Math Sample Paper 25
Math Sample Paper 25
Math Sample Paper 25
SAMPLE PAPER
MATHEMATICS
A Highly Simulated Practice Questions Paper
for CBSE Class XII (Term I) Examination
Instructions
1. This question paper contains three sections - A, B and C. Each section is compulsory.
2. Section - A has 20 MCQs, attempt any 16 out of 20.
3. Section - B has 20 MCQs, attempt any 16 out of 20.
4. Section - C has 10 MCQs, attempt any 8 out of 10.
5. There is no negative marking.
6. All questions carry equal marks.
Maximum Marks : 40
Roll No. Time allowed : 90 min
Section A
In this section, attempt any 16 questions out of Questions 1-20. Each question is of 1 mark weightage.
1. If A is a 3 ´ 2 matrix, B is a 3 ´ 3 matrix and C is a 2 ´ 3 matrix, then the elements in A, B
and C are respectively
(a) 6, 9, 8 (b) 6, 9, 6 (c) 9, 6, 6 (d) 6, 6, 9
dy
2. If x = a sin q and y = a cos 2 q, then is equal to
dx
(a) -2 cos q (b) 2 cos q (c) 2 sinq (d) -2 sinq
è 2 ø
2p p 4p 5p
(a) - (b) - (c) (d)
3 3 3 3
é1 -1ù 2
5. If A = ê ú , then A is
ë 0 4 û
é1 5ù é 1 -5 ù é0 16 ù é -5 1ù
(a) ê (b) ê (c) ê (d) ê
ë0 16úû ë0 16 û
ú ú
ë 1 -5 û
ú
ë 16 0û
é a bù é a - bù
6. The product ê úê is equal to
ë - b aû ë b aúû
éa2 + b2 0 ù é( a + b) 2 0ù
(a) ê ú (b) ê ú
êë 0 a + b 2 úû
2
êë( a + b)
2
0úû
éa2 + b2 0ù é a 0ù
(c) ê 2 ú (d) ê ú
êë a + b2 0úû ë0 bû
é 2 3ù
7. If A = ê ú , then which of the following is true?
ë - 4 - 6û
(a) A( adj A) ¹ | A| I (b) A( adj A) ¹ ( adj A) A
(c) A( adj A) = ( adj A) A = | A| I (d) None of these
dy
8. If x + y = 1, then at (5, 5) is equal to
dx
(a) 1 (b) 0 (c) 2 (d) - 1
1 3 -2
9. If M 11 = - 40, M 12 = - 10 and M 13 = 35 of the determinant D = 4 - 5 6 , then the
3 5 2
value of D is
(a) - 80 (b) 60 (c) 70 (d) 100
1 a bc
10. If D = 1 b ca , then the minor M 31 is
1 c ab
(a) - c ( a - b 2 )
2
(b) c ( b 2 - a 2 ) (c) c ( a 2 + b 2 ) (d) c ( a 2 - b 2 )
é 0 0 4ù
11. The matrix P = ê 0 4 0ú is a
ê ú
êë 4 0 0úû
(a) square matrix (b) diagonal matrix
(c) unit matrix (d) None of these
dy 1
12. If y = (x 2 + 1) 2 , then at x = is equal to
dx 2
5 5 2
(a) (b) 5 (c) (d)
2 4 5
Section B
In this section, attempt any 16 questions out of Questions 21-40. Each question is of 1 mark weightage.
