Find its velocity and acceleration at t = 0.
Solution :
r = xi + y j + z k
= e - t i + 2 cos 3t + 2 sin 3t k
dr
= -e -t i - 6 sin 3t j + 6 cos 3t k
dt
d2r
= e -t i - 18 cos 3t j - 18 sin 3t k
dt
dr
\ At t = 0, = -i + 6k
dt
Which is the required velocity vector
d2r
\ At t = 0, = i - 18 j
dt 2
Which is the required acceleration vector.
5.3. Let us sum up
So far we have studied in finding the velocity, acceleration of a particle using
fundamental of calculus.
5.4. Check your progress
dr d2r 2
r=
(1) Find ,= n a2 ´+bnifr=0
dt dt
r r r r
r = x +i y + 2i xwhere
x=t, y=t2 , z=t3 at t =1
r
d x r r r
(2) Find i f= rc ao+ s i s bi nior t=0
d t
42
This watermark does not appear in the registered version - http://www.clicktoconvert.com
dr
a. r = = na ´ b
dt
d2r
b. 2
+ n2 r = 0
dt
é dr d 2r ù
c. êr 2 ú
=0
ëê dt dt ûú
2. Find the unit tangent vector to the curve x = a cost; y = a sint; z = ct
a sin t i + a cos t y + c k
Ans
a2 + c2
3. Find the velocity vector, the speed and the acceleration vector for the particle whose
path is given by
x = 3 cos2t; z = 2 sin3t
Ans:
velocity v is perpendicular to r
5. If r = cos at i + sin at j , show that r ´ v is a constant vector.
5.7 References
1) Vector Calculus by - Namasivayam
2) Vector Calculus by - Rasinghmia aggarval
3) Vector calculus by - P. Durai Pandian
4) Vector calculus by - Chatterjee
43
This watermark does not appear in the registered version - http://www.clicktoconvert.com
Lesson - 6
Contents
6.0 Aims and Objectives
6.1 Differential operators and directional derivative
6.2 Example
Let us sum up
Check your progress
Lesson End activities
References
¶f ¶f ¶f
i + j +k and is denoted by grad f
¶x ¶y ¶z
¶f ¶f ¶f
\ gradf = i + j +k
¶x ¶y ¶z
æ ¶ ¶ ¶f ö
= çç i + j + k ÷f
è ¶x ¶y ¶z ÷ø
= Ñf
Ñf is a vector field.
44
This watermark does not appear in the registered version - http://www.clicktoconvert.com
f is defined as
¶f ¶f ¶f
i. + j. + k. and is
¶x ¶y ¶z
Written as div f
u r u r u r
u r ¶ fr r¶ f u ¶rf
\ d =i v. +f . i +j . k
¶x ¶y ¶z
æ r ¶ r ¶ rö ¶u r
= ç i + j +÷ k .f
è ¶x ¶y ø ¶ z
= Ñ. f
6.1.4. Solenoidal vector
A vector point function is called solenoidal if Ñ. f = 0
6.1.5 Curl of a vector point function.
¶f ¶f ¶f
the curl of f is defined as i ´ + j´ +k´ and is written as curl f .
¶x ¶y ¶z
¶f ¶f ¶f
\ curl f = i ´ + j´ +k´
¶x ¶y ¶z
æ r ¶ r ¶ rö ¶ u r
= ç i + j +÷ k ´ f
è ¶x ¶y ø ¶ z
= Ñ´ f
1. Let f = f1 i + f 2 j + f 3 k
¶f1 ¶f 2 ¶f 3
Ñ. f = + +
¶x ¶y ¶z
45
This watermark does not appear in the registered version - http://www.clicktoconvert.com
2. f = f1 i + f 2 j + f 3 k
i j k
Ñ´ f = ¶ ¶ ¶
¶x ¶y ¶z
f1 f2 f3
é ¶f ¶f ù é ¶f ¶f ù é ¶f ¶f ù
= ê 3 - 2 úi - jê 3 - 1 ú + k ê 2 - 1 ú
ë ¶y ¶y û ë ¶x ¶z û ë ¶x ¶y û
6.1.8 Directional derivative
1. Let f be a scalar point function of the variable t.
Let f(A), f(B) be the functional values of
f ( B ) - f ( A)
the scalar point function f at A and B respectively. Then if lim exists, it is
B® A AB
called the directional derivative of the scalar functional A along AB.
2. Let f be a vector point function.
f ( B) - f ( A)
Then lim if it exists, is called the directional derivative of f at A
B® A AB
along AB.
¶f ¶f ¶f
Note (1) : , , are the directional derivatives of f at A in the directions of the
¶x ¶y ¶z
coordinate axes
¶f ¶f ¶f
(2) , , are the directional derivatives of f at A in the directional derivatives of
¶x ¶y ¶z
46
This watermark does not appear in the registered version - http://www.clicktoconvert.com
Let be A (x,y,z)
Let the direction cosines of AB be l , m, n then the directional derivative of f along AB is
¶f ¶f ¶f
defined as l +m +n
¶x ¶y ¶z
6.1.10 Let f be a vector point function consider the line AB. Let A be (x,y,z)
¶f ¶f ¶f
Let the direction derivative of f along AB is defined as l +m +n
¶x ¶y ¶z
Ñf .n
6.1.11. The directional derivative of f in the direction of n is defined as
n
a. If f is a constant, then the directional derivative is zero.
b. Ñf is a vector normal to the level surface f ( x, y , z ) = c, c is a constant.
6.1.12. Level surface. Let f(x, y, z) be a scalar point function in a certain region of
space. The set of all points of the region for which f becomes a constant is called a
level surface and is written as f(x, y, z) = c, c is a constant.
a. The angle between the surfaces f1 ( x, y, z ) = c1 and f ( x, y, z ) = c 2 is defined
as the angle between their normal.
6.2 Example
Type 1
n = i + 2 j + 2k
n = 1+ 4 + 4 = 3
f ( x, y, z ) = Z 2 + 2 xy
¶f ¶f ¶f
= 2 y; = 2 x; = 2z
¶x ¶y ¶z
¶f ¶f ¶f
Ñf = i + j +k
¶x ¶y ¶z
= 2 yi + 2 x j + 2 z k
47
This watermark does not appear in the registered version - http://www.clicktoconvert.com
(1,-1,3) = (-2)i + 2 j + 6k
= -2i + 2 j + 6k
( )(
Ñf .n = - 2i + 2 j + 6k . i + 2 j + 2k )
= -2 + 4 + 12
= 14
Ñf .n
=
n
14
=
3
2. Find the maximum directional derivative of f = xyz 2 at (1,0,3)
Solution:
f = xyz 2
¶f ¶f ¶f
= yz 2 ; = xz 2 ; = 2 xyz
¶x ¶y ¶z
¶f ¶f ¶f
Ñf = i + j +k
¶x ¶y ¶z
= yz 2 i + xz 2 j + 2 xyz 2k
Ñf )(1, 0,3) = 9 j
Ñf = 81 = 9
3. Find the magnitude and the direction of the greatest directional derivative of
x 2 yz 3 at (2,1,-1)
Solution :
The direction of the greatest directional derivative is along Ñf and magnitude is
Ñf
f = x 2 yz 3
48
This watermark does not appear in the registered version - http://www.clicktoconvert.com
¶f ¶f ¶f
= 2 xyz 3 ; = x2 z3; = 3 x 2 yz 2
¶x ¶y ¶z
¶f ¶f ¶f
Ñf = i + j +k
¶x ¶y ¶z
= 2 xyz 3 i + x 2 z 3 j + 3 x 2 yz 2 k
Ñf = 16 + 16 + 144 = 176 = 11 ´ 16 = 4 11
f = xyz = x 2 + y 2 - z
¶f ¶f ¶f
= 2 x; = 2 y; = -1
¶x ¶y ¶z
¶f ¶f ¶f
Ñf = i + j +k
¶x ¶y ¶z
= 2 xi + 2 y j - k
Ñf = 4 + 16 + 1 = 21
Ñf
FORMULA unit normal vector to the surface f ( xyz ) = c is
Ñf
= -2i - 4 j - k
\ unit normal vector
21
4. Find the equation of the tangent plane to the surface yz – zx + xy + 5 = 0 at (1,-1,2)
Solution
f = yz
yz –- zx
zn + xy
¶f
= -z + y
¶x
¶f
= z+x
¶y
49
This watermark does not appear in the registered version - http://www.clicktoconvert.com
¶f
= y-x
¶y
¶f ¶f ¶f
Ñf = i + j +k
¶x ¶y ¶z
= ( y - z )i + ( x + z ) j + ( y - x)k
\ The direction ratios of the normal to the tangent plane at (1,-1,2) are -3, 3, -2
The tangent plane passes through (1,-1,2) we know that equation of any plane passing
through (x1 ,y1 ,z1 ) is
a ( x - x1 ) + b( y - y1 ) + c( z - z1 ) = 0 ------(1)
Here a,b,c = -3,3,-2; (x1 ,y1 ,z1 ) = (1,-1,2)
Using in (1)
Equation of the tangent at (1, -1, 2) is
-3(x-1) + 3(y+1) – d(z-2) = 0.
-3x+3+3y+3-2z+4 = 0
-3x+3y-2z+10 = 0
or 3x – 3y + 2z – 10 = 0
5. Find the angle between the surfaces Z = x2 +y2 -3; and x2 +y2 +z2 = 9 at the point
(2, -1, 2)
Proof:
f1 = x 2 + y 2 - z ; f 2 = x 2 + y 2 + z 2 ;
The angle between f1 and f 2 is
Ñf1. Ñf2
---(1)
Ñf1 Ñf2
f1 = x 2 + y 2 - z f2 = x 2 + y 2 + z 2
¶f1 ¶f 2
= 2x = 2x
¶x ¶x
¶f1 ¶f 2
= 2y = 2y
¶y ¶y
50
This watermark does not appear in the registered version - http://www.clicktoconvert.com
¶ f 1 ¶f 2
= - 1 = 2z
¶ ¶z
¶f1 ¶f ¶f
Ñf1 = i + j 1 +k 1
¶x ¶y ¶z
= 2 xi + 2 y j - k
¶f 2 ¶f ¶f
Ñf 2 = i + j 2 +k 2
¶x ¶y ¶z
= 2 xi + 2 y j - 2 zk
Ñf 2 )( 2, -1, 2,) = 4i - 2 j - 4k
Ñf1 = 16 + 4 + 1 = 21
Ñf 2 = 16 + 4 + 16 = 36 = 6
Ñf1 .Ñf 2 = 16
Using in (1)
16
cos q =
3 21
é 16 ù
q = cos -1 ê ú
ë 3 21 û
6. Find the function f if
Ñf = ( y 2 - 2 xyz 3 )i + (3 + 2 xy - x 2 z 3 ) j + (6 z 3 - 3 x 2 yz 2 )k
Solution
By definition
¶f ¶f ¶f
Ñf = i + j +k
¶x ¶y ¶z
¶f
\ = y 2 - 2 xyz 3 ; ---(1)
¶x
¶f
= 3 + 2 xy - x 2 z 3 ---(2)
¶y
51
This watermark does not appear in the registered version - http://www.clicktoconvert.com
¶f
= 6 z 3 + 3 x 2 yz 2
¶z
Integrating both side of (1), (2), (3) w.r.t. x,y,z resply.
f = xy 2 - x 2 yz 3 + a function not containing x
3 4
f = 3y + z + xy 2 - x 2 yz 3 + c
2
7. Find Ñ.r if r = xi + y j + z k
r = xi + y j + z k
= f1 i + f 2 j + f 3 k
f1 = x; f 2 = y; f3 = z
¶f 1 ¶f 2 ¶f 3
=1 =1 =1
¶x ¶y ¶z
¶f1 ¶f 2 ¶f 3
Ñ. f = + +
¶x ¶y ¶z
= 1+1+1 = 3.
9. Find Ñ.r if r = xi + y j + z k
r = xi + y j + z k
= f1 i + f 2 j + f 3 k
f1 = x; f 2 = y; f3 = z
¶f 1 ¶f 2 ¶f 3
=0 =0 =0
¶y ¶z ¶x
¶f 1 ¶f 2 ¶f 3
=0 =0 =0
¶z ¶x ¶y
52
This watermark does not appear in the registered version - http://www.clicktoconvert.com
i j k
Ñ´r = ¶ ¶ ¶
¶x ¶y ¶z
f1 f2 f3
é ¶f ¶f ù é ¶f ¶f ù é ¶f ¶f ù
= ê 3 - 2 úi - ê 3 - 1 ú j + ê 2 - 1 ú k
ë ¶y ¶z û ë ¶x ¶z û ë ¶x ¶y û
=¶
Solution (i) f = x 2 yi - 2 xz j + 2 yz k
= f1 i + f 2 j + f 3 k
f 1 = x 2 y; f 2 = -2 xz; f 3 = 2 yz
¶f1 ¶f 2 ¶f 3
= 2 xy =0 = 2y
¶y ¶z ¶x
¶f1 ¶f 2 ¶f 3
Ñ. f = + +
¶x ¶y ¶z
= 2 xy + 0 + 2 y
= 2 xy + 2 y
= 2 y ( x + 1)
(ii) f 1 = x 2 y; f 2 = -2 xz; f 3 = 2 yz
¶f 1 ¶f 2 ¶f 3
= x2 = -2 x =0
¶y ¶z ¶x
¶f1 ¶f 2 ¶f 3
=0 = -2 z = 2z
¶z ¶x ¶y
i j k
Ñ´ f = ¶ ¶ ¶
¶x ¶y ¶z
f1 f2 f3
53
This watermark does not appear in the registered version - http://www.clicktoconvert.com
é ¶f ¶f ù é ¶f ¶f ù é ¶f ¶f ù
= ê 3 - 2 úi - ê 3 - 1 ú j + ê 2 - 1 ú k
ë ¶y ¶z û ë ¶x ¶z û ë ¶x ¶y û
[
= [2 z + 2 x ]i - [0 - 0] j + - 2 z - x 2 k ]
[
= [2 x + 2 z ]i - x 2 + 2 z k ]
10. Find the constants a,b,c so that the vector
f = ( x + 2 y + az )i + (bx - 3 y - z ) j + (4 x + cy + 2 z )k is irrotational.
Solution: f = ( x + 2 y + az )i + (bx - 3 y - z ) j + (4 x + cy + 2 z )k
= f1 i + f 2 j + f 3 k
f1 = x + 2 y + az; f 2 = bx - 3 y - z; f 3 = 4 x + cy + 2 z
¶f 1 ¶f 2 ¶f 3
=z = -1 =4
¶y ¶z ¶x
¶f 1 ¶f 2 ¶f 3
=a =b =c
¶z ¶x ¶y
i j k
Ñ´ f = ¶ ¶ ¶
¶x ¶y ¶z
f1 f2 f3
é ¶f ¶f ù é ¶f ¶f ù é ¶f ¶f ù
= ê 3 - 2 úi - ê 3 - 1 ú j + ê 2 - 1 ú k
ë ¶y ¶z û ë ¶x ¶z û ë ¶x ¶y û
= [c + 1]i - [4 - a ] j + [b - 2]k
f is irrotational Ñ ´ f = 0
\ [c + 1]i - [4 - a ] j + [b - 2]k = 0
\ c + 1 = 0; 4 - a = 0; b-2=0
c = -1; a = 4; b=2
Hence a = 4, b = 2, c = -1;
Proof : r = xi + y j + z k
54
This watermark does not appear in the registered version - http://www.clicktoconvert.com
r = r = x2 + y2 + z2
r 2 = x2 + y2 + z2
¶r ¶r ¶r
\ 2r = 2x 2r = 2y 2r = 2z
¶x ¶y ¶z
¶r x ¶r y ¶r z
= = =
¶x r ¶y r ¶z r
f = rnr
= r n ( xi + y j + z k )
= r n xi + r n y j + r n z k
= f1 i + f 2 j + f 3 k
f1 = r n x
¶f 1 ¶r y
= xnr n -1 = x.nr n -1 .
¶y ¶y r
= nxyr n - 2
¶f1 ¶z
= xnr n -1 = nxzr n - 2
¶z ¶r
f2 = r n y
¶f 2 ¶r
= ynr n -1 = nyzr n - 2
¶z ¶z
¶f 2 ¶r
= ynr n -1 = yxnr n - 2
¶x ¶x
f2 = r n z
¶f 3 ¶r
= zxnr n -1 = nxzr n -1
¶x ¶n
¶f 3 ¶r
= znr n -1 = yznr n - 2
¶y ¶y
55
This watermark does not appear in the registered version - http://www.clicktoconvert.com
i j k
Ñ´ f = ¶ ¶ ¶
¶x ¶y ¶z
f1 f2 f3
é ¶f ¶f ù é ¶f ¶f ù é ¶f ¶f ù
= ê 3 - 2 úi - ê 3 - 1 ú j + ê 2 - 1 ú k
ë ¶y ¶z û ë ¶x ¶z û ë ¶x ¶y û
[ ] [ ] [
= nyzr n - 2 - nyzr n - 2 i - nxzr n - 2 - nyzr n - 2 j + xynr n - 2 - xynr n - 2 k]
=0
= i.