21. If the curve ay + x 2 = 7 and x 3 = y, cut orthogonally at (1, 1), then the value of a is
(a) 1 (b) 0 (c) - 6 (d) 6
æ1 - x2 ö dy
22. If y = cos -1 ç 2
÷ , then at x = 1 is equal to
è1 + x ø dx
(a) 0 (b) 1 (c) 3 (d) - 1
28. The relation R in the set of natural numbers N defined as R = {(x, y) : y = x + 5 and x < 4}
is
(a) reflexive (b) symmetric (c) transitive (d) None of these
30. Area of the triangle whose vertices are (a , b + c), (b , c + a) and (c, a + b), is
(a) 2 sq units (b) 3 sq units (c) 0 (d) None of these
é1 1ù
31. The set of all 2 ´ 2 matrices which is commutative with the matrix ê ú with respect to
ë1 0û
matrix multiplication is
é p qù é p qù é p - q pù ép q ù
(a) ê ú (b) ê ú (c) ê (d) ê
ë r r û ë q rû ë q r úû ë q p - qúû
- 1ö æ p öö
32. The value of tan - 1 æç -1æ 1 ö
÷ + cot ç
-1æ
÷ + tan ç sin ç - ÷ø ÷ is
è 3ø è 3ø è è 2 ø
p p
(a) (b)
6 12
p p
(c) - (d)
12 3
é1 1 ù 2
33. If A = ê ú and f ( x) = 1 - x , then f ( A) is
ë 0 - 1û
é1 1ù é0 0ù é1 2 ù
(a) ê (b) ê (c) ê (d) None of these
ë0 0úû ë0 0 ú
û ë3 4û
ú
34. For the set A = {1, 2, 3}, define a relation R in the set A as follows
R = {(1, 1), (2, 2), (3, 3), (1, 3)}
Then, the ordered pair to be added to R to make it the smallest equivalence relation is
(a) (1, 3) (b) (3, 1) (c) (2, 1) (d) (1, 2)
a h g
35. If D = h b f , then the cofactor A31 is
g f c
(a) - ( hc + fg) (b) hf - bg (c) fg + hc (d) hc - fg
dy
36. If y = log(sin e x ), then is equal to
dx
(a) e x cot( e x ) (b) -e x cot( e x )
(c) e x tan( e x ) (d) None of these
37. The number of all one-one functions from set A = {1, 2, 3} to itself is
(a) 2 (b) 6 (c) 3 (d) 1
dy
38. If y = log a x + log x a + log x x + log a a, then is equal to
dx
1 log a x
(a) + x log a (b) +
x x log a
1
(c) + x log a (d) None of these
x log a
d2y -b
39. If y = ax 3 + bx 2 + cx + d, then 2
at x = is equal to
dx 3a
(a) 1 (b) 2 (c) 3 (d) 0
Section C
In this section, attempt any 8 questions. Each question is of 1 mark weightage. Questions 46-50 are based
on Case-Study.
4 - x2
41. The function f (x) = is
4x - x 3
(a) discontinuous at only one point (b) discontinuous at exactly two points
(c) discontinuous at exactly three points (d) None of these
d2y dy
44. If y = Ae mx + Be nx and 2
- ( m + n) + mny = k, then k is equal to
dx dx
(a) 1 (b) 0
(c) -1 (d) None of these
dy
45. If cos y = x cos(a + y) with cos a ¹ 1, then is equal to
dx
sin 2 ( a + y) cos 2 ( a + y)
(a) (b)
sin a sin a
2
(c) sin ( a + y) sin a (d) None of these
CASE STUDY
If feasible solution of a LPP is given as follows:
Y
60
2x + y = 80
C
50
40
30
20 B(30, 20)
10
X′ X
O 10 20 30 A 50 60
Y′
x + y = 50
49. Z| ( 20 , 20 ) - Z| ( 10 , 10 ) is
(a) 200000 (b) 195000
(c) 205000 (d) 190000
SOLUTIONS
1. The number of elements in m ´ n matrix is 8. Given, x + y = 1
equal to mn. Now, Differentiating both sides w.r.t. x, we get
2. Given, x = a sinq 1 1 dy dy y
dx + =0 Þ =-
\ = a cos q 2 x 2 y dx dx x
dq
y = a cos 2 q æ dy ö
and Now, ç ÷ = -1
è dx ø( 5, 5)
dy
\ = 2 a cos q ( - sin q )
dq 9. D = a11 A11 + a12 A12 + a13 A13
dy ( dy / dq ) -2 a cos q sin q
Now, = = = a11 M11 - a12 M12 + a13 M13
dx ( dx / dq ) a cos q
= -2 sinq = 1 × ( - 40 ) - 3( -10 ) + ( -2 ) (35 )
æ 1 1 ö = - 40 + 30 - 70
3. cos ç sin -1 + cos -1 ÷
è 2 2ø = - 80
æp pö æpö
= cos ç + ÷ = cos ç ÷ = 0 a bc
è4 4ø è2 ø 10. M31 = = ca2 - b2c = c( a2 - b2 )
b ca
æ 3ö
4. Let sin -1 ç - ÷ =q 11. A square matrix in which all non-diagonal
è 2 ø
elements are zero, is called a diagonal matrix
3 p p
Þ sinq = -
and - £ sin q £ and square matrix in which all diagonal
2 2 2 elements are 1 and rest are 0, is called unit
p matrix.
\ q=-
3
12. Given, y = ( x 2 + 1)2
æ 3 ö p
\ sin -1 ç - ÷=- dy d 2 d
è 2 ø 3 \ = ( x + 1)2 = 2 ( x 2 + 1) ( x 2 + 1)
dx dx dx
é 1 -1ù
5. Given, A = ê ú
ë0 4 û = 2 ( x 2 + 1)(2 x )
é 1 -1ù é 1 -1ù dy ö æ1 öæ 1ö æ5ö 5
= 2 ç + 1÷ ç2 ÷ = 2 ç ÷ =
\ A2 = A × A = ê úê ú
Now, ÷
ø
dx x = 1 è 4 ø è 2 ø è4ø 2
ë0 4 û ë0 4 û 2
é 1 + 0 -1 - 4 ù é 1 -5 ù
=ê ú=ê ú 13. Given curve is y = x 2 + x - 2
ë0 + 0 0 + 16 û ë0 16 û dy
\ = 2x +1
é a bù é a - bù é a2 + b2 - ab + baù dx
6. ê úê ú=ê 2 ú
ë - b aû ë b a û ë - ba + ab b + a û
2
æ dy ö
\ Slope of tangent at (1, 0) = ç ÷
è dx ø( 1, 0)
é a 2 + b2 0 ù
=ê ú
a + b2 û
2 = 2 (1) + 1 = 3
ë 0
Now, equation of tangent is given by
7. We know, if A is any square matrix of order n, y - 0 = 3 ( x - 1) = 3 x - 3
then A( adj A) = ( adj A) A = |A|× I
Þ 3x - y = 3
14. Let f ( x ) = ex Now, consider 0.6 Î R (codomain).
Now, on differentiating w.r.t. x. It is know that, f ( x ) = [ x ] is always an integer.
f ¢ ( x ) = ex > 0, "x Î R Thus, there does not exist any element x Î R
x
(domain) such that f ( x ) = 0.6.
So, f ( x ) = e is an increasing function.
Therefore f is not onto.
é-p pù
15. Range of sin - 1 x is ê , 21. We have, ay + x 2 = 7 and x 3 = y
ë 2 2 úû
-p p On differentiating w.r.t. x in both equations,
\ £y£ we get
2 2 dy dy
a× + 2 x = 0 and 3 x 2 =
16. Given, A is singular matrix. dx dx
\ |A| = 0 dy 2x dy
Þ =- and = 3x2
2 ( x + 1) 2x dx a dx
Þ =0 æ dy ö -2
x x -2 Þ ç ÷ = = m1
è dx ø( 1, 1) a
Þ 2 ( x + 1)( x - 2 ) - 2 x 2 = 0
æ dy ö
Þ 2 x2 - 2 x - 4 - 2 x2 = 0 and ç ÷ = 3 × 1 = 3 = m2
è dx ø( 1, 1)
Þ 2x + 4 = 0
Since, the curves cut orthogonally at (1, 1).
Þ x = -2
x \ m1 × m2 = - 1
Now, = -1 æ -2 ö
2 Þ ç ÷ ×3 = - 1
è a ø
é1 2 ù é x + 1 4ù
17. Given, A = ê ú and B = ê 6 \ a=6
ë 3 1 û ë y úû
æ 1 - x2 ö
Also, A2 = B 22. Given, y = cos -1 ç ÷
é 1 2 ù é 1 2 ù é7 4 ù è 1 + x2 ø
Now, A2 = ê úê ú=ê ú
ë3 1 û ë3 1 û ë6 7 û Let, x = tanq
Now, A = B2 Þ q = tan -1 x
é7 4 ù é x + 1 4 ù æ 1 - tan 2 q ö
Þ ê6 7 ú = ê 6 \ y = cos -1 ç ÷
ë û ë y úû è 1 + tan 2 q ø
On comparing both the matrices, we get = cos -1(cos 2 q ) = 2 q
x +1 = 7
\ y = 2 tan -1 x
Þ x = 6 and y = 7
\ y - x = 7 -6 = 1 dy 2
Now, =
18. We know, AA- 1 = I dx 1 + x 2
æ dy ö 2 2
\ |AA- 1| = |I| \ ç ÷ = = =1
è dx ø x =1 1 + 1 2
Þ |A||A- 1| = 