¶
¶x
( ) ¶
fg + j . fg +k
¶y
¶
( )
¶z
fg ( )
é¶ f ¶g ù é¶ f ¶g ù é¶ f ¶g ù
= i.ê g+ f ú+ j.ê g+ f ú + k .ê g+ f ú
êë ¶x ¶x úû êë ¶y ¶y úû êë ¶z ¶z úû
é ¶f ¶f ¶f ù é ¶g ¶g ¶g ù
= êi. + j. + k. ú g + êi + j + k ú. f
êë ¶x ¶y ¶z úû ë ¶x ¶y ¶z û
é¶ f ¶g ù é¶ f ¶g ù é¶ f ¶g ù
= i.ê ´g- ´ fú+ j.ê ´g- ´ f ú + k .ê ´g- ´ fú
êë ¶x ¶x úû êë ¶y ¶y úû êë ¶z ¶z úû
æ¶ f ö æ¶ f ö æ¶ f ö
= i.ç ´ g÷+ j.ç ´ g ÷ + k .ç ´ g÷
ç ¶x ÷ ç ¶y ÷ ç ¶z ÷
è ø è ø è ø
é æ ¶g ö æ ¶g ö æ ¶g öù
- êi.ç ´ f ÷ + jç ´ f ÷ + kç ´ f ÷ú
êë çè ¶x ÷ ç ¶y
ø è
÷ ç ¶y
ø è
÷ú
øû
56
This watermark does not appear in the registered version - http://www.clicktoconvert.com
æ ¶f ö æ ö æ ö
= çi ´ ÷.g + ç j ´ ¶ f ÷.g + ç k ´ ¶ f ÷.g -
ç ¶x ÷ ç ¶y ÷ ç ¶z ÷ø
è ø è ø è
éæ ¶ g ö æ ö æ ö ù
êç i ´ ÷. f + ç j ´ ¶ g ÷. f + ç k ´ ¶ g ÷. f ú
êëçè ¶x ÷ø ç
è ¶y ÷ø ç
è ¶y ÷ø úû
é ¶f ¶f ¶f ù é ¶g ¶g ¶g ù
= êi ´ + j´ +k´ ú.g - êi ´ + j´ +k´ ú. f
ëê ¶x ¶y ¶z úû ëê ¶x ¶y ¶y ûú
( ) (
= Ñ ´ f .g - Ñ ´ g . f )
æ¶ f ¶ g ö÷ æ¶ f ¶ g ö÷ æ¶ f ¶ g ö÷
= i´ç ´g+ f ´ + j´ç ´g+ f ´ + k ´ç ´g+ f ´
ç ¶x ¶x ÷ø ç ¶y ¶y ÷ø ç ¶z ¶z ÷ø
è è è
æ¶ f ö æ ¶ g ö÷ æ¶ f ö
= i´ç ´ g÷ + i´ç f ´ + j´ç ´ g÷+
ç ¶x ÷ ç ¶x ÷ø ç ¶y ÷
è ø è è ø
æ ¶ g ö÷ æ¶ f ö æ ¶ g ö÷
j´ç f ´ + k ´ç ´ g÷ + k ´ç f ´
ç ¶y ÷ø ç ¶z ÷ ç ¶z ÷ø
è è ø è
( )¶¶xf - æçç i. ¶¶xf ö÷÷ g + æçç i. ¶¶xg ö÷÷ f - (i. f )¶¶xf + ( j.g )¶¶yf - æçç j. ¶¶yf ö÷÷ g
= i.g
è ø è ø è ø
æ ¶g ö ¶ f æç ¶ f ö æ ö
+ ç j. ÷ f - j. f
ç ¶y ÷
¶g
¶y
( )
+ k .g
¶ z
- k.
ç ¶z
( ) ÷ ç ¶z ÷
( )
÷ g + ç k. ¶ g ÷ f - k. f ¶ g
¶z
è ø è ø è ø
( )¶¶xf + (g. j )¶¶yf + (g.k )¶¶zf - éêæçç i. ¶¶xf ö÷÷ g + æçç j. ¶¶yf ö÷÷ g + æçç k. ¶¶zf ö÷÷ g ùú
= g .i
ëêè ø è ø è ø ûú
é ¶ g ù æç ¶ g ö÷ æ ¶g ö æ ¶g ö
( )
- ê f .i
¶g
¶x
+ f.j
¶g
¶y
( )
+ f .k ( )
ú + ç i. ÷ f + çç j. ÷÷ f
¶z úû è ¶x ø
+ ç k. ÷ f
ç ¶z ÷
êë è ¶y ø è ø
57
This watermark does not appear in the registered version - http://www.clicktoconvert.com
æ ¶ ¶ ¶ö é ¶f ¶f ¶f ù
= çç g.i + j + k ÷÷ f - êi. + j. + k. ú g -
è ¶x ¶y ¶z ø êë ¶x ¶y ¶z úû
æ ¶ ¶ ¶ö é ¶g ¶g ¶g ù
çç f .i + j + k ÷÷ g - êi. + j. + k. ú f
è ¶x ¶y ¶z ø ëê ¶x ¶y ¶z ûú
( ) [ ] ( ) [ ]
= g .Ñ f - Ñ. f g - f .Ñ g + Ñ.g f
æ¶ f ¶g ö æ¶ f ¶g ö æ ¶ f ¶g ö
= i.ç .g + f . ÷ + jç .g + f . ÷ + k ç .g + f . ÷
ç ¶x ¶x ÷ø ç ¶y ¶y ÷ø çè ¶z ¶z ÷ø
è è
æ¶ f ö æ ¶ f ö æ ¶ f ö æ ¶g ö
= iç .g ÷ + jç .g ÷ + k ç .g ÷ + iç f . ÷
ç ¶x ÷ ç ¶y ÷ ç ¶z ÷ ç ¶x ÷
è ø è ø è ø è ø
----(1)
æ ¶g ö æ ¶g ö
+ jç f . ÷ + k ç f . ÷
ç ¶y ÷ ç ¶z ÷
è ø è ø
æ ¶g ö ¶ g æç ¶ g ö÷
But f ´ ç ´ i ÷ = f .i
ç ¶x ÷ ¶
( )
x
- f.
ç ¶x ÷
i
è ø è ø
æ ¶g ö æ ¶g ö
\ ç f . ÷i = f .i
ç ¶x ÷
¶g
¶x
( )
- f ´ç ´i÷
ç ¶x ÷
è ø è ø
58
This watermark does not appear in the registered version - http://www.clicktoconvert.com
æ ¶f ö æ ¶f ö
Also g ´ ç i. ´
ç ¶x
÷ = ç g.
÷ ç ¶x ÷
( )
÷i - g.i ¶ f
¶x
è ø è ø
æ ¶f ö æ ö
\ ç g.
ç ¶x ÷ ç ¶x ÷
( )
÷i = g ´ ç i. ¶ f ÷ + g.i ¶ f
¶x
è ø è ø
æ ¶f ö æ ö
\ å ç g.
ç ¶x
÷i = å g ´ ç i. ¶ f ÷ + å g.i ¶ f
÷ ç ¶x ÷ ¶x
( )
è ø è ø
Using in (1)
æ ¶f ö æ ¶g ö
Ñ.( f .g ) = å g ´ ç i ´
ç ¶x ÷
( )
÷ + å g.i ¶ f + å
¶x
( f .i )¶¶xg + å f ´ çi ´ ÷
ç ¶x ÷
è ø è ø
= g ´ (Ñ ´ f ) + ( g.Ñ) f + ( f .Ñ) g + f ´ (Ñ ´ g )
¶ æ ¶j ö ¶ æ ¶j ö ¶ æ ¶j ö
= ç ÷+ ç ÷+ ç ÷
¶x è ¶x ø ¶y çè ¶y ÷ø ¶z è ¶z ø
¶ 2f ¶ 2f ¶ 2f
= + +
¶x 2 ¶y 2 ¶z 2
59
This watermark does not appear in the registered version - http://www.clicktoconvert.com
i j k
¶ ¶ ¶
Ñ ´ Ñf) =
¶x ¶y ¶z
¶j ¶j ¶j
¶x ¶y ¶z
é ¶ 2j ¶ 2j ù é ¶ 2j ¶ 2j ù é ¶ 2j ¶ 2j ù
=ê - i
ú ê- - ú j + k ê - ú
ë ¶y¶z ¶y¶z û ë ¶x¶z ¶z¶x û ë ¶x¶y ¶y¶x û
=0
Ñ ´ Ñf ) = 0
i j k
¶ ¶ ¶
Ñ´ f =
¶x ¶y ¶z
f1 f2 f3
é ¶f ¶f ù é ¶f ¶f ù é ¶f ¶f ù
= ê 3 - 2 úi - ê 3 - 1 ú j + ê 2 - 1 ú k
ë ¶y ¶z û ë ¶x ¶z û ë ¶x ¶y û
é ¶f ¶f ù é ¶f ¶f ù é ¶f ¶f ù
= ê 3 - 2 úi + ê 1 - 3 ú j + ê 2 - 1 ú k
ë ¶y ¶z û ë ¶z ¶x û ë ¶x ¶y û
¶ æ ¶f 3 ¶f 2 ö ¶ æ ¶f1 ¶f 3 ö ¶ æ ¶f 2 ¶f1 ö
\ Ñ.(Ñ ´ f ) = ç - ÷+ ç - ÷+ ç - ÷
¶x çè ¶y ¶z ÷ø ¶y è ¶z ¶x ø ¶z çè ¶x ¶y ÷ø
¶ 2 f 3 ¶ 2 f 2 ¶ 2 f1 ¶ 2 f 3 ¶ 2 f 2 ¶ 2 f1
= - + - + -
¶x¶y ¶x¶z ¶y¶z ¶y¶x ¶z¶x ¶z¶y
=0
Ñ.(Ñ. f ) = 0
60
This watermark does not appear in the registered version - http://www.clicktoconvert.com
Proof: f = r n r = x2 + y2 + z2 \r 2 = x2 + y2 + z2
Ñ 2 . f = Ñ.(Ñf )
é ¶f ¶f ¶f ù
= Ñ.êi + j +k ú ---(1)
ë ¶x ¶y ¶z û
n
f =r
¶f ¶r x
= nr n -1 = nr n -1
¶x ¶x r
= nxr n - 2
¶f ¶r y
= nr n -1 = nr n -1
¶y ¶y r
= nyr n - 2
¶f ¶r z
= nr n -1 = nr n -1
¶z ¶z r
= nzr n - 2
[
Ñ.(Ñf ) = Ñ. nxr n - 2 i + nyr n - 2 j + nzr n - 2 k ]
¶ ¶ ¶
¶x
( )
nxr n - 2 +
¶y
(
nyr n - 2 +
¶z
)
nzr n - 2 ( )
é ¶r y ¶r ù
= n ê x ( n - 2) r n - 3 + r n - 2 .1 + y ( n - 2) r n - 3 . + r n - 2 + z ( n - 2) r n - 3 + r n - 2 .1ú
ë ¶n r ¶z û
é r y zù
= n ê3r n - 2 + x( n - 2)r n -3 + y (n - 2)r n -3 . + z (n - 2)r n -3
ë r r r úû
[
= n 3r n - 2 + x 2 (n - 2)r n - 4 + y 2 (n - 2)r n - 4 + z 2 (n - 2)r n - 4 ]
= n[3r n-2
+ (n - 2)r n - 4 ( x 2 + y 2 + z 2 ) ]
= n[3r n-2
+ (n - 2)r n - 4 r 2 ]
= n[3r n-2
+ (n - 2)r n - 2 ]
= n[3 + n - 2]r n - 2
\ Ñ 2 (r n ) = n(n + 1)r n - 2
61
This watermark does not appear in the registered version - http://www.clicktoconvert.com
1. Find Ñf if f = 3 x 2 y - y 3 z 2 at (1,-2,-1)
3. If a is a constant vector and r is the position vector of any point (x,y,z), prove that
(i) Ñ(a.r ) = a (ii) Ñ.(a ´ r ) = 0 (iii) (a.Ñ)r = a (iv) Ñ ´ (a ´ r ) = 2a
2i - j - 2k .
8. Find the equation of the tangent plane to the surface x 2 + y 2 + z 2 = 25 at the point
(4,0,3)
9. Find the angle of intersection of the surfaces x 2 + y 2 + z 2 = 29 and
x 2 + y 2 + z 2 + 4 x - 6 y - 8 z - 47 = 0 at (4,-3,2)
62
This watermark does not appear in the registered version - http://www.clicktoconvert.com
f = ( x + 3 y )i + ( y - 2 z ) j + ( x + az )k , is solenoidal.
f = (axy - z 3 )i + (a - z ) x 2 j + (1 - a ) xz 2 k is irrotational
[ ]
5. Prove that Ñ ´ f (r )r = 0 if f(r) its differentiable
6.7 Sources
1) Vector Calculus by - Namasivayam
2) Vector Calculus by - Rasinghmia aggarval
3) Vector calculus by - P. Durai Pandian
4) Vector calculus by - Chatterjee
63
This watermark does not appear in the registered version - http://www.clicktoconvert.com
Lesson 7
Contents
7.0Aim and Objectives
7.1. Integration of Vector’s
7.2. Surface Integral
7.3. Volume Integral
7.4 Let us sum up
7.5 Check your progress
7.6 Lesson End activities
7.7 References
region.
B
Also ò f .d r is called the tangential line integral over C from A to B.
A
Let f = f1 i + f 2 j + f 3 k
r = xi + y j + z k
dr = dxi + dy j + dz k
\ f .dr = f1 dx + f 2 dy + f 3 dz
64
This watermark does not appear in the registered version - http://www.clicktoconvert.com
\ ò f .dr = ò ( f dx + f
C C
1 2 dy + f 3 dz )
Problems:
r = xi + y j
dr = dxi + dy j
( )
f .dr = x 2 i + y 3 j .(dxi + dy j )
= x 2 dx + y 3 dy
= x 2 dx + 2 x 7 dx ,
1
\ ò f .dr = ò x 2 dx + 2 x 7 dx
C 0
1 1
x3 ù æ 8ö
= ú + 2ç x ÷
3 û0 è 8 ø0
1 2 14 7
= + = =
3 8 24 12
(0,0,0) to (1,1,1)
Solution : Step: Equation of the line joining the points: (x1 ,y1 ,z1 ) and (x2 ,y2 ,z2 ) is
x - x1 y - x1 z - x1
= =
x 2 - x1 y 2 - y1 x 2 - x1
65
This watermark does not appear in the registered version - http://www.clicktoconvert.com
x - 0 y - 01 z - 0
= =
1 1 1
x = y = z = t (say )
\ x = t, y = t, z = t
At (0,0,0), t = 0, at (1,1,1)t = 1
\ t = 0 to t = 1
r = xi + y j + z k
(
r =ti+ j+k )
(
dr = i + j + k dt )
( )
f = 3 x 2 + 6 y i + 14 yz j + 20 xz 2 k
\ ( )
f = 3t 2 + 6t i + 14t 2 j + 20t 3 k
= 20t 3 - 11t 2 + 6t
1
(
\ ò f .dr = ò 20t 3 - 11t 2 + 6t dt )
C 0
13
=
3
7.2. Surface Integral
In order to evaluate surface integrals it is convenient to express them as double
integrals taken over the orthogonal projection of the surface S on the line of coordinate
places. Let S be a given surface. Let f be the vector point function. Let n be the unit
outward drawn normal vector to the surface S. Then the surface integral is defined as
ò ò f .nds
S
dxdy
a. If the position is on the xy plane, then the surface integral is ò ò f .n
R n.x
66
This watermark does not appear in the registered version - http://www.clicktoconvert.com
dydz
òò f .n
R n. j
dzdx
c. If the Orthogonal projection R is on zx plane then the surface integral is ò ò f .n
R n.k
Examples:
= 2 xi + 2 y j
Ñf 2 xi + 2 y j
n= =
Ñf 4x 2 + 4 y 2
=
(
2 xi + y j )
2 x2 + y2
xi + y j
=
16
n=
1
4
(
xi + y j )
Let R be the projection of S on xz plane
dxdz
ò ò f .nds = ò ò f .n ---(1)
S R n. j
( 1
)
f .n = z i + x j - 3 y 2 z k . ( xi + y j )
4
67
This watermark does not appear in the registered version - http://www.clicktoconvert.com
1
= ( xz + xy )
4
1
= x( y + z )
4
1 y
n. j = ( xi + y j ). j =
4 4
1
x( y + z )
4
\ using in (1) ò ò f .nds = ò ò
S R
y
3
4
5 4 xz + xy
ò ò
z =0 z =0 y
5 4 æ xz ö
=ò ò çç + x ÷÷dxdz
z =0 z =0
è y ø
5 4æ xz ö
=ò ò ç + x ÷÷dxdz
z =0 z =0 ç 2
è 16 - x ø
= 90
7.3. Volume Integral
Let V be a volume bounded by a surface suppose f(x,y,z) is a single valued function of
position defined over V.
If we sub divide the volume V into small cuboids by drawing lines parallel to the
three co-ordinate axes, then dv = dxdydz and the volume integral becomes
òòò f ( x, y, z )dxdydz
V
2
Example: Evaluate òòòfdv where f =45x y and v is the closed region bounded by the
V
planes
4 x + 2 y + 2 = 8; x = 0, y = 0, z = 0
Solution: We have
68
This watermark does not appear in the registered version - http://www.clicktoconvert.com
2 4 - 2 x8 - 4 x - 2 y
2
òòòfdv = ò ò ò 45 x
V x =0 y =0 z =0
ydxdydz
In the equation 4 x + 2 y + 2 = 8,
Put y =0, z = 0, 4x = 8
x=2
\ x = 0 to x = 2
Put z = 0,
4x + 2 y + 2 = 8
2x + y = 8
y = 8 - 2x
\ y = 0 to y = 8 - 2 x
Also from
4x + 2 y + 2 = 8
z = 8 - 4x - 2 y
\ z = 0 to y = 8 - 4 x - 2 y
2 4- 2 x
8- 4 x - 2 y
òòòfdv = 45 ò ò x y ( z)
2
dxdy
0
V x =0 y =0
2 4- 2 x
2
= 45ò òx y (8 x - 4 x - 2 y )dydx
0 0
2 4- 2 x
2
= 45ò ò (8 x y - 4 x 3 y - 2 x 2 y 2 )dydx
0 0
2 4-2 x 4-2 x
æ 2 y2 y2 y3 ö
= 45ò ò çç 8 x - 4x3 - 2x 2 ÷ dx
0 0 è 2 3 3 ÷ø 0
2
é x3 ù
= 45ò ê4 x 2 (4 - 2 x) 2 - 2 x 3 (4 - 2 x) 2 - 2 (4 - 2 x) 3 ú dx
0 ë
3 û
= 128
69
This watermark does not appear in the registered version - http://www.clicktoconvert.com
1. Evaluate ò f .dr where f = x 2 i + y 3 j and the curve C is the arc of the parabola y = x2
C
2. Evaluate ò f .dr where f = ( x 2 - y 2 )i + xy j and the curve C is the arc of the curve
C
( Ans : 2p )
4. Evaluate ò f .dr where f = xyi + ( x 2 + y 2 ) j and the curve C is the arc of the curve
C
æ 3ö
ç Ans : ÷
è 8ø
7.6. Points for discussion.
( Ans : 81)
70
This watermark does not appear in the registered version - http://www.clicktoconvert.com
71
This watermark does not appear in the registered version - http://www.clicktoconvert.com
Lesson – 8
Contents
8.0 Aims and Objectives
8.1Theorems of Gauss, Green and Stoke’s.
8.2. Examples
8.3 Let us sum up
8.4 Check your progress
8.5 Lesson End activities
8.6 References
In this lesson we are going to study about the theorems of gauss, green and
stroke’s. These theorems help us in evaluating a particular type of integral.
¶M ¶N æ ¶N ¶M ö
¶y
and
¶x
in R. Then ò ò ççè ¶x
R
-
¶y
÷÷dxdy = ò ( Mdx + Ndy )
ø C
8.1.2. Gauss Theorem: Suppose V is the volume bounded by a closed piece wise smooth
òòò Ñ. f dv = ò ò f .n ds
V S
8.1.3.Stoke’s Theorem: Let S be a piece wise smooth open surface bounded by a piece
wise smooth simple closed curve C. Let f(x,y,z) be a continuous vector point function
which has continuous first order partial derivatives in a region of space which contains S
in its interior. Then
ò f .dr = ò ò (Ñ ´ f ).nds
C S
72
This watermark does not appear in the registered version - http://www.clicktoconvert.com
8.2. Examples
1. Gauss Theorem : Verify Gauss Theorem for
f = ( x 2 - yz )i + ( y 2 - zx) j + ( z 2 - xy )k
¶f1 ¶f 2 ¶f 3
= 2 x; = 2 y; = 2 z;
¶x ¶y ¶z
Ñ. f = 2 x + 2 y + 2 z
= 2( x + y + z )
a b c
òòò Ñ. f dv = 2ò ò ò 2( x + y + z )d xdydz
V 0 0 0
a b c
= 2 ò ò ò ( x + y + z )d xdydz
0 0 0
a b
[
= 2 ò ò xz + yz + z 2
2
] dydz
c
0
0 0
[ ]dydz
a b
2
= 2 ò ò cx + ycy + c
2
0 0
[ ]
a b
2
= 2 ò ò cxy + cy 2 + c . y dx
2 2 0
0
[ ]
a
2
= 2 ò ò bcx + b 2 c + b c dx
2 2
0
a a
é bcx 2 b 2 cx bc 2 x ù
= 2ò ê + + ú
0 ë
2 2 2 û0
é a 2 bc ab 2 c abc 2 ù
= 2ê + + ú
ë 2 2 2 û
73
This watermark does not appear in the registered version - http://www.clicktoconvert.com
abc
=2 [a + b + c]
2
= abc[a + b + c ] -------(1)
Step 2: To evaluate ò ò f .n ds
S
Z
C
E
H
G
X
A
O
B F
Y
ò ò f .n ds = òò + òò + òò + òò + òò + òò
S S1 S2 S3 S4 S5 S6
To evaluate òò Put z = 0 in f
S1
z = 0 in n = -k f = - xy k
b a
\ òò = ò ò xydxdz f .n = - xy k .(-k )
OAFB y = 0 x = 0
b a
x2 y ù
= ò ú dy = xy
y =0
2 û0
b
1 2
= a ydy
2 òy
b
1 y2 ù 1
= a 2 ú = a 2b 2
2 2 û0 4
To evaluate S2
74
This watermark does not appear in the registered version - http://www.clicktoconvert.com
òò = òò f .n ds
S2 GECH
z = c; n = k
\ f .n = (c 2 - xy )
b a
2
òò = ò ò (c
S2 y =0 x =0
- xy )dxdz
b a
é 2 x2 y ù
= ò êc x - ú dy
y =0 ë
2 û0
b
é 2 a2 y ù
= òê c a - ú dy
y =0 ë
2 û
b
2 a2 y ù
= c ay - ú
2 2 û0
a 2b 2
= abc 2 -
4
To evaluate òò = òò f .n ds
S3 AEGF
x = a; n = ±i
f .n = +( x 2 - yz )
= +(a 2 - yz ) = - yz + a 2
b c
2
\ òò = ò ò (- yz + a )dzdy
S3 y =0 z =0
b c
é yz 2 ù
= ò ê- + a 2 z ú dz
y =0 ë
2 û0
b 2
é y 2 ù
= òy =0 êë 2 + a cúû dy
- c
b
c2 y2 ù
=- + a 2 cy ú
4 û0
b 2c 2
=- + a 2 bc
4
75
This watermark does not appear in the registered version - http://www.clicktoconvert.com
To evaluate òò = òò f .n ds
S4 OBHC
x = 0; n = -i
b b c
é yz 2 ù yc 2
=+ò ê ú dz = + ò dy
y =0 ë 2 û 0 y =0
2
b
c2 y2 ù
=+ ú
2 2 û0
b 2c 2
=+
4
To evaluate òò = òò f .n ds
S5 OCEA
y = 0; n = - j
f .n = ( x 2 i - zx j + z 2 k ).(- j )
= + zx
c a
\ òò = ò ò zxdxdz
S5 z =0 x =0
c a
zx 2 ù
= ò ú dz
z =0
2 û0
c
1
= a 2 ò zdz
2 0
c
1 z2 ö
= a 2 ÷÷
2 2 ø0
a 2c 2
=
4
76
This watermark does not appear in the registered version - http://www.clicktoconvert.com
To Find
òò = òò f .n ds
S6 HBFG
n = j; y = b
\ f .n = b 2 - zn
c a
2
\ òò = ò ò (b - zx)dxdz
S6 z =0 x =0
c a
é zx 2 ù
= ò êb 2 x - ú dz
z =0 ë
2 û0
c
é 2 a2z ù
= ò êb a - ú dz
z =0 ë
2 û
c
a2 z2 ù
2
= b az - ú
2 2 û0
a 2c 2
= b 2 ac -
4
\ òò + òò + òò + òò + òò + òò =
S1 S2 S3 S4 S5 S6
2 2
a b a 2b 2 b 2 c 2 b 2c 2 a 2c 2 a 2c 2
+ abc 2 - + + a 2 bc - + + b 2 ac -
4 4 4 4 4 4
= abc 2 + a 2 bc + ab 2 c
= abc ( a + b + c )
\ Gauss Theorem is verified.
2. Stoke’s theorem:
ò f .dr = òò (Ñ ´ f ).nds
S
77
This watermark does not appear in the registered version - http://www.clicktoconvert.com
\ x = cos t ; y = sin t ; z = 0,
\ x = cos t ; y = sin t ; z = 0,
t = 0 to 2p
f = (2 x - y )i - yz 2 j - y 2 z k
2p
= ò (-2 sin t cos t + sin 2 t )dt
0
2p 2p
= ò (2 sin t cos t dt + ò (sin 2 t dt
0 0
2p 2p
1
= - ò (sin 2t dt + (1 - cos 2t )dt
0
2 ò0
2p 2p 2p
é - cos 2t ù 1é ù
= -ê + dt - cos 2t dt
2 ë ò0 ò0
ê ú
ë 2 úû 0 û
2p
1 1 æ sin 2t ö
= (1 - 1) + ç t - ÷
2 2è 2 ø0
1
= [(25 - 0) - (0)]
2
ò f .dr = p
Step 2: To evaluate òò (Ñ ´ f ).nds
S
f = (2 x - y )i - yz 2 j - y 2 z k
= f1 i + f 2 j + f 3 k
f1 = 2 x - y f 2 = - yz 2 f3 = - y 2 z
78
This watermark does not appear in the registered version - http://www.clicktoconvert.com
¶f 1 ¶f 2 ¶f 3
= -1 = -2 yz =0
¶y ¶z ¶x
¶f 1 ¶f 2 ¶f 3
=0 =0 = -2 yz
¶z ¶x ¶y
i j k
¶ ¶ ¶
Ñ´ f =
¶x ¶y ¶z
f1 f2 f3
æ ¶f ¶f ö æ ¶f ¶f ö æ ¶f ¶f ö
= çç 3 - 2 ÷÷i - ç 3 - 3 ÷ j + çç 2 - 1 ÷÷k .
è ¶y ¶z ø è ¶x ¶z ø è ¶x ¶y ø
=k
\ Ñ´ f = k
Here n = k
\ òò (Ñ ´ f ).n ds = òò (Ñ ´ f ).k ds
S S
= òò k .k ds
S
= ò ò ds = p
S S
Green’s Theorem:
æ ¶N ¶M ö
òòR ççè ¶x - ¶y ÷÷dxdy = ò Mdx + Ndy
ø C
Verify Green’s theorem in the plane for ò ( xy + y 2 )dx + x 2 dy where C is the closed curve
C
of the region bounded by y = x and y = x2
79
This watermark does not appear in the registered version - http://www.clicktoconvert.com
Solution : Step 1
M = xy = y 2 N = x2
¶M ¶N
= 2y + x = 2x
¶y ¶x
\ x = 0 to x = 1
y = x 2 to x
1 x
æ ¶N ¶M ö
òòR ççè ¶x - ¶y ÷÷dxdy =
ø
ò ò [2 x - x - 2 y ]dydx
x =0 y = x 2
1 x
= ò ò [x - 2 y ]dydx
x =0 y = x 2
1 x
ò [xy - y ]
2
= dx
x =0 x2
1
[(
= ò x 2 - x 2 - ( x 3 - x 4 ) dx ) ]
0
1
(
= ò x 4 - x 3 dx )
0
1
x5 x4 ù 1 1 1
= - ú = - =-
5 4 û0 5 4 20
y = x2
y=x
(1,1)
0 x
80
This watermark does not appear in the registered version - http://www.clicktoconvert.com
Along y = x2
y = x, dy = dx
x = 0 to x = 1
1
[ ]
= ò x.x + x 2 dx + x 2 dx
0
1
= ò ( x 2 + x 2 + x 2 )dx
0
1
= ò 3 x 2 dx
0
0
3ù
= 3 x ú = -1
3 û1
19 1
\ The required integral = -1 = -
20 20
is the boundary of the rectangle in the xoy plane bounded by the lines x = o, x =
a, y = o, y = b (Ans: 2ab2 )
2
2. Verify Green’s Theorem for òò (3x - 8 y 2 )dx + (4 y - 6 xy )dy Where C is the
81
This watermark does not appear in the registered version - http://www.clicktoconvert.com
2
4. Use Green’s theorem in a plane to evaluate òx (1 + y )dx + ( x 3 + y 3 )dy Where C
2
8. Use divergence theorem to evaluate òò ( yz i + 2 x 2 j + 2 z 2 k ).ds Where S is the
S
closed surface boundary by the xoy plane and the upper half of the sphere
x 2 + y 2 + z 2 = a 2 above this plane
2
9. Use divergence theorem to evaluate òò (4 xi - 2 y j + z 2 k ).ds Where S is the
S
10. Verify gauss’s theorem for f = 2 xzi + yz j + z 2 k over the upper half of the
sphere x 2 + y 2 + z 2 = a 2 (April 2005)
82
This watermark does not appear in the registered version - http://www.clicktoconvert.com
7. Verify stoke’s theorem for the function f = y 2 i - y j + xz k and for the surface S
which is upper half of the sphere x 2 + y 2 + z 2 = a 2 and z ³ 0 (November 2004
Bharathiar)
10. Verify stoke’s theorem to evaluate ò f .dr where f = (sin x - y )i - cos x j and C is
(
the boundary of the triangle. Whose vertices are (0,0), p ,0 and p ,1
2 2
) ( )
Ans: p( 4
+2
p
)
8.7 References
83
This watermark does not appear in the registered version - http://www.clicktoconvert.com
Unit III
Lesson - 9
Fourier Series
Contents
9.0 Aim and Objectives
9.1 Fourier Series
9.2. Examples
9.3 Let us sum up
9.4 Check your progress
9.5 Lesson-End activities
9.6 References
In this lesson we are going to study about the fourier series which is a
trigonometric series defined in various intervals (viz) (0,2B) (-B , B ) (0,2l), (- l,l) and
cosine and sine series of f(x) defined in (o,l).
an ¥ ¥
A trigonometric expression of the form f ( x) = + å an cos nx + å bn sin nx is
2 n =1 n =1
a o ¥ ¥
å
f ( x =) a c n+ on sx+ åsb
2 n =1 n =1
ni nn x --(1)
2p
1
Where a0 = ò f ( x)dx
p 0
84
This watermark does not appear in the registered version - http://www.clicktoconvert.com
2p
1
an = ò f ( x) cos nxdx
p 0
2p
1
bn = ò f ( x) sin nxdx
p 0
9.2. Examples
1. Determine a fourier series for f(x) = x2 in (0,2 p )
Step 1: To find a0
2p 2p
1 2 1 x3 ù 1 8p 3 8p 2
a0 = ò0 x dx = ú = . =
p p 3 û0 p 3 3
2p
1 2
an = òx cos nxdx
p 0
1
u = x2 dv = cos nxdx V1 = - cos nx
n2
1
u1 = 2x ò dv = ò cos nxdx V2 = - 2 sin nx
n
sin nx
u 11 = 2 V =
n
1
\ an =
p
[
uj - u 1j1 + u 11j 2 - - - - - ]
2p
1 é x 2 sin nx æ -1 ö æ -1 öù
= ê - 2 xç 2 cos nx ÷ + 2.ç 2 sin nx ÷ú
p ë n èn ø èn øû 0
2p
1 é x 2 sin nx 2 2 ù
= ê + 2 n cos nx - 2 sin nx ú
pë n n n û0
1 ìé 2 ù ü
= íê 2 2p ´ 1ú - [0]ý
p îë n û þ
4p 4
= 2 = 2
pn n
4
an = 2
n
To find bn
85
This watermark does not appear in the registered version - http://www.clicktoconvert.com
2p
1 2
bn = òx sin nxdx
p 0
1
u = x2 dv = sin nxdx V1 = - sin nx
n2
1
u1 = 2x ò dv = ò sin nxdx V2 = - 3 sin nx
n
cos nx
u 11 = 2 V =-
n
\ bn =
1
p
[
uv - ò udv ]
2p
1 é 2æ 1 ö æ -1 ö æ 1 öù
= ê x ç - n cos nx ÷ - 2 xç n 2 sin nx ÷ + 2.ç n 3 cos nx ÷ú
p ë è ø è ø è øû 0
2p
1 é - x 2 cos nx 2 2 ù
= ê + 2 x sin nx + 2 cos nx ú
pë n n n û0
1 ìé 1 2 ù é 2 ùü
= íê- (4p 2 ) + 3 ú - ê 3 ú ý
p îë n n û ë n ûþ
1 ì 4p 2 2 2ü
=í- + 3 - 3ý
pî n n n þ
- 4p
bn =
n
\ using in (1)
8p 2 ¥ ¥
3 + 4 4p
f ( x) =
2
å
n =1 n
2
cos nx - ån =1 n
sin nx
¥ ¥
2 cos nx sin nx
= 4p + 4å - 4p å
3 n =1 n 2
n =1 n
Model 2:
¥ ¥
a0
f ( x) = + å an cos nx + å bn sin nx
2 n =1 n =1
86
This watermark does not appear in the registered version - http://www.clicktoconvert.com
p
1
Where a0 = ò f ( x)dx
p -p
p
1
an = ò f ( x) cos nxdx
p -p
p
1
bn = f ( x) sin nxdx
p -òp
Example: f ( x) = x + x 2 ; (-p , p )
p
1
a0 = ò f ( x)dx
p -p
p
1
= ò ( x + x 2 )dx
p -p
p p
1é ù
= êò xdx + ò x 2 dx ú
p ë -p -p û
1 é x2 ö x3 ö ù
= ê ÷÷ + ÷÷ ú
p êë 2 ø -p 3 ø -p ú
û
1 é 1 3 3 ù
=
p
(
êë0 + 3 p - (-p ) úû )
1 1 2p 2
= . .2p 3 =
p 3 3
p
1
an = ò f ( x) cos nxdx
p -p
p
1
= ò ( x + x 2 ) cos nxdx
p -p
87
This watermark does not appear in the registered version - http://www.clicktoconvert.com
1
u = x + x2 dv = cos nxdx V1 = - cos nx
n2
1
u1 = 1 + 2x ò dv = ò sin nxdx V2 = - 3 sin nx
n
sin nx
u 11 = 2 V =
n
p p
1é ù
= êò xdx + ò x 2 dx ú
p ë -p -p û
1 é x2 ö x3 ö ù
= ê ÷÷ + ÷÷ ú
p êë 2 ø -p 3 ø -p ú
û
1 é 1 3 3 ù
=
p
(
êë0 + 3 p - (-p ) úû )
1 1 2p 2
= . .2p 3 =
p 3 3
p
1
an = ò f ( x) cos nxdx
p -p
p
1 2
an = ò (x + x ) cos nxdx
p -p
1
u = x + x2 dv = cos nxdx V1 = - cos nx
n2
1
u1 = 1 + 2x V2 = sin nx
n3
sin nx
u 11 = 2 V =
n
1
\ an =
p
[
uj - u 1j1 + u 11j 2 - - - - - ]
p
1é 2 sin nx æ -1 ö æ -1 öù
= ê( x + x ) n - (1 + 2 x)ç n 2 cos nx ÷ + 2.ç n 3 sin nx ÷ú
pë è ø è ø û -p
1ì sin nx 1 2
+ 2 (1 + 2 x) cos nx - 3 sin nx ]-p
p
= í( x + x 2 )
pî n n n
1 ìé 1 ù é 1 ù
= íê0 + 2 (1 + 2p )(-1) n - 0ú - ê0 + 2 (1 - 2p )(-1) n ú
p îë n û ë n û
88
This watermark does not appear in the registered version - http://www.clicktoconvert.com
1 ìé (-1) n ù
= íê 2 (1 + 2p - 1 + 2p )ú
p îë n û
(-1) n 4p (-1) n 4
= =
pn 2 n2
(-1) n 4
\ an =
n2
p
1
bn = ò f ( x) sin nxdx
p -p
p
1 2
= ò (x + x ) sin nxdx
p -p
1
u = x + x2 dv = sin nxdx V1 = - sin nx
n2
1
u1 = 1 + 2x ò dv = ò sin nxdx V2 = 3 cos nx
n
- cos nx
u 11 = 2 V =
n
bn =
1
p
[
uv - ò udv ]
p
1ì æ cos nx ö æ -1 ö æ 1 öü
= í( x + x 2 )ç - ÷ - (1 + 2 x)ç 2 sin nx ÷ + 2.ç 3 cos nx ÷ý
pî è n ø èn ø èn ø þ -p
p
1ì 2 cos nx 1 2 ü
= í- ( x + x ) + 2 (1 + 2 x) sin nx + 3 cos nx ý
pî n n n þ -p
1 ì (-1) n 2 2 ü
= í (-p - p 2 + p 2 - p ) + 3 (-1) n - 3 (-1) n ý
pî n n n þ
1 é (-1) n ù
= ê (-2p )ú
pë n û
- 2p - 2(-1) n
= (-1) n =
pn n
89
This watermark does not appear in the registered version - http://www.clicktoconvert.com
p2 ¥ é4 2 ù
\ f ( x) = + å (-1) n ê 2 cos nx - sin nx ú
3 n =1 ën n û
Let f(x) be a function of x defined in the interval (0, 2l). Then its fouriers
expansion is
a0 ¥ æ npx ö ¥ æ npx ö
f ( x) = + å an cosç ÷ + å bn sin ç ÷
2 n =1 è l ø n =1 è l ø
2l
1
Where a 0 = ò f ( x)dx
l0
2l
1 æ npx ö
an = ò f ( x) cosç ÷dx
l0 è l ø
2l
1 æ npx ö
bn = ò f ( x) sinçè ÷dx
p 0
l ø
Problem:
x
f ( x) = ;0 < x < l
l
2l - x
= ; l < x < 2l
l
a0 ¥ æ npx ö ¥ æ npx ö
f ( x) = + å an cosç ÷ + å bn sin ç ÷
2 n =1 è l ø n =1 è l ø
2l
1
a 0 = ò f ( x)dx
l0
æL 2l
ö
= ç ò f ( x)dx + ò f ( x)dx ÷÷
ç
è0 0 ø
L 2l
1 éæ x) æ 2l - x ö ö÷ù
= êçç ò dx + ò ç ÷dx ÷ú
l êëè 0 l 0 è l ø øúû
90
This watermark does not appear in the registered version - http://www.clicktoconvert.com
l 2l
1 é x2 ö æ x2 ö ù
= 2 ê ÷÷ + çç 2lx - ÷÷ ú
l êë 2 ø0 è 2 øl ú
û
1 é l 2 æ 2 4l 2 ö 2 l2 ù
= 2 ê + çç 4l - ÷ - (2l - ú
l ë2 è 2 ÷ø 2û
1 é l 2 4l 2 3l 2 ù
= ê + - ú
l2 ë 2 2 2 û
1 é l 2 l 2 ù 1 2l 2
= ê + ú= . =1
l2 ë 2 2 û l2 2
a0 = 1
To find an
2l
1 æ npx ö
an = ò f ( x) cosç ÷dx
l0 è l ø
L 2l
1 éæ x æ npx ö 2l - x æ npx ö ö÷ù
ç
= êç ò cosç ÷dx + ò cosç ÷dx ú
l ëêè 0 l è l ø 0
l è l ø ÷øûú
1
= [I1 + I 2 ] --------(1)
l2
L 2l
x npx æ npx ö
I 1 = ò cos dx; I 2 = ò (2l - x) cosç ÷dx
0
l l 0 è l ø
To find I1
Integrate by Parts
npx
u=x dv = cosdx
l
npx
u1 = 1 ò dv = ò cos l dx
1 æ npx ö
v= sin ç ÷
np è l ø
\ I 1 = uv - ò vdx
91
This watermark does not appear in the registered version - http://www.clicktoconvert.com
l l
l npx ù l æ npx ö
= x. sin ú -ò sin ç ÷dx
np l û 0 0 np è l ø
l
é æ npx ö ù
ê - cosç ÷
l
ê è l ø úú
=-
np ê np ú
ê l ú
ë û0
l2
= - 2 2 [(cos(np ) - 1]
np
l2
=- 2 2
np
[
(-1) n - 1 ]
To find I2
2l
æ npx ö
I 2 = ò (2l - x) cosç ÷dx
0 è l ø
u = 2l - x dv = -dx
npx
u 1 = -1 ò dv = ò cos dx
l
1 æ npx ö
v= sin ç ÷
np è l ø
\ I 1 = uv - ò vdx
2l 2l
l npx ù l æ npx ö
= (2l - x) sin ú -ò sin ç ÷(-dx)
np l ûl l
np è l ø
2l
l é æ npx öù
= êsin ç l ÷ú
np ë è øû l
2l
l2 é æ npx öù
= 2 2 êcosç l ÷ú
n p ë è øû l
l2
= - 2 2 {cos 2np - cos np }
np
l2
=- 2 2
np
[
1 - (-1) n ]
92
This watermark does not appear in the registered version - http://www.clicktoconvert.com
\ using in (1)
1 é l2 n l2 ù
an = 2 ê 2 2
(( -1) - 1) - 2 2
(1 - (-1) n )ú
l ën p np û
2
1 l
[
= 2 . 2 2 (-1) n - 1 - 1 + (-1) n
l np
]
1
= 2 2 2(-1) n - 2
n p
[ ]
2
a n = 2 2 (-1) n - 1
n p
[ ]
When n is even, an = 0
2 -4
When n is odd, a n = 2 2
( -2) = 2 2
n p n p
Step 3: To find bn
2l
1 æ npx ö
bn = ò f ( x) sin ç ÷dx
l0 è l ø
l 2l
1 éæ æ npx ö æ npx ö ö÷ù
= êçç ò f ( x) sin ç ÷ dx + ò0 f ( x ) sin ç ÷dx ú
l êëè 0 è l ø è l ø ÷øúû
1 éæ l æ npx ö
2l
æ npx ö ö÷ù
= ç
êç ò x sin ç ÷ dx + ò f ( x ) sin ç ÷dx ÷ú
l2 ëêè 0 è l ø 0 è l ø øûú
1
= [I 3 + I 4 ] --------(2)
l2
Where
l 2l
æ npx ö æ npx ö
I 3 = ò x sin ç ÷dx; I 4 = ò (2l - x) sin ç ÷dx
0 è l ø l è l ø
l
æ npx ö
I 3 = ò x sin ç ÷dx
0 è l ø
93
This watermark does not appear in the registered version - http://www.clicktoconvert.com
æ npx ö
u=x dv = sin ç ÷dx
è l ø
æ npx ö
u1 = 1 ò dv = ò sinçè l ÷ødx
l æ npx ö -l2 npx
du = dx v=- cosç ÷; v1 = - 2 2
sin
np è l ø np l
I 3 = uv - u 1v1 + .......
l
é æ l ö æ npx ö æ -l2 ö æ npx öù
= ê xç - cos
÷ ç ÷ - 1 .çç 2 2 ÷÷ sin ç ÷ú
ë è np ø è l ø èn p ø è l øû 0
l
é l æ npx ö l2 æ npx öù
= ê- x x cosç ÷ + 2 2 sin ç ÷ú
ë np è l ø np è l øû 0
ì l ü
[ ]
= í- 2 2 (l (-1) n + 0) - [0]ý
î n p þ
-l2
= (-1) n
np
2l
æ npx ö
I 4 = ò (2l - x) sin ç ÷dx
l è l ø
æ npx ö
u = 21 - x dv = sin ç ÷dx
è l ø
æ npx ö
u 1 = -1 ò dv = ò sinçè l ÷ødx
l æ npx ö -l2 npx
v=- cosç ÷; v1 = 2 2
sin
np è l ø np l
I 3 = uv - u 1v1 + .......
2l
é 1 æ npx ö æ -l2 ö æ npx öù
= ê- (2l - x) cosç ÷ - 1.çç 2 2 ÷÷ sin ç ÷ú
ë np è l ø èn p ø è l øû l
2l
é l æ npx ö l2 æ npx öù
= ê- (2l - x) cosç ÷ - 2 2 sin ç ÷ú
ë np è l ø np è l øû l
94
This watermark does not appear in the registered version - http://www.clicktoconvert.com
ì é l2 ùü
= í[- (0 - 0)] - ê- 2 2 cos(np ) - 0ú ý
î ë np ûþ
l2 l2
= cos np = (-1) n
np np
Using in (2)
1 é- l2 n l2 ù
bn = 2 ê (-1) + (-1) n ú = 0
l ë np np û
bn = 0
¥
1 4 æ npx ö
f ( x) = - å 2 2 cosç ÷
2 n =1,3,5 n p è l ø
1 4 ¥ æ npx ö
= . 2 å cosç ÷
2 p 1,3,5 è l ø
Model 4:
Let f(x) be a function of x defined the interval (-l , l ) . Then its fourier series is
a0 ¥ æ npx ö ¥ æ npx ö
f ( x) = + å an cosç ÷ + å bn sin ç ÷
2 n =1 è l ø n =1 è l ø
l
1
a0 = f ( x)dx
l -òl
Where
l
1 æ npx ö
a n = ò f ( x) cosç ÷dx
l -l è l ø
l
1 æ npx ö
bn = ò f ( x) sinçè ÷dx
p -l
l ø
Here l = 1
¥ ¥
a0
f ( x) = + å an cos(npx ) + å bn sin (npx )
2 n =1 n =1
1 -1
2 x3 ù 13 (-1) 3 2
a 0 = ò x dx = ú = - =
-1
3 û1 3 3 3
95
This watermark does not appear in the registered version - http://www.clicktoconvert.com
1
a n = ò x 2 cos npxdx
-1
u = x2 dv = cos npxdx
sin npx
u1 = 2x v=
np
1 1
u 11 = 2 v1 = - 2 2
cos npx; v 2 = - 3 3 sin npx
np np
1
x 2 sin npx æ 1 ö æ 1 öù
= - 2 xç - 2 2 cos npx ÷ + 2ç - 3 3 sin npx ÷ú
np è n p ø è np øû -1
1
é x 2 sin npx 2 2 ù
=ê + 2 2 x cos npx - 3 3 sin npx ú
ë np np np û -1
ìé 2 ù é 2 ùü
= íê0 + 2 2 cos np - 0ú - ê0 - 2 2 cos np - 0ú ý
îë np û ë np ûþ
2 2
= 2
2
cos np + 2 2 cos np
n p n p
4
= 2 2 cos np
n p
4 n (-1) n 4
= ( -1) =
n 2p 2 n 2p 2
To find bn :
1
bn = ò f ( x) sin npxdx
-1
1
= ò x 2 sin npxdx
-1
u = x2 dv = sin npxdx
1
u1 = 2x v=- cos npx
np
1 1
u 11 = 2 v1 = - 2 2 sin npx; v 2 = 3 3 cos npx
np np
96
This watermark does not appear in the registered version - http://www.clicktoconvert.com
1
æ 1
2 ö æ 1 ö æ 1 öù
= x ç- cos npx ÷ - 2 xç - 2 2 sin npx ÷ + 2ç 3 3 cos npx ÷ú
è np ø è n p ø èn p øû -1
1
1 2 2 2 ù
=- x cos npx + 2 2 x sin npx + 3 3 cos npx ú
np np np û -1
ìé 1 2 ù é 1 2(-1) n ù ü
= íê- (-1) n + 0 + 3 3 (-1) n ú - ê- cos np + 0 + 3 3 ú ý
î ë np np û ë np n p ûþ
1 2 1 2
=- (-1) + (-1) n 3 3 + cos np - 3 3 (-1) n
np np np np
bn = 0
1 ¥ 4
\ f ( x) = + å (-1) n 2 2 cos(npx )
3 n =1 n p
a). Let f(x) be a function defined in the interval (0,l) then its cosine series is defined
¥
a æ npx ö
f ( x) = 0 + å an cosç ÷
2 n =1 è l ø
l
2
a 0 = ò f ( x)dx
l 0
l
2 æ npx ö
an = ò f ( x) cosç ÷dx
l 0 è l ø
¥
æ npx ö
b. Its sine series is f ( x) = å bn sin ç ÷
n =1 è l ø
l
2 æ npx ö
Where a 0 = ò f ( x) sin ç ÷dx
l 0 è l ø
Examples
Here l = 1
97
This watermark does not appear in the registered version - http://www.clicktoconvert.com
¥
a0
f ( x) = + å an cos npx
2 1
1 1
a 0 = 2 ò f ( x)dx = 2 ò ( x - 1) 2 dx
0 0
1
( x - 1) 3 ù
=2 ú
3 û0
2 2
= (0 + 1) =
3 3
l
a n = 2ò f ( x) cos npxdx
0
l
= 2 ò ( x - 1) 2 cos npxdx
0
u = ( x - 1) 2 dv = cos npxdx
u 1 = 2( x - 1) ò dv = ò cos npxdx
sin npx
u 11 = 2 v=
np
1
v1 = - 2 2 cos npx
np
1
v 2 = - 3 sin npx
n p3
[
a n = 2 uj - u 1j1 + u 11j 2 .......... ]
1
é sin npx æ 1 ö æ 1 öù
= 2 ê( x - 1) 2 - (2)(n - 1)ç - 2 2 cos npx ÷ + 2ç - 3 3 sin npx ÷ú
ë np è np ø è np øû 0
1
é sin npx 2 2 ù
= 2 ê( x - 1) 2 + 2 2 (n - 1) cos npx - 3 3 sin npx ú
ë np np np û0
ì é 2 ùü
= 2í[0 + 0 + -0] - ê- 2 2 ´ 1 - 0ú ý
î ë np ûþ
4
an = 2 2
n p
1 ¥ 4
\ f ( x) = +å cos npx
3 n =1 n 2p 2
98
This watermark does not appear in the registered version - http://www.clicktoconvert.com
b) Sine series
f ( x) = ( x - 1) 2 ; (0,1).
¥
æ npx ö
f ( x) = å bn sin ç ÷;
1 è l ø
Here l = 1
1
\ bn = 2 ò ( x - 1) 2 sin (npx )dx
0
u = ( x - 1) 2 dv = sin npxdx
1
u = 2( x - 1) ò dv = ò sin npxdx
- cos npx
u 11 = 2 v=
np
1
v1 = - 2 2 sin npx
np
1
v 2 = 3 cos npx
n p3
[
bn = 2 uj - u 1j1 + u 11j 2 .......... ]
é æ 1 ö æ 1 ö æ 1 öù
= 2 ê( x - 1) 2 ç - cos npx ÷ - 2(n - 1)ç - 2 2 sin npx ÷ + 2ç 3 3 cos npx ÷ú
ë è np ø è np ø èn p øû
1
ì 1 2(n - 1) 2 ü
= 2 í- ( x - 1) 2 cos npx + 2 2 sin npx + 3 3 cos npx ý
î np np np þ0
ìé 2 ù é 1 2 ùü
= 2íê0 + 0 + 3 3 cos np ú - ê + 0 + 3 3 úý
îë np û ë np n p ûþ
é 2 2 ù
= 2 ê 3 3 ( -1) n - 3 3 ú
ën p np û
4
[
bn = 3 3 (-1) n - 1
np
]
When n is even, bn = 0
-8
When n is odd, bn =
n 3p 3
¥
8 1
\ f ( x) = -
p 3
+ å
n =1, 3, 5,.... n
3
sin npx
99
This watermark does not appear in the registered version - http://www.clicktoconvert.com
1. If f ( x ) = 1, 0 < x < p ,
= -1, p < x < 2p , prove that
¥
4 sin nx
f ( x) = 3 å
p n =1,3,5,.... n
2. If f ( x ) = x ( 2p - n), show that
2p 2 ¥
1
f ( x) = - 4å 2 cos nx; (0,2p )
3 n =1 n
3. If f ( x ) = R, 0 < x < p ,
= - R, p < x < 2p ,
Prove that
4n ¥ 1
f ( x) = å sin nx
p n =1,3,5,.... n
4. If f ( x ) = -1 + x, - p < x < 0
= 1 + x, 0 < x < p
Prove that
2 ¥ 1
[ ]
f ( x) = å 1 - (-1) n (1 + p ) sin nx
p n =1 n
9.6. Points for discussion
1. f ( x )= -p , - p < x < 0
= p, 0 < x < p
Show that
-p 2 æ cos 3 x cos 5 x ö
f ( x) = - ç cos x + 2
+ 2
+ ....... ÷
4 pè 3 5 ø
100
This watermark does not appear in the registered version - http://www.clicktoconvert.com
2. f ( x ) = 2, - p < x < 0
= 4, 0 < x < p
Prove that
4 ¥ sin nx
f ( x) = 3 + å
p n =1,3,5.... n
9.7 References
101
This watermark does not appear in the registered version - http://www.clicktoconvert.com
Lesson 10
Contents
In this lesson we are going to learn about the concept of the polar coordinates,
converting the castesian system to polar system, polar of a straight line, circle, a concern.
θ
0 Fixed line A
The point P is represented by the polar coordinate P(r, θ); OP = r is called the
radius vector and θ is called the vectorial angle. The radius vector is considered positive
if measured from O along the line bounding the vectorial angle and negative in the
opposite direction.
102
This watermark does not appear in the registered version - http://www.clicktoconvert.com
θ2
θ1
0 A
POQ = J2 - J1
In D OPQ, we have
2 2
\ PQ = r1 + r2 - 2r1 r2 cos(J2 - J1 )
R
Q
θ2 θ3
θ1
0 A
Let PQR be the triangle whose vertices are P (r1 , θ 1 ) , Q (r2 , θ2 ) and R (r3 , θ3 )
103
This watermark does not appear in the registered version - http://www.clicktoconvert.com
In D OPQ, POQ = J2 - J1
1
\ Area of DOPQ = .OP.OQ. sin(q 2 - q 1 )
2
1
= .r1 .r2 . sin(q 2 - q 1 )
2
In D QOR, QOR = J3 - J2
1
\ Area of DQOR = .OQ.OR. sin QOR
2
1
= .r2 .r3 . sin(q 3 - q 2 )
2
In D OPR, POR = J3 - J1
1
\ Area of DOPR = .OP.OR. sin POR
2
1
= .r1 .r3 . sin(q 3 - q 2 )
2
\ Area of DPQR =
1 1 1
= .r1 .r2 . sin(q 2 - q 1 ) + .r2 .r3 . sin(q 3 - q 2 ) - .r1 .r3 . sin(q 3 - q 1 )
2 2 2
1
=
2
[
. r1 .r2 . sin(q 2 - q 1 ) + .r2 .r3 . sin(q 3 - q 2 ) - .r1 .r3 . sin(q 3 - q 1 ) ]
10.1.4. Conversion of polar coordinates into Cartesian coordinates
r= x2 + y2
æ yö
q = tan -1 ç ÷
èxø
Equation of a straight in polar coordinates
104
This watermark does not appear in the registered version - http://www.clicktoconvert.com
P
α A
x
0
r cos(q - a ) = p
ar cos q + br sin q + c = 0
c
a cos q + b sin q + = 0
r
105
This watermark does not appear in the registered version - http://www.clicktoconvert.com
c c
a cos q + b sin q = -= K where K = -
r r
Which is the equation of the line not passing through the pole.
The equation of the line passing through the pole is q = a constant.
Parallel lines:
Perpendicular lines:
We get
c
l
θ
α
A
0
106
This watermark does not appear in the registered version - http://www.clicktoconvert.com
Let 0 be the pole and OA be the initial line. Let C be the centre of the circle of radius a
units.
In DOCP
CP 2 = OC 2 + OP 2 - 2OC.OC. cos(COP )
a 2 = c 2 + r 2 - 2cr cos(q - a ) -----(1)
\ using in (1)
a 2 = a 2 + r 2 - 2ar cos(q - a )
\ r 2 = 2ar cos(q - a )
\ r = 2a cos(q - a ) ----(2)
10.1.5. Equation of chord joining the points P(q1 )andP(q 2 ) of the circle r = 2acos q
Proof:
Q P
O
r=2acosθ
Consider the equation of the circle where the pole lies on it and the initial line passes
through the centre of the circle.
107
This watermark does not appear in the registered version - http://www.clicktoconvert.com
p = rc o-q s a( ) ----(2)
o(2 s a
p = 2ac o qs2 c- q )
cos(2q1 - a ) = cos(2q 2 - a )
\ 2q1 - a = ±2q 2 - a
2q1 - a = -2q 2 + a
2q1 + 2q 2 = 2a
q1 + q 2 = a
Sub in (3)
p = 2a c qo-1 s q1 c -q
o1 s 2q ( )
= 2a cos q 1 cos(-q 2 )
108
This watermark does not appear in the registered version - http://www.clicktoconvert.com
Put q 1 = q 2 = a in (A)
2a cos 2 a = r cos(q - 2a )
\ r cos(q - 2a ) = 2a cos 2 a
L'
109
This watermark does not appear in the registered version - http://www.clicktoconvert.com
SL
=e
SX
SL = e.SX
But SL = l
\ l = e.SX
l
SX =
e
Also P is a point on the conic
SP
\ =e
PM
SP = e.PM
= e.NX
= e( SX - SN ) ---(1)
l
But SX =
e
SN
In DSPN , cos q =
SP
S N
c oq s=
r
\S N
= cr oq s
\ using in (1)
æl ö
r = eç - r c ÷oq s
èe ø
r = l -e cr oq s
110
This watermark does not appear in the registered version - http://www.clicktoconvert.com
r + e c o=rq s l
r ( +1 ce oq=s l )
l
= 1 +ce o qs
r
Note: Let SX makes an angle α with the initial line SA, then the radius vector SP makes
an angle q - a with the initial line
l
\ The equation of the conic in this case is = 1 ec+ o q-s a
( )
r
Q
r
S X
SX
\ In DSQX ; cos q =
SQ
\ SX = SQ cos q
= r cos q
l
But SX =
e
l
\ = r cos q
e
111
This watermark does not appear in the registered version - http://www.clicktoconvert.com
l
\ = e cos q
r
l
Note 3: Consider the equation of the conic = e cos q + e cos(q - a )
r
l
\ Equating of the corresponding directrix is = e cos(q - a )
r
10.1.7.Equation of the chord joining the points A(a - b ) and B (a + b ) of the conic
l
= 1 + e cos q
r
l
Solution: The equation of the conic is = 1 + e cos q (1)
r
Let A and B be two points on the conic (1) whose vectorial angles are ‘α-β’ and ‘α+β’
respectively.
α+β A
S α-β
The points A(SA, α-β) and B (SB, α+β) lie on (1) and (2)
112
This watermark does not appear in the registered version - http://www.clicktoconvert.com
l
\ = 1 + e cos(a - b ) ----(2)
SA
l
= 1 + e cos(a + b ) ----(3)
SB
Also
l
= A' cos(a - b ) + B ' sin(a - b ) ----(4)
SA
l
= A' cos(a + b ) + B ' sin(a + b ) ----(5)
SB
Subtracting
2 cos a sin b
\ A'-e =
sin 2 b
113
This watermark does not appear in the registered version - http://www.clicktoconvert.com
2 cos a sin b
=
2 sin b cos b
To find B'
Subtracting
2 sin a sin b
B' =
2 sin b cos b
Equation of chord AB is
l
= (e + cos a sec b ) cos q + sin a sec b sin q
r
114
This watermark does not appear in the registered version - http://www.clicktoconvert.com
l
= e cos q + sec b cos(q - a ) -----(A)
r
Cor 1:
When b = 0 , the points A and B coincide. Chord AB becomes the tangent at ‘α’
\ Put b = 0 in (A)
l
= e cos q + cos(q - a )
r
l
BW Equation of the normal at ‘α’ on the conic = 1 + e cos q
r
l
= 1 + e cos q ---(1)
r
l
= e cos q + cos(q - a ) ---(2)
r
R æp ö æp ö
= e cosç + q ÷ + cosç + q - a ÷
r è2 ø è2 ø
R
= -e sin q - e sin(q - a ) ---(3)
r
R
= -e sin a ---(4)
SP
115
This watermark does not appear in the registered version - http://www.clicktoconvert.com
l
\ = 1 + e cos a
SP
l
SP =
1 + e cos a
Using in (4)
- le sin a
R=
1 + e cos a
Using in (3)
- le sin a 1
. = -e sin q - e sin(q - a )
1 + e cos a r
- le sin a
\ = e sin q + e sin(q - a )
r (1 + e cos a )
10.1.8. Properties
Solution : P (α)
S x
directrix
116
This watermark does not appear in the registered version - http://www.clicktoconvert.com
l
= 1 + e cos q ---(1)
r
l
= e cos q + cos(q - a ) ---(2)
r
l
= e cos q ---(3)
r
\ cos(q - a ) = 0
p
q -a = ±
2
p
\q = a ±
2
æ pö
= a - ça ± ÷
è 2ø
p
KSˆP = ±
2
l
2. Prove that the tangents at the extremities of any focal chord of a conic = 1 + e cos q
r
intersect on the corresponding directrix.
l
Proof: Equation of the conic is = 1 + e cos q ---(1)
r
Let PQ be a focal chord of (1)
Let P be (SP, α). Then Q is (SQ, p + a )
117
This watermark does not appear in the registered version - http://www.clicktoconvert.com
l
= e cos q + cos(q - a - p ) ---(3)
r
l
\ = e cos q 1 + cos(q 1 - a )
r1
l
and = e cos q 1 + cos(q 1 - a - p )
r1
= e cos q 1 + cos(p + a - q 1 )
= e cos q 1 - cos(q 1 - a )
2l
\ Add . = 2e cos q 1
r1
l
\ = 2e cos q 1 ,
r1
l
\ The locus (r1 , q 1 ) is = e cos q which is the directrix
r
l
3. If the tangents at P and Q on the conic = 1 + e cos q meet at T, then prove the
r
following
^
a. ST bisects PSQ
b. If PQ intersects the directrix at K, than TSˆK = 90 0
c. ST2 = SP.SQ of the conic in a parabola
118
This watermark does not appear in the registered version - http://www.clicktoconvert.com
Solution :
Q T
P
S z
l
Let the equation of the conic be = 1 + e cos q ----(1)
r
Let P,Q be the points with vectorial angles α, β respectively. Then equations of the
tangent at P(α) and Q(β) are
l
= e cos q + cos(q - a ) ---(1)
r
l
= e cos q + cos(q - b ) ---(2)
r
\ cos(q - a ) = cos(q - b )
(q - a ) = ± (q - b )
2q = a + b
119
This watermark does not appear in the registered version - http://www.clicktoconvert.com
a+b
q=
2
a+b
\ ZST =
2
a+b
Proof of (a): ZSP = a ; ZSQ = b , ZST =
2
a+b
\ PSˆT = ZSˆT - ZSˆP = -a
2
b -a
=
2
TSˆQ = ZSˆQ - ZSˆT
æa + b ö
=b -ç ÷
è 2 ø
2b - a - b b - a
= =
2 2
\ PSˆT = TSˆQ
Is ST bisects PSˆQ
b) The equation of PQ is
l æ a - b ö æç a+b ö
÷
= e cos q + secç ÷ cosçq - ÷ ---(1)
r è 2 ø è 2 ø
l
Equation of the directrix is = e cos q ---(2)
r
æ a - b ö æç a+b ö
÷ = e cos q
e cos q + secç ÷ cosçq - ÷
è 2 ø è 2 ø
æa - b ö æç a+b ö
÷=0
secç ÷ cosçq - ÷
è 2 ø è 2 ø
120
This watermark does not appear in the registered version - http://www.clicktoconvert.com
æ a+b ö
\ cosççq - ÷=0
÷
è 2 ø
a+b p
\ q- =±
2 2
a+b p
\ q= ±
2 2
a+b p
LSK = ±
2 2
a + b æa + b p ö p
= -ç ± ÷=±
2 è 2 2ø 2
l
= e cos q + cos(q - a ) ---(1)
r
æ a+bö
T is ç ST , ÷
è 2 ø
l æa + b ö æa + b ö
\ = cosç ÷ + cosç -a÷
ST è 2 ø è 2 ø
æa + b ö æa - b ö
= cosç ÷ + cosç ÷
è 2 ø è 2 ø
l æa ö æ b ö
= 2 cosç ÷ cosç ÷
ST è2ø è2ø
l
\ ST =
æa ö æ b ö
2 cosç ÷ cosç ÷
è2ø è2ø
l
But P, Q lis on = 1 + cos q
r
121
This watermark does not appear in the registered version - http://www.clicktoconvert.com
l 1
\ = 1 + cos a ; = 1 + cos b
SP SQ
l l
\ SP = ; SQ =
1 + cos a 1 + cos b
l2
SP.SQ =
(1 + cos a )(1 + cos b )
l2
=
a b
2 cos 2 2 cos 2
2 2
l2
=
a b
4 cos 2 cos 2
2 2
2
é ù
ê l2 ú
=ê ú
ê 2 cos a cos b ú
ëê 2 2 ûú
= ST 2
\ ST 2 = SP.SQ
10.2. Examples
122
This watermark does not appear in the registered version - http://www.clicktoconvert.com
1. In any conic, prove that the sum of reciprocals of two perpendicular focal chord is
constant
Proof: Let the equation of the conic be
l
= 1 + e cos q ---(1)
r
Q(π/2+α)
P(α)
Q'
P'
Let PSP', QSQ' be the perpendicular focal chords of the conic (1)
p
Let the vectorial angle of Q be +a
2
Let the vectorial angle of P' be (p + a )
3p
Let the vectorial angle of Q' be +a
2
l
\ = 1 + e cos a
SP
123
This watermark does not appear in the registered version - http://www.clicktoconvert.com
l æp ö
= 1 + e cosç + a ÷ = 1 - e sin a
SP è2 ø
l
= 1 + e cos(p + a ) = 1 - e cos a
SP '
l æ 3p ö
= 1 + e cosç + a ÷ = 1 - e sin a
SQ' è 2 ø
l
\ SP =
1 + e cos a
l
SP ' =
1 - e cos a
l
SQ =
1 - e sin a
l
SQ ' =
1 - e sin a
l l
PP ' = SP + SP ' = +
1 + e cos a 1 - e cos a
l [1 - e cos a + 1 + e cos a ]
=
(1 + e cos a )(1 - e cos a )
2l
=
1 - e cos 2 a
2
l l
QQ ' = SQ + S ' Q = +
1 - e sin a 1 + e sin a
l [1 - e sin a + 1 + e sin a ]
=
(1 - e sin a )(1 + e sin a )
2l
=
1 - e sin 2 a
2
1 1 1 - e 2 cos 2 a 1 - e 2 cos 2 a
\ + = +
PP' QQ' 2l 2l
1
=
2l
[ (
2 - e 2 cos 2 a + sin 2 a )]
124
This watermark does not appear in the registered version - http://www.clicktoconvert.com
1
=
2l
( )
2 - e 2 = a constant
2. Prove that the perpendicular focal chords of a rectangular hyperbola are equal.
Proof:
1 1 1
+ = [2 - 2] = 0
PP ' QQ ' 2l
1 1
\ =-
PP ' QQ '
3. PSP', QSQ' are two focal chords of a conic cutting each other at right angles.
1 1
Prove that + = a constant
SP.SP ' SQ.SQ '
Solution : Let PSP' and QSQ' be two focal chords of the conic
l
= 1 + e cos q ---(1)
r
Let the vectorial angle of P be α
p æ 3p ö
\ Q is + a , P ' is p + a , Q ' is ç +a÷
2 è 2 ø
æ p ö
The points P ( SP, a ) Qç SQ, + a ÷,
è 2 ø
æ 3p ö
P ' ( SP ' , p + a ) Q ' ç SQ ' , +a ÷ ---(1) lie on
è 2 ø
l
\ = 1 + e cos a ;
SP
l æp ö
= 1 + e cosç + a ÷ = 1 - e sin a
SQ è2 ø
125
This watermark does not appear in the registered version - http://www.clicktoconvert.com
l
= 1 + e cos(p + a ) = 1 - e cos a
SP'
l æ 3p ö
= 1 + e cosç + a ÷ = 1 + e sin a
SQ' è 2 ø
l 1 + e cos a l 1 - e cos a
\ = ; =
SP l SP ' l
1
= 2
(1 - e 2 cos 2 a ) ---(2)
l
l l 1 - e sin a 1 + e sin a
. = ´
SQ SQ ' l l
1
= [(1 - e sin a )(1 + e sin a )]
l2
1
= 2
(1 - e 2 sin 2 a )
l
(2) + (3) gives
l l l l 1 - e 2 cos 2 a 1 - e 2 sin 2 a
. + . = +
SP SP' SQ SQ' l2 l2
1
= 2
[2 - e 2 (cos 2 a + sin 2 a ]
l
1
= 2
(2 - e 2 )
l
= a constant.
10.7. References
126
This watermark does not appear in the registered version - http://www.clicktoconvert.com
Unit IV
Lesson – 11
Analytical Geometry of Three Dimensions
Contents
11.0 Aims and Objectives
11.1 Coplanar lines
11.2 Examples Model 1
11.3. Shortest distance between two lines.
11.4 Examples model I
11.5 Let us sum up
11.6 Check your progress
11.7 Lesson-End activities
11.8 Points for Discussion
11.9 References
Results:
1) The distance between two points A(x1 ,y1 ,z1 ) and B(x2 ,y2 ,z2 ) is
AB = ( x 2 - x1 ) 2 + ( y 2 - y1 ) 2 + ( z 2 - z1 ) 2
2) If a straight line makes angles a , b , g with the coordinate axes, then the direction
cosines of the line are defined as cos a , cos b , cos g . These are denoted by l , m, n .
Note that l 2 + m 2 + n 2 = 1.
x y z
3) If OP = xi + y j + z k , then the direction cosines of OP are , ,
OP OP OP
4) A set of numbers a,b,c which are proportional to he direction cosines l,m,n of a line are
called the direction ratios of that line.
127
This watermark does not appear in the registered version - http://www.clicktoconvert.com
If a,b,c are direction ratios of a line then the direction cosines of that line are
a b c
l= ,m = ,n =
a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2
5) The equation of a straight line passing through a point (x1 ,y1 ,z1 )having direction ratios
x - x1 y - y1 z - z1
l,m,n is = =
l m n
6) Equations of straight line passing through the points A(x1 ,y1 ,z1 ) and B(x2 ,y2 ,z2 ) is
x - x1 y - y1 z - z1
= =
x 2 - x1 y 2 - y1 z 2 - z 1
7) The direction ratios of the straight line joining the points A(x1 ,y1 ,z1 ) and B(x2 ,y2 ,z2 ) are
x 2 - x1 , y 2 - y1 , z 2 - z1
x - x1 y - y1 z - z1 x - x1 y - y1 z - z1
8) The condition for the lines = = and = = to be
l1 m1 n1 l2 m2 n2
l1 m1 n1
perpendicular is l1l 2 + m1 m 2 + n1 n 2 = 0 and to be parallel is = =
l 2 m2 n2
9) If a point P divides the line joining the points A(x1 ,y1 ,z1 ) and B(x2 ,y2 ,z2 ) internally in
æ mx + nx1 my 2 + yn1 mz 2 + nz1 ö
the ratio m:n, then P is given by Pç 2 , , ÷
è m+n m+n m+n ø
10) If the point P divides AB externally where A(x1 ,y1 ,z1 ) and B(x2 ,y2 ,z2 ), then
æ mx - nx1 my 2 - yn1 mz 2 - nz1 ö
P=ç 2 , , ÷
è m-n m-n m-n ø
11) Two planes intersect on a straight line. The general equation of a plane is of the form
ax+by+cz+d=0. a,b,c are called the direction rations of the normal to this plane.
12) Equation of any plane passing through the point (x1 ,y1 ,z1 ) is a(x- x1 ) + b(y-y1 ) + c(z-
z1 ) = 0.
13) Angle between two planes is defined as angle between their normals.
Let the equations of two planes be
a1 x+b1 y+c1 z+d1 =0 and a2 x+b2 y+c2 z+d2 =0
a). Then the angle between them is
128
This watermark does not appear in the registered version - http://www.clicktoconvert.com
a1 a 2 + b1b2 + c1 c 2
cos q =
2 2 2 2 2 2
a1 + b1 + c1 a 2 + b2 + c 2
a1 b1 c1
b) The condition for these planes to be parallel is = =
a 2 b2 c 2
x - x1 y - y1 z - z1
14) Equation of the plane containing the line = = = 0 is
l m n
a ( x - x1 ) + b( y - y1 ) + c( z - z1 ) = 0
Where al+bm+cn = 0.
15) Consider equations of the plane and the line as ax+by+cz+d=0 ---(1) and
x - x1 y - y1 z - z1
= = ---(2)
l m n
The condition for the plane and line to be parallel is al+bm+cn = 0 and to be
a b c
perpendicular is = =
l m n
16) The length of perpendicular from the point (x1 ,y1 ,z1 ) to the plane ax+by+cz+d=0 ---
(1) is
d
a) The length of perpendicular from the origin to the plane (1) is
a2 + b2 + c2
b) The distance between the parallel planes ax+by+cz+d=0 and ax+by+cz+d1 =0
d - d1
is
a2 + b2 + c2
11.1 Coplanar lines
1. Symmetrical form of straight line
x - x1 y - y1 z - z1
The equation of the line = = is called they symmetrical
l m n
form of a straight line.
129
This watermark does not appear in the registered version - http://www.clicktoconvert.com
2. Since two planes intersect in a straight line, its equation can be put in the form
ax+by+cz+d=0 = a1 x+b1 y+c1 z+d1 =0
This is called non – symmetrical form of a straight line.
4 -6 5 4
l m n
= =
12 - 4 5 + 18 12 + 10
l m n
= =
8 23 22
Then the direction cosines of the line are proportional to 8,23,22 (which are nothing but
d.r’s)
Step 2: To find any point on the line (1).
Let the line (1) meet xy plane
\ put z = 0 in (1)
\ 3x-2y-1 = 0,
5x+4y-2 = 0
\ By rule of cross multiplication
x y 1
-2 -1 3 -2
4 -2 5 4
130
This watermark does not appear in the registered version - http://www.clicktoconvert.com
x y 1
= =
4 + 4 - 1 + 6 12 + 10
x y 1
= =
8 5 22
8 5
\ x= , y=
22 22
æ 8 5 ö
ç , , 0÷
ç 22 22 ÷
\ Any point on the lines ç ÷
çx, y1 , z1 ÷÷
ç 1
è ø
\ Equation of the line in symmetrical form is
8 5
x- y-
22 = 22 = z
8 23 - 22
2) Prove that the lines
3 x - 4 y + 2 z = 0 = -4 x + y + 3 z ----(1) and
x + 3 y - 5z + 9 = 0 = 7 x - 5 y - z + 7 ----(2) are parallel
Solution step 1:
Let l,m,n be the direction ratios of the line (1)
\ 3l - 4m + 2n = 0,
-4l + m + 3n = 0
\ By rule of cross multiplication
l m n
-4 2 3 -4
1 3 -4 1
l m n
= =
- 12 - 2 - 8 - 9 3 - 16
l m n l m n
= = or = =
- 14 - 17 - 13 14 17 13
\ The d.cs’ of line (1) are proportional to
131
This watermark does not appear in the registered version - http://www.clicktoconvert.com
-5 -1 7 -5
l m n
= =
- 3 - 25 - 35 + 1 - 5 - 21
l m n l m n
= = or = =
- 28 - 34 - 26 14 17 13
\ The d.cs’ of line (2) are proportional to
+14 , +17, +13
a2 b2 c2
a1 b1 c1
\ = =
a 2 b2 c 2
\ The lines (1) and (2) are parallel
3) Prove that the lines
2 x + y + 3z - 7 = 0 = x - 2 y + z - 5 and
4 x + 4 y - 8 z = 0 = 10 x - 8 y + 7 z are at right angles.
Solution: Proceed as before in example (2), check a1 a 2 + b1b2 + c1 c 2 = 0 for right angles
(ie. Perpendicular)
Condition for Two straight lines to be coplanar consider two straight lines
x - x1 y - y1 z - z1
= = ----(1) and
l1 m1 n1
x - x1 y - y1 z - z1
= = ----(2)
l2 m2 n2
Equation of the plane through the line (1) is
A( x - x1 ) + B( y - y1 ) + C ( z - z1 ) = 0 ----(3)
132
This watermark does not appear in the registered version - http://www.clicktoconvert.com
\ Put x= x2 , y = y2 , z = z2 in (3)
A( x 2 - x1 ) + B( y 2 - y1 ) + C ( z 2 - z1 ) = 0 ----(4)
Also the line (2) is perpendicular to the normal to the plane (3)
Al 2 + Bm 2 + Cn 2 = 0
Where A( x 2 - x1 ) + B( y 2 - y1 ) + C ( z 2 - z1 ) = 0
Al + Bm + Cn = 0
Al1 + Bm1 + Cn1 = 0
Eliminate A,B,C between the above, we get
x 2 - x1 y 2 - y1 z 2 - z1
l1 m1 n1 = 0
l2 m2 n2
133
This watermark does not appear in the registered version - http://www.clicktoconvert.com
x +1 y +1 z +1
Let L2 : = = = r2
4 5 -1
x +1 y +1 z +1
= r2 = r2 = r2
4 5 -1
x + 1 = 4r2 ; y + 1 = 5r2 ; z + 1 = -r2
x = 4r2 - 1; y = 5r2 - 1; z = -r2 - 1
\ Any point on L2 is (4r2 - 1, 5r2 - 1, - r2 - 1) ----(B)
If the lines L1 and L2 are coplanar, then A and B represent the same point.
2r1 - 3 = 4r2 - 1; 3r1 - 5 = 5r2 - 1; -3r1 + 7 = -r2 - 1
Step 2: To find the point of intersection Put r2 =1 in (B), the point of intersection is (3,4,-
2)
Step 3: Equation of the plane containing them is
x+3 y+5 z-7
2 3 -3 =0
5 -1
134
This watermark does not appear in the registered version - http://www.clicktoconvert.com
¸ 2;
6x-5y- z=0
Model 2: Given a symmetrical form of a line and a non-symmetrical form of a line.
x +1 y +1 z +1
Prove that the lines = = and x + 2 y + 3 z - 8 = 0 = 2 x + 3 y + 4 z + 1
1 2 3
intersect and find their point of intersection. Find also the equation of the plane
containing them.
x +1 y +1 z +1
Solution: L1 : = = ---(1)
1 2 3
L2 : x + 2 y + 3z - 8 = 0 = 2 x + 3 y + 4 z - 11 ---(2)
Equation of any plane through the line (2) is
x + 2 y + 3 z - 8 + l ( 2 x + 3 y + 4 z - 11) = 0 ---(3)
L1 passes through (-1, -1, -1)
L1 lies on the plane (3) if (-1, -1, -1) lies on (3)
If ( -1-2-3-8) + l (-2-3-4-11) = 0
-7
Þl =
10
-7
Using l = in (3)
10
7
x + 2 y + 3z - 8 - (2 x + 3 y + 4 z - 11) = 0
10
Simplifying we get the equation of the plane (3) is
4x+y-2z-3=0 ---(4)
The d.r’s of the normal to this plane
4, 1, -2
a b c
The d.r’s of the line L1 : 1, 2, 3
l m n
\ al + bm + cn = 4 + 2 - 6 = 0
\ The line L1 lies in the plane (4)
135
This watermark does not appear in the registered version - http://www.clicktoconvert.com
r1 - 1 + 4r1 - 2 + 9r1 - 3 - 8 = 0
14r1 - 14 = 0
r1 = 1
Put r1 = 1 in (A), the point of intersection is (o,1,2).
Model 3: Two straight lines are given in non-symmetrical form prove that the straight
lines.
x + y + z - 3 = 0 = 2x + 3y + 4z - 5 = 0 ---(1) and
4x - y + 5z - 7 = 0 = 2x - 5 y - z - 3 ---(2) are coplanar. Find the point of
intersection and find the equation of the plane containing them.
Solution : Reduce the line (1) to symmetrical form and proved as in model 2.
Ans:
a) They are coplanar
b) Point of intersection is (4, -1, 0)
c) Equation of the plane containing them is x+2y+3z-2-0.
136
This watermark does not appear in the registered version - http://www.clicktoconvert.com
Definition 2: If two straight lines are skew, then there will be one and only are
perpendicular common to both the straight lines , then this common perpendicular is
known as the shortest distance between the two lines.
11.3.1. Find the short distance between the skew lines and find also find
its equation.
x - x1 y - y1 z - z1
L1 : = = and
l1 m1 n1
x - x1 y - y1 z - z1
L2 : = =
l2 m2 n2
Let AB and CD represent the two lines L1 and L2 respectively.
137
This watermark does not appear in the registered version - http://www.clicktoconvert.com
al 2 + bm 2 + cn 2 = 0
a b c
m1 n1 l1 m1
m2 n2 l2 m2
a b c
= =
m1 n 2 - m 2 n1 m1l 2 - l1 n 2 l1 m 2 - l 2 m1
\ Using in (1)
(m1 n 2 - m 2 n1 )( x - x1 ) + (m1l 2 - l1 n 2 )( y - y1 ) + (l1 m 2 - l 2 m1 )( z - z1 ) = 0
The SD = Perpendicular from the point B (x2 ,y2 ,z2 ) on the plane (4)
x 2 - x1 y 2 - y1 z 2 - z1
l1 m1 n1
l2 m2 n2
\ SD =
å (m n 1 2 - m 2 n1 ) 2
138
This watermark does not appear in the registered version - http://www.clicktoconvert.com
-2 -4 3 -2
l m n
= =
- 4 - 2 - 3 - 12 6 - 3
l m n
= =
- 6 - 15 - 3
l m n
or = =
-2 -5 1
139
This watermark does not appear in the registered version - http://www.clicktoconvert.com
x1 y1 z1
L1 passes through
(3, 8, 3)
(-3, - 7, 6)
L1 passes through
x2 y2 z2
-2 5 1
= (-6) - (-7 - 8) + (6 - 3)
30 30 30
12 75 3
= + +
30 30 30
90
=
30
3 ´ 30
SD = = 3 30
30
Step 2: To find the equation of GH
The equation of SD is
x - x1 y - y1 z - z1 x - x2 y - y2 z - z2
l1 m1 n1 = 0 = l1 m1 n1 = 0
l m n l m n
4 x - 5 y + 17 z - 23 = 0 = 18 x - 11 y - 19 z + 91
Model 2: Find the SD between their lines
x-5 y-6 z -9
L1 : = =
3 -4 1
L2 : 2x - 2 y + z - 3 = 0 = 2x - y + 2z - 9
140
This watermark does not appear in the registered version - http://www.clicktoconvert.com
\ 3( 2 + 2l ) + 4( 2 + l ) + 1 + 2l = 0
6 + 6l + 8 + 4l + 1 + 2l = 0
12l + 15 = 0
12l = -15
-5
l=
4
Using (1), the equation of the plane is 2x+3y+6z-33=0
141
This watermark does not appear in the registered version - http://www.clicktoconvert.com
æ5 5 ö
of intersection is ç , ,-7 ÷ and the equation of the plane containing them is
è3 3 ø
2x+y+z+2=0/
142
This watermark does not appear in the registered version - http://www.clicktoconvert.com
11.9. References
Analytical Geometry of Three
Dimensions by N.P Bali
143
This watermark does not appear in the registered version - http://www.clicktoconvert.com
Lesson-12
Contents
12.0 Aim and Objectives
12.1 Sphere
12.2 Examples
12.3 Tangent plane
12.4 Examples
12.5 Let us sum up
12.6 Check your progress
12.7 Lesson-End activities
12.8 Points for Discussion
12.9 References
P(x,y,z)
C (a,b,c)
Let C (a,b,c) be the centre. Let P(x,y,z) be any point on the sphere
Given CP = r
\ ( x - a ) 2 + ( y - b) 2 + ( z - c ) 2 = r
144
This watermark does not appear in the registered version - http://www.clicktoconvert.com
( x - a ) 2 + ( y - b) 2 + ( z - c ) 2 = r 2
Cor: If the centre is at the origin (0,0,0) then equation of the sphere is x2 +y2 +z2 =r2
2. Prove that the equation x2 +y2 +z2 +2ux+2vy+2wz+d=0 represents a sphere. Hence find
its centre and radius.
Solution: The given equation is
x2 +y2 +z2 +2ux+2vy+2wz+d=0
adding u2 +v2 +w2 to both sides.
(x2 +2ux+u2 )+(y2 +2vy+v2 )+(z2 +2wz+w2 )+d = u2 +v2 +w2
( x + u ) 2 + ( y + v) 2 + ( z + w) 2 = u 2 + v 2 + w 2 - d
\ The given equation represents sphere whose centre is at (-u, -v, -w) and
r = u 2 + v 2 + w2 - d .
Problems 1: Find the radius and the centre of the sphere
x 2 + y 2 + z 2 - 6 x - 2 y - 4 z - 11 = 0
2u = -6 2v = -2 2 w = -4
\ d = -11
u = -3 v = -1 w = -2
\ Centre = (-u, - v, -w) = (3,1,2)
r = u 2 + v 2 + w2 - d
= 9 + 1 + 4 + 11
= 25
r = 5 unit.
145
This watermark does not appear in the registered version - http://www.clicktoconvert.com
5
x 2 + y 2 + z 2 - x + 2 y - 3z + =0
2
5
2u = -1; 2v = 2; 2 w = -3; d=
2
-1 -3
u= ; v = 1; w=
2 2
\ Centre = (-u, - v, -w)
æ1 3ö
= ç ,-1, ÷
è2 2ø
r = u 2 + v 2 + w2 - d
1 9 5
= +1+ -
4 4 2
5 5
= +1-
2 2
r = 1 unit.
1. Find the equation of the sphere passing through the points (2,3,1), (5,-1,2) (4,3,-1) and
(2,5,3)
Solution: Let the equation of the sphere be
x 2 + y 2 + z 2 + 2ux + 2vy + 2 wz + d = 0 ---(1)
(1) Passes through the point (2,3,1)
4+9+1+4u+6v+2w+d=0
4u+6v+2w+d=-14 ---(2)
(1) Passes through the point (5,-1,2)
146
This watermark does not appear in the registered version - http://www.clicktoconvert.com
25+1+4+10u-2v+4w+d=0
10u-2v+4w+d=-30 ---(3)
(1) Passes through the point (4,3,-1)
16+9+1+8u+6v-2w+d=0
8u+6v-2w+d=-26 ---(4)
Sub -6u + 8v – 2w = 16
¸ 2;
-3u + 4v – w = 8 ---(6)
(3) – (4) gives
10u – 2v + 4w + d = -30
8u + 6v – 2w + d = -26
Sub 2u – 8v + 6w = -4
¸ 2;
u – 4v + 3w = -2 ---(7)
(4) – (5) gives
8u + 6v – 2w + d = -26
4u + 10v + 6w + d = -38
Sub 4u – 4v – 8w = 8
¸ 4;
or u – v – 2w = 2 ---(8)
147
This watermark does not appear in the registered version - http://www.clicktoconvert.com
-3u + 4v – w = 8 ---(6)
u – 4v + 3w =-2 ---(7)
u – v – 2w = 2 ---(8)
-3u + 4v – w = 8
u – 4v + 3w = -2
Add - 2u + 2w = 6
-u + w = 3 ---(9)
(7) is u – 4v + 3w = -2
(8) x 4 ; 4u - 4v - 8w = 8
3 x (9) -3u + 3w = -9
-3u + 11w = -10
Sub -8w = 19
- 19
w=
8
Using in (9)
19
-u - =3
8
19 5
-u = -3=-
8 8
5
u=
8
148
This watermark does not appear in the registered version - http://www.clicktoconvert.com
5 - 19 27
Put u = , w= in (8) , v =
8 8 8
Substitute the values of u, v, w in (4)
d = - 56
using in (1)
10 54 38
x2 + y2 + z2 + x+ y+ z - 56 = 0
8 8 8
8( x 2 + y 2 + z 2 ) + 10 x + 54 y + 38 z - 448 = 0
2. Find the equation of the sphere passing through the points (1,3,4), (1,-5,2), (1, -3, 0)
and having its centre on the plane x + y + z = 0.
149
This watermark does not appear in the registered version - http://www.clicktoconvert.com
x + y – z – 1 = 0 = 2x – y + z – 2
Proof: Let the equation of the sphere be
\ u + v - w =1 or 2u - v + w + 2 = 0 ---(5)
P(x,y,z)
A B
Let P(x,y,z) be any point on the sphere join AP,PB, APB = 900
The d.r’s of AP are x - x1 , y - y1 , z - z1
The d.r’s of BP x - x 2 , y - y 2 , z - z 2
150
This watermark does not appear in the registered version - http://www.clicktoconvert.com
\ AP perpendicular PB
( x - x1 ), ( x - x 2 ) + ( y - y 2 )( y - y 2 ) + ( z - z1 )( z - z 2 ) = 0
Which is the required equation of the sphere.
Problems (1) Find the equation of the sphere described on the line joining the points
A(4,6,8) and B(-1,3,7) as diameter
x 2 + y 2 + z 2 - 3 x - 9 y - 15 z + 70 = 0
12.3 Tangent plane
The locus of all tangent lines drawn to a sphere at a point is called the tangent plane.
12.4.Examples: Find the condition for the plane lx+my+nz = p to be tangent plane to the
sphere x 2 + y 2 + z 2 + 2ux + 2vy + 2 wz + d = 0
Proof:
lx+my+nz=p
c (-u,-v,-w)
151
This watermark does not appear in the registered version - http://www.clicktoconvert.com
(lu + mv + nw + p )
=±
l 2 + m2 + n2
If the plane lx+my+nz = p is a tangent plane to the sphere,
Then r = p
(lu + mv + nw + p )
u 2 + v 2 + w2 - d = ±
l 2 + m2 + n2
u 2 + v 2 + w 2 - d l 2 + m 2 + n 2 = ±(lu + mv + nw + p )
ì x - x1 = lr ; y - y1 = mr; z - z1 = nr - 1;ü
í ý
î x = x1 + lr y = y1 + mr; z = z1 + nr þ
\ r 2 (l 2 + m 2 + n 2 ) + 2r [l ( x1 + n) + m( y1 + r ) + n( z1 l + w)] = 0
152
This watermark does not appear in the registered version - http://www.clicktoconvert.com
This is a quadratic in ‘r’, since the line is a tangent line to the sphere then
( x - x1 )( x1 + u ) + ( y - y1 )( y1 + v) + ( z - z1 )( z1 + w) = 0
x( x1 + n) - x1 ( x1 + n) + y ( y1 + v) - y1 ( y1 + v) + z ( z1 + w) - z1 ( z1 + w) = 0
2 2 2
xx1 + ux - x1 - ux1 + y1 y + vy - y1 - vy1 + zz1 + wz - z1 - z1 w = 0
2 2 2
xx1 + yy1 + zz1 + ux + vy + wz = x1 + y1 + z1 + ux1 + vy1 + wz 1 = 0
π
H
P
C
\ CP 2 = CN 2 - NP 2
NP 2 = CP 2 - CN 2
= r2 - p2 where CN = P
153
This watermark does not appear in the registered version - http://www.clicktoconvert.com
\ NP = r 2 - p 2 = a constant
Note:
1) If S=0, P=0 represent the equation of a sphere and the plane respectively, then the
equation of the circle is S=0, P=0
2) If the plane π passes through the centre of the sphere, then the circle is called a
great circle.
3) Equation of any sphere passing through the circle S=0, P=0 is
S + lP = 0 where l is a constant to be determined.
r = u 2 + v 2 + w2 - d
= 0 + 1 + 4 + 11 = 16 = 4
r=4
p = The length of perpendicular distance from the centre (0,1,2) of the sphere to the plane
x+2y+2z-15=0,
(0 + 2 + 4 - 15) (-9)
=± =±
1+ 4 + 4 9
(-9)
=±
3
p=3
154
This watermark does not appear in the registered version - http://www.clicktoconvert.com
= r2 - p2
= 4 2 - 32
= 16 - 9
= 7
Step 2: To find the centre of the circle.
The equation of the plane is
x+2y+2z=15
The d.r’s of the normal are 1,2,2
l , m, n
\ The d.r’s of CN are 1, 2, 2
The line CN passes through ( 0, 1, 2 )
x1, y1, z1
x - x1 y - y1 z - z1
\ Equation of CN is = =
l m n
x - 0 y -1 z - 2
\ = = = R (say)
1 2 2
Any point on this line is (R, 2R+1, 2R+2) ---(A)
Let this be the point N.
If this point lies on the plane
x+2y+2z=15, then
R+2(2R+1)+2(2R+2)-15=0
R+4R+2+4R+4-15=0
9R-9=0
9R=9
R=1
Put R = 1 in (A)
The centre if the circle is (1, 3, 4)
2. Find the equation of the sphere for which the circle
x 2 + y 2 + z 2 + 7 y - 2 z + 2 = 0, 2 x + 3 y + 4 z = 8
155
This watermark does not appear in the registered version - http://www.clicktoconvert.com
Solution : S = x 2 + y 2 + z 2 + 7 y - 2 z + 2 = 0
P = 2x + 3y + 4z - 8 = 0
Equation of any sphere through the circle
S=0, P = 0 is S + lP = 0
x 2 + y 2 + z 2 + 7 y - 2 z + 2 + l ( 2 x + 3 y + 4 z - 8) = 0 ---(1)
x 2 + y 2 + z 2 + 2lx + y (7 + 3l ) + z (4l - 2) + 2 - 8l = 0
æ - (7 + 3l ) - (4l - 2) ö
Centre = ç - l , , ÷
è 2 2 ø
This lies on the plane 2x+3y+4z-8=0
1 1
\ Put n = -l ; y = - (7 + 3l ) : z = - (4l - 2)
2 2
3 1
\ -2l - (7 + 3l ) - 4. ( 4l - 2) - 8 = 0
2 2
- 4l - 3(7 + 3l ) - 4.( 4l - 2) - 16 = 0
- 4l - 21 - 9l - 16l + 8 - 16 = 0
- 29l - 29 = 0
\ l = -1
Put l = -1 in (1)
x 2 + y 2 + z 2 + 7 y - 2 z + 2 - 1( 2 x + 3 y + 4 z - 8) = 0
x 2 + y 2 + z 2 + 7 y - 2z + 2 - 2x - 3y - 4z + 8 = 0
x 2 + y 2 + z 2 - 2 x + 4 y - 6 z + 10 = 0
3. Prove that the circles
x 2 + y 2 + z 2 - 2 x + 3 y + 4 z - 5 = 0, 5 y + 6 z + 1 = 0
x 2 + y 2 + z 2 - 3 x - 4 y + 5 z - 6 = 0, x + 2 y - 7 z = 0
lie on the same sphere. Find its equation?
Step 1: Equation of the sphere through the first circle
x 2 + y 2 + z 2 - 2 x + 3 y + 4 z - 5 + l ( 5 y + 6 z + 1) = 0
x 2 + y 2 + z 2 - 2 x + 3 y + 4 z - 5 + 5ly + 6lz + l = 0
156
This watermark does not appear in the registered version - http://www.clicktoconvert.com
x 2 + y 2 + z 2 - 2 x + y (3 + 5l ) + z (4 + 6l ) - 5 + l = 0 ---(1)
Equation of the sphere through the second circle is
x 2 + y 2 + z 2 - 3x - 4 y + 5 z - 6 + m ( x + 2 y - 7 z ) = 0
x 2 + y 2 + z 2 - 3 x - 4 y + 5 z - 6 + mx + 2 my - 7 mz = 0
x 2 + y 2 + z 2 + x( m - 3) + y (2 m - 4) + z (5 - 7 m ) - 6 = 0 ---(2)
The two circles lie on the same sphere if (1) and (2) represent the same sphere
-2 3 + 5l 4 + 6l -5+l
\ = = =
m -3 2m - 4 5 - 7m -6
(i ) (ii ) (iii ) (iv)
From (i) and (ii),
- 4 m + 8 = ( m - 3)(3 + 5l )
- 4 m + 8 = 3m + 5lm - 9 - 15l
\ - 15l + 7 m + 5lm - 17 = 0 ---(3)
From (i) and (ii)
-2 -5+l
=
m -3 -6
12 = ( -5 + l )( m - 3)
12 = -5m + 15 + lm - 3l
\ 3l + 5m - lm - 3 = 0 ---(4)
- 15l + 7 m + 5lm - 17 = 0
(4) x 5: 15l + 25 m - 5lm - 15 = 0
Add 32 m - 32 = 0
32 m = 32
m =1
Put m = 1 in (i) and (ii)
- 2 3 + 5l
=
-2 2-4
- 2 = 3 + 5l
157
This watermark does not appear in the registered version - http://www.clicktoconvert.com
5l = -5
l = -1
4 + 6l 4-6 -2
= = =1
5 - 7m 5-7 -2
\ The two circles lie on the same sphere
To find its equation
Step 2: Put m = 1 in (2)
x 2 + y 2 + z 2 - 2x - 2 y - 2z - 6 = 0
4. Find the equation of the tangent plane to the sphere
x 2 + y 2 + z 2 + 6 x - 2 y - 4 z = 35 at the point (3,4,4)
Solution:
2x = 6 2v = -2 2 w = -4
u =3 v = -1 w = -2
r = 4 +1+ 9 - 5 = 9 = 3
\ P = the length perpendicular from (2,1,3) on the plane x+4y+8z+R=0
2 + 4 + 24 + R
=
1 + 16 + 64
158
This watermark does not appear in the registered version - http://www.clicktoconvert.com
(30 + R )
=± = 3 (radius)
9
= ±(30 + R) = 27 -(30 + R) = 27
30 + R = 27 30 + R = -27
R = -3 R = -57
Using in (1) the equations of tangent planes are x + 4 y + 8 z - 3 = 0 and
x + 4 y + 8 z - 57 = 0
Step 2: To find the point of contact
Let P be the point of contact of the plane and the sphere
159
This watermark does not appear in the registered version - http://www.clicktoconvert.com
æ 7 7 17 ö
=ç , , ÷
è3 3 3 ø
Step 3: The other tangent plane is x+4y+8z-3=0
To find the point of contact.
l2 9l 2
r= + l2 + + 3l + 5
4 4
14l 2
= + 3l + 5
4
14l 2 + 12l + 20
=
4
160
This watermark does not appear in the registered version - http://www.clicktoconvert.com
æ-l - 3l ö
P = Perpendicular from ç , - l, ÷ to the plane 4x+3y-15=0
è 2 2 ø
æ l ö
ç - 4 ´ - 3l - 15 ÷
è 2 ø
=±
16 + 9
=±
(- 2l - 3l - 15)
5
=±
(- 5l - 15)
5
r=p
14l 2 + 12l + 20
= ±(l + 3)
4
2 4
On simplification l = -
1 5
Using in (1) the equations of the spheres are x 2 + y 2 + z 2 + 2 x + 4 y + 6 z - 11 = 0 and
5 x 2 + 5 y 2 + 5 z 2 - 4 x - 8 y - 12 z - 13 = 0
161
This watermark does not appear in the registered version - http://www.clicktoconvert.com
47 æ 4 5ö
r= ; C = ç - 2, , ÷
3 è 3 3ø
2. Find the equation of the sphere through the points (1,1,1) (1,2,1), (1,1,2) and (2,1,1)
Ans: x 2 + y 2 + z 2 - 3x - 3 y - 3z + 6 = 0
3. Find the equation of the sphere which passes through (0,7,7),(1,8,11), (-3,10,7) and
centre lies on the plane 2x+2y-z-7=0
Ans: x 2 + y 2 + z 2 + 2 x - 18 y - 18 z + 154 = 0
4. Find the equation of the sphere passing through the points (2,1,1) and (0,3,2) and
centre lies on the line 2 x + y + 3 z = 0 = x + 2 y + 2 z
Ans: 9( x 2 + y 2 + z 2 ) + 28 x + 7 y - 21z - 96 = 0
5. Find the equation of the sphere through the points (0,0,0) (a,0,0) (0,b,0) and (0,0,c)
Ans: x 2 + y 2 + z 2 - ax - by - cz = 0
Ans: r = 7 ; C = (2,4,2)
7. Find the equation of the sphere in which the circle
x 2 + y 2 + z 2 - 6 x + 3 y - z - 8 = 0, 2 x + 3 y - z + 6 = 0 is a great circle
Ans: x 2 + y 2 + z 2 - 4 x + 6 y + 2 z - 2 = 0
12.8. Points for discussion.
1. Show that the two circles x 2 + y 2 + z 2 - y + 2 z = 0, x - y + z - 2 = 0 and
Ans: x 2 + y 2 + z 2 - 2 x + 2 y - 4 z = 2
x 2 + y 2 + z 2 - 6 x + 4 y - 10 z = 22
162
This watermark does not appear in the registered version - http://www.clicktoconvert.com
4. Find the equation of the tangent plane at(x1 ,y1 ,z1 ) on the sphere x 2 + y 2 + z 2 = a 2
12.9. References
1. Analytical Geometry of Three Dimensions by N.P. Bali.
163
This watermark does not appear in the registered version - http://www.clicktoconvert.com
Unit V
Lesson - 13
Contents
13.0 Aims and Objectives
13.1 Cone
13.2 Examples
13.3 Enveloping cone of a sphere.
13.4 Examples
13.5 Right circular cone
13.6 Examples
13.7 Cylinder
13.8 Examples
13.9 Right circular cylinder
13.10 Examples
13.11 Let us sum up.
13.12 Check your progress
13.13 Lesson End Activities
13.14 Points for discussion
13.15 References
13.1. Cone
Definition:
A cone is a surface generated by a line through a fixed point, (the fixed point is
called the vertex of the cone) which satisfies one more condition is intersecting a given
curve or founding a given surface.
The given curve is called the base curve or the guiding curve and the variable line
is called a generator of the cone.
13.2. Examples
164
This watermark does not appear in the registered version - http://www.clicktoconvert.com
Book work 1: Find the equation of a cone with a given vertex and given base
Solution : Let the vertex of the cone be (a , b , g ) .
x -a y - b z - 0
= = ---(2)
l m n
This line meets the plane z = 0
\ Put z = 0 in (2)
x -a y - b -g
= =
l m n
x -a -g y - b -g
= ; =
l n m n
-l -m
x -a = g; y-b = g
n n
-l -m
x =a g; y=b g
n n
Using in (1)
2 2
æ l ö æ l öæ m ö æ m ö æ l ö æ m ö
ç a - r ÷ + 2hç a - r ÷ç b - r ÷ + bç b - r ÷ + 2 g ç a - r ÷ + 2 f ç b - r ÷ + c = 0
è n ø è n øè n ø è n ø è n ø è n ø
2 2
æ x -a ö æ x -a öæ y-b ö æ y-b ö
açç a - r ÷÷ + 2hçç a - r ÷÷çç b - r ÷÷ + bçç b - r ÷÷
è z -g ø è z -g øè z -g ø è z -g ø
æ x -a ö æ y-b ö
+ 2 g çç a - r ÷÷ + 2 f çç b - r ÷÷ + c = 0
è z -g ø è z -g ø
165
This watermark does not appear in the registered version - http://www.clicktoconvert.com
2) Prove that the equation of a cone with its vertex at the origin is a homogeneous
equation
Proof: Consider the equation
ax 2 + 2hxy + by 2 + 2 fyz + 2 gzx + 2hxy + 2ux + 2vy + 2 wz + d = 0 ---(1)
Let P (x1 ,y1 ,z1 ) be any point, on the cone
\ Equation of OP is
x y z
= = where (1) = (0,0,0)
x1 y1 z1
x y z
\ = = = r (say)
x1 y1 z1
x = x1 r ; y = y1 r ; z = z1 r
\ Any point on OP is (rx1 , ry1 , rz1 )
If this point lies on the cone (1)
Then
2 2
ar 2 x1 + 2hrx1 ry1 + 2br 2 y1 + 2 fr 2 y1 z1 + 2 gr 2 z1 x1 + 2hr 2 x1 y1 + 2urx1 + 2vry1 + 2 wrz 1 + d = 0
2 2
r 2 (ax1 + 2hx1 y1 + 2by1 + 2 fy1 z1 + 2 gz1 x1 + 2hx1 y1 ) + 2r (ux1 + vy1 + wz1 ) + d = 0
166
This watermark does not appear in the registered version - http://www.clicktoconvert.com
\ (2) becomes
2 2
ax1 + 2hx1 y1 + by1 + 2 fy1 z1 + 2 gz1 x1 + 2hx1 y1 = 0
Definition:
The locus of the tangent lines to a sphere drawn from a given point is a cone
called the enveloping cone of the sphere having the given point as its vertex.
13.4. Examples
167
This watermark does not appear in the registered version - http://www.clicktoconvert.com
æ mx + x1 my + y1 mz + z1 ö
ç , , ÷
è m +1 m +1 m +1 ø
If this lies on (1)
(mx + x1 ) 2 (my + y1 ) 2 (mz + z1 ) 2
Then 2
+ 2
+ 2
= a2
(m + 1) (m + 1) (m + 1)
y 2 = 4ax, Z = 0
Solution: Any line through (a , b , g ) is
x -a y - b z -g
= = (---1)
l m n
Equation of the base is y 2 = 4ax, Z = 0 (---2)
The line (1) meets the plane Z =0
\ Put Z =0 in (1)
x -a y - b -g
= =
l m n
-l -m
x -a = g; y-b = g
n n
168
This watermark does not appear in the registered version - http://www.clicktoconvert.com
-l -m
x =a g; y=b g
n n
Using in (1)
2
æ m ö æ l ö
ç b - r ÷ + 4aç a - r ÷ (---3)
è n ø è n ø
Eliminate l,m,n between (1) and (3)
2
æ y-b ö æ x -a ö
çç b - r ÷÷ + 4açç a - r ÷÷
è z -g ø è z -g ø
( bz - yg ) 2 (az - xg )
2
+ 4a
(z - r) (z - r)
\ ( bz - yg ) 2 = +4a (az - xg )( z - r )
(2 x + z - 2) 2 = x 2 + y 2 + z 2 + 2 x - 2 y - 2
\ 4 x 2 + z 2 + 4 + 4 xz - 4 z - 8 x - x 2 - y 2 - z 2 - 2 x + 2 y + 2 = 0
\ 3 x 2 - y 2 + 4 xz - 10 x + 2 y - 4 z + 6 = 0
169
This watermark does not appear in the registered version - http://www.clicktoconvert.com
A right circular cone is a surface generated by a straight line which passes through
a fixed point and makes a constant angle with a fixed line. The fixed point is called the
vertex of the cone. The constant angle is called the semi- vertical angle of the cone. The
fixed line is called the axis of the cone.
13.6. Examples
1) Standard Equation of a right circular cylinder.
M P (l , m , g )
α
P
Draw PM perpendicular to OZ in DOPM
PM
tan a =
OM
α
\ PM 2 = OM 2 tan 2 a ---(1) 0
M
But PM 2 = OP 2 - OM 2
170
This watermark does not appear in the registered version - http://www.clicktoconvert.com
= l 2 + m 2 + g 2 - q projection of OP on OZ
= l2 + m 2 + g 2 - g 2
PM 2 = l 2 + m 2
Using in (1)
l 2 + m 2 = g 2 tan 2 a
x -a y - b z -g
= = and its semivertical angle q , l , m, n being d.r’s of the axis.
l m n
Solution:
0
θ
A (a , b , g )
P (l , m , g )
l (l - a ) + m( m - b ) + n(g - g )
cos q =
l 2 + m2 + n2 (l - a )2 + (m - b )2 + (g -g)
2
171
This watermark does not appear in the registered version - http://www.clicktoconvert.com
(3) Find the equation of the right circular cone whose vertex is the point (1,1,1) the axis is
x -1 y -1 z -1
the line = = and semi vertical angle is 300
-1 2 3
Solution: Let P (l , m , g ) be any point on the cone the vertex of the cone is A(1,1,1)
\ The d.r’s of AP are l - 1, m - 1, g - 1
The d.r’s of the axis are -1,2,3
- 1(l - 1) + 2( m - 1) + 3(g - 1)
cos q =
1+ 4 + 9 (l - 1)2 + (m - 1)2 + (g - 1)
2
3 - l + 1 + 2 m - 2) + 3g - 3)
=
2 14 (l - 1) + (m - 1) + (g - 1)
2 2 2
- l + 2 m + 3g - 4
=
14 (l - 1)2 + (m - 1)2 + (g - 1)
2
\ 3 14 (l - 1)2 + (m - 1)2 + (g - 1) = (- l + 2 m + 3g - 4 )
2
[
42 (l - 1) + (m - 1) + (g - 1)
2 2 2
] = (- l + 2 m + 3g - 4 )
2
The focus of (l , m , g ) is
172
This watermark does not appear in the registered version - http://www.clicktoconvert.com
[
42 ( x - 1) + ( y - 1) + ( z - 1)
2 2 2
] = (- x + 2 y + 3 z - 4 )
2
(4) Find the condition that the general equation of the second degree may represent a
cone
Solution:
ax 2 + by 2 + cz 2 + 2 fyz + 2 gzx + 2hxy + 2ux + 2vy + 2 wz + d = 0 ---(1)
a ( x + x1 ) 2 + b( y + y1 ) 2 + c( z + z1 ) 2 + 2 f ( y + y1 )( z + z1 ) + 2 g ( z + z1 )( x + x1 )
+2h( x + x1 )( y + y1 ) + 2a ( x + x1 ) + 2v( y + y1 ) + 2 w( z + z1 ) + d = 0
This equation is referred to (x1 ,y1 ,z1 ) which is the new origin
\ ax1 + hy1 + gz1 + u = 0 ---(2)
173
This watermark does not appear in the registered version - http://www.clicktoconvert.com
a h g u
h b f v
=0
g f c w
u v w d
Which is the required condition.
(5) Prove that the equation
7 x 2 + 2 y 2 + 2 z 2 + 10 zx + 10 xy + 26 x - 2 y + 2 z - 17 = 0 represents a cone/
Proof: The given equation is of the form
ax 2 + by 2 + cz 2 + 2 fyz + 2 gzx + 2hxy + 2ux + 2vy + 2 wz + d = 0
a = 7; b = 2; c = 2; 2f =0 2 g = -10 2h = 10
f =0 g = -5 h=5
2u = 26 2v = -2 2w = 2 d = -17
u = 13 v = -1 w = -1
a h g u 7 5 - 5 13
h b f v 5 2 0 -1
=
g f c w -5 0 2 1
u v w d 13 - 1 1 - 17
2 0 -1 5 0 -1 5 2 -1 5 2 0
=7 0 2 1 - 5- 5 2 1 - 5- 5 0 1 + 13 - 5 0 2
- 1 1 - 17 13 1 - 17 13 - 1 - 17 13 - 1 1
= 0 (on simplification)
\ The given expression represents cone.
174
This watermark does not appear in the registered version - http://www.clicktoconvert.com
Method 2: To find the vertex of a cone where f(x1 ,y1 ,z1 ) as a homogenous function of
¶f ¶f ¶f ¶f
degree in variable x,y,z,t find , , , and square to zero after substituting t = 1.
¶x ¶y ¶z ¶t
Solve fx = 0, fy = 0, fz = 0, ft = 0 and t = 1, if the equations are consistent, then the given
equation represents a cone and the value of (x,y,z) denote the vertex of the cone.
(1) Prove that the equation
2 x 2 + 2 y 2 + 7 z 2 - 10 yz + 10 zx + 2 x + 2 y + 2 y + 26 z - 17 = 0 represents a cone with
vertex at (2,2,1)
Solution:
Let f(x,y,z) = 2 x 2 + 2 y 2 + 7 z 2 - 10 yz + 10 zx + 2 x + 2 y + 2 y + 26 z - 17 = 0
f (x,y,z,t) = 2 x 2 + 2 y 2 + 2 z 2 - 10 yz - 10 zx + 2 xt + 2 yt + 26 zt - 17t 2
¶f ¶f
= 4 x - 10 z + 2t ; = 4 y - 10 z + 2t ;
¶x ¶y
¶f
= 14 z - 10 y + 26t - 10 x
¶z
¶f
= 2 x + 2 y + 26 z - 34t
¶t
\ 4 x - 10 z + 2 = 0 ie 2x - 5z + 1 = 0 ---(1)
4 y - 10 z + 2 = 0 \ 2 y - 5z + 1 = 0 ---(2)
- 10 x - 10 y + 14 z + 26 = 0 ie - 5 x - 5 y + 7 z + 13 = 0 ---(3)
2 x + 2 y + 26 z - 34t = 0
\ x + y + 13 z - 17 = 0 ---(4)
175
This watermark does not appear in the registered version - http://www.clicktoconvert.com
Sub 2x – 2y = 0
\x= y ---(5)
Add -18z + 18 = 0
\ z =1
Put z = 1 in (2) 2y – 5 + 1 = 0
2y – 4 = 0
2y = 4
y=2
\x=2
Hence x = 2 , y = 2, z = 1
Using in (4)
LHS = x + y + 13z – 17
= 2 + 2 + 13 – 17
= 0 = RHS
\ Equations (1), (2), (3), (4) are consistent
\ The given equation represents a sphere with the vertex (2,2,1)
176
This watermark does not appear in the registered version - http://www.clicktoconvert.com
13.7. Cylinder
The Cylinder is the surface generated by a variable straight line which remains
parallel to a fixed straight line and satisfies one more condition, ie. It may intersect a
given curve or it may touch a given surface.
13.8. Examples
(1) To find the equation of a cylinder whose generators are parallel to the line
x y z
= = and base the conic ax 2 + by 2 + 2 fyz + 2hxy + 2 gx + 2 fy + c = 0, z = 0
l m n
Solution: The equation of the base is ax 2 + by 2 + 2 fyz + 2hxy + 2 gx + 2 fy + c = 0, z = 0
--(1)
x y z
Let (x1 ,y1 ,z1 ) be any point on the generator, which is parallel to the line = =
l m n
x - x1 y - y1 z - z1
\ Equation of the generator is = = ---(2)
l m n
This meets the plane z = 0
Put z = 1 in (2)
x - x1 y - y1 z1
\ = =
l m n
x - x1 z1 -m
\ = ; y - y1 = z1
l n n
-l m
x= z1 + x1 ; y = y1 - z1
n n
Using in (1)
2 2
æ l ö æ m ö æ l öæ m ö æ l ö æ m ö
aç x1 - z1 ÷ + bç y1 - z1 ÷ 2hç x1 - z1 ÷ç y1 - z1 ÷ + 2 g ç x1 - z1 ÷ + 2 f ç y1 - z1 ÷ + c = 0
è n ø è n ø è n øè n ø è n ø è n ø
a(nx1 - lz1 ) + b(ny1 - mz1 ) + 2h(nx1 - lz1 )(ny1 - mz1 ) + 2 gn(nx1 - lz1 ) + 2 fn(ny1 - mz1 ) + cn 2 = 0
2 2
177
This watermark does not appear in the registered version - http://www.clicktoconvert.com
y z
(1) Find the equation of a cylinder whose generators are parallel to the line x = - =
2 3
and whose guiding curve is the ellipse x 2 + 2 y 2 = 1, z = 3
(3x1 + 3 - z1 )2 + 2(3 y1 - 6 + 2 z1 )2 = 9
On simplification
The focus of (x1 ,y1 ,z1 ) is 3x 2 + 6 y 2 + 3z 2 + 8 yz - 2 zx + 6 x - 24 y - 18 z + 24 = 0
The right circular cylinder is the surface generated by a straight line which is
parallel to a fixed line and is at a constant distance from it.
The variable line is called the generator of the cylinder. The fixed line is called
the axis of the cylinder. The constant distance is called the radius of the cylinder.
178
This watermark does not appear in the registered version - http://www.clicktoconvert.com
13.10. Examples
(1) Find the equation of a right circular cylinder whose axis is the line
x -a y - b z -g
= = and where radius is R units.
l m n
P (l , m , g )
A M
(a , b , g )
x -a y - b z -g
The equation of the axis are = = ----(1)
l m n
Let P (l , m , g ) be any point on the cylinder
(l - a ) 2 + ( m - b ) 2 + (g - g ) 2 =
[l (l - a ) + m( m - b ) + n(g - g )]2
l 2 + m2 + n2
( )[ ]
\ l 2 + m 2 + n 2 (l - a ) 2 + ( m - b ) 2 + (g - g ) 2 = [l (l - a ) + m( m - b ) + n(g - g )] + R 2
2
(
= [l (l - a ) + m( m - b ) + n(g - g )] + R 2 l 2 + m 2 + n 2
2
)
[ 2 2
\ The focus of (l , m , g ) is (l - a ) + ( m - b ) + (g - g ) 2
](l 2 2
+m +n 2
)=
(
= [l (l - a ) + m( m - b ) + n(g - g )] + R 2 l 2 + m 2 + n 2
2
)
which is the required equation.
179
This watermark does not appear in the registered version - http://www.clicktoconvert.com
(1) The radius of a normal section of a right circular cylinder is 2 units, the axis lie along
x -1 y + 3 z - 2
the line = = . Find its equation
1 -1 5
Solution: The equation of the axis is
x -1 y + 3 z - 2
= =
1 -1 5
The d.r’s are 1, -1, 5
1 -1 5
\ Its d.r’s are , ,
27 27 27
M
A(1,-3,2)
AP = ( x1 - 2) 2 + ( y1 + 3) 2 + ( z1 - 2) 2
1
= [( x1 - 1) + ( y1 + 3) + ( z1 - 2)]
27
1
= [x1 + y1 + z1 ]
27
1
AM 2 = [x1 + y1 + z1 ]2
27
In DAPM , AP 2 + AM 2 + PM 2
180
This watermark does not appear in the registered version - http://www.clicktoconvert.com
1
( x1 - 1) 2 + ( y1 + 3) 2 + ( z1 - 2) 2 = (x1 + y1 + z1 )2 + 2 2
27
[ ] 2
27 ( x1 - 1) 2 + ( y1 + 3) 2 + ( z1 - 2) = ( x1 + y1 + z1 ) + 108
2
Solution:
The circle is nothing but the plane section of the sphere x 2 + y 2 + z 2 = 9 , by the plane
x- y+z =3
= ( radius of the sphere ) 2 - ( perpendicu lar dis tan ce from the centre of the sphere to the plane ) 2
= r2 - p2 ---(1)
Radius of the sphere = 3
Centre of the sphere = (0,0,0)
p = perpendicular distance from the centre (0,0,0) to the plane x – y + z -3 =0
(-3) 3 3 3
=± = = = 3
12 + 12 + 12 3 3
\ using in (1)
R = 3 2 - ( 3) 2 = 6
181
This watermark does not appear in the registered version - http://www.clicktoconvert.com
x = l , y = -l , z = l
N
A
2 2 2
AP 2 = x1 + y1 + z1
NP = 6 \ NP 2 = 6
AN = The projection of AP on AN
1
= ( x1 + y1 + z1 )
3
In DAPN ,
AP 2 = AN 2 + NP 2
2
2 2 2 é 1 ù
x1 + y1 + z1 = 6 + ê ( x1 + y1 + z1 )ú
ë 3 û
1
=6+ ( x1 + y1 + z1 ) 2
3
182
This watermark does not appear in the registered version - http://www.clicktoconvert.com
2 2 2 2 2 2
3 x1 + 3 y1 + 3 z1 = 18 + x1 + y1 + z1 + 2 x1 y1 + 2 y1 z1 + 2 z1 x1
2 2 2
2 x1 + 2 y1 + 2 z1 - 2 x1 y1 - 2 y1 z1 - 2 z1 x1 - 18 = 0
¸ 2;
2 2 2
x1 + y1 + z1 - x1 y1 - y1 z1 - z1 x1 - 9 = 0
The focus of (x1 ,y1 ,z1 ) is
x 2 + y 2 + z 2 - xy - yz - zx - 9 = 0
13.11. Let us sum up.
We have leant the different types of cone, cylinder and the dimension their
equations in different – forms.
13.12. Check your progress
(1) Find the equation of a right circular cylinder of radius 2 and which axis is x
(2) What is the general equating a give passing through the axis
13.13. Lesson End Activities
Cone:
1. Find the equation to the cone whose vertex is the origin and which passes through
the curve of intersection of
(i) ax 2 + by 2 + cz 2 = 1, lx + my + nz = p
Ans: p (ax 2 + by 2 + cz 2 ) = ( lx + my + nz ) 2
(ii) ax 2 + by 2 = 2 z; lx + my + nz = p
Ans: p (ax 2 + by 2 ) = 2 z ( lx + my + nz )
x y z
2. If = = is a generator of the cone, represented by f(x,y,z) = 0, then prove
l m n
that f(l,m,n) = 0
3. Find the equation of the cone whose vertex is the point (a , b , g ) and whose
x2 y2
generating line pass through the conic + = 1, z = 0
a2 b2
1
Ans:
2
(az - xr )2 + 12 (bz - yv )2 = ( z - v) 2
a b
4. Prove that the equation of the cone whose vertex is the point (1,1,0) and whose
generating curve y = 0, x 2 + z 2 + = 4 is x 2 + 3 y 2 + z 2 - 2 xy + 8 y - 4 = 0
183
This watermark does not appear in the registered version - http://www.clicktoconvert.com
5. Find the equation of a right circular cone whose vertex is at the origin, whose axis
x y z
is the line = = and which has a semi- vertical angle of 600
1 2 3
Ans : 19 x 2 + 13 y 2 + 3 z 2 - 24 yz - 12 zx - 8 xy = 0
6. Prove that the
equation 7 x 2 + 2 y 2 + 2 z 2 - 10 zx + 10 xy + 26 x - 2 y + 2 z - 17 = 0 represents a cone
whose vertex is at (1, -2, 2)
7. Find the equation of a right circular cone whose axis is the line x = y = z and the
generator is 2x = y = -3z ( APRIL 2004; Bharathiyar)
(Hint: To find semi vertical angle: The d.r’s of the axis are 1 , 1, 1
a1 , b1 , c1
1 -1
The d.r’s of the generator are ,1,
2 3
a2 , b2 , c2
a1 a 2 + b1b2 + c1c 2
The semi- vertical angle is given by cos q =
2 2 2 2 2 2
a1 + b1 + c1 a 2 + b2 + c 2
8. Find the general equation of the cone which touches the coordinate planes (NOV
2000, Bharathiyar)
13.14. Points for discussion
1. Find the equation of the right circular cone with vertex at the origin semi
x y z
vertical angle 300 and the line = = being the axis of the conic (April
1 2 3
2004, Bharathiar)
2. Find the equation of the cone with the vertex at (1,1,1) and base curve
x 2 + 2 y 2 = 1, z = 0 (April 2004; Bharathiar)
x y z
3. The plane + + = 1 meets the coordinates axes in A,B,C. Prove that the
a b c
equation to the cone generated by lines drawn from 0 to meet the circle ABC
æb cö
is å yzçè c + b ÷ø = 0 .
184
This watermark does not appear in the registered version - http://www.clicktoconvert.com
4. Find the equation of the cylinder whose generators are parallel to the line x =
y = z and whose guiding curve is the circle.
x 2 + y 2 + z 2 - 2 x - 3 = 0, 2 x + y + 2 z = 0
Ans: 17 x 2 + 18 y 2 + 17 z 2 - 18 zy - 16 zx - 18 yz - 40 x + 10 y + 20 z - 75 = 0
5. Find the equation of the right circular cylinder of radius 2 whose axis passes
through (1,2,3) and has direction cosines proportional to 2, -3, 6
Ans: 45 x 2 + 40 y 2 + 13 z 2 + 12 xy + 36 yz - 24 zx - 42 x - 280 y - 126 z + 294 = 0
6. Find the equation of the cylinder whose generators are parallel to the line
x y z
= = and whose guiding curve is x 2 + 2 y 2 = 1, z = 3
1 -2 3
Ans: 3 x 2 + 6 y 2 + 3 z 2 + 8 yz - 2 zx + 6 x - 24 y - 18 z + 24 = 0
7. Find the equation of the right circular cylinder of radius 3 whose axis passes
through (2,3,4) and has direction cosines proportional to (2,1,-2)
Ans: 5 x 2 + 8 y 2 + 5 z 2 - 4 xy + 4 yz + 8 xz - 40 x - 56 y - 68 z + 179 = 0
8. Find the equation of a right circular cylinder of radius 3 with axis
x + 2 y - 4 z -1
= = (April 2005, Bharathiar)
3 6 2
13.15 References
Analytical Geometry of Three Dimension by N.P. Bali
185
This watermark does not appear in the registered version - http://www.clicktoconvert.com
Lesson – 14
Contents
14.0 Aims and Objectives
14.1 Concicoids
14.2 Nature of a conicoid
14.3 Enveloping cone
14.4 Examples
14.5 Director Sphere
14.6 Examples
14.7 Let us sum up
14.8 Check your progress
14.9 Lesson End Activities
14.10 Points for discussion
14.11 References
186
This watermark does not appear in the registered version - http://www.clicktoconvert.com
Centre of the coincoid: If every chord of the conicoid passes through the origin , it is
called the centre of the coincoid central conicoid. The conic having a centre is called a
central conicoid.
187
This watermark does not appear in the registered version - http://www.clicktoconvert.com
2 2 2
\ 4( alx1 + bmy1 + cnz1 ) 2 = 4( al 2 + bm 2 + cn 2 )l (ax1 + by1 + cz1 - 1) ---(3)
Eliminate l,m,n between (2) and (3)
S = ax 2 + by 2 + cz 2 -1
a ( x1 + Rl ) + b( y1 + Rm ) + c ( z1 + Rn )2 = 1
2 2
[ 2
] [ 2
] [ 2
a x1 + 2 Rl n1 + R 2 l 2 + b y1 + 2 y1 mR + m 2 R 2 + c z1 + 2 y1 nR + n 2 R 2 = 1 ]
188
This watermark does not appear in the registered version - http://www.clicktoconvert.com
b 2 - 4ac = 0
But c = 0
\b2 = 0
b=0
The roots are equal
\ coefficient of R = 0
189
This watermark does not appear in the registered version - http://www.clicktoconvert.com
l2 m2 n2
\ a. + b. + c. =1
a2 p2 b2 p 2 c2 p2
l2 m2 n2
+ + =1
ap 2 bp 2 cp 2
1 æ l 2 m2 n2 ö
çç + + ÷÷ = 1
p2 èa b c ø
l 2 m2 n2
\ + + = p2
a b c
Which is the required condition.
æ l m nö
Cor 1: The point of contact is çç , , ÷÷
è ap bp cp ø
Cor 2: Find the equation of two tangent planes to the central conicoid
ax 2 + by 2 + cz 2 = 1 which are parallel to the plane lx+my+nz = 0
Solution: Equation of the plane parallel to the plane lx+my+nz = 0 is
lx+my+nz = P --- (1)
(1) touches the conicoid ax 2 + by 2 + cz 2 = 1
l 2 m2 n2
\ p2 = + +
a b c
l 2 m2 n2
\p=± + +
a b c
Using in (1), Equations two tangent planes are
l 2 m2 n2
lx+my+nz = ± + +
a b c
190
This watermark does not appear in the registered version - http://www.clicktoconvert.com
åll 12 = 0; å1 m = 0
1 2
2 2 2
l1 + m1 + n1 = 1 etc.
\ By eliminating 1l ,m1,n1; 12,m2,n2,; 13 ,m3,n3
Between (2), (3), (4)
1 1 1
We get x 2 + y 2 + z 2 = + +
a b c
Which is the equation of the director sphere of the conicoid ax 2 + by 2 + cz 2 = 1
14.6. Examples
1. Prove that equation of two tangent planes to the conicoid ax 2 + by 2 + cz 2 = 1 --(1)
which pass through the line u = lx + my + nz - p = 0 ,
u ' = l ' x + m' y + n' z - p ' = 0 is
191
This watermark does not appear in the registered version - http://www.clicktoconvert.com
192
This watermark does not appear in the registered version - http://www.clicktoconvert.com
193
This watermark does not appear in the registered version - http://www.clicktoconvert.com
14.11 References
Analytical Geometry of Three Dimension by N.P. Bali
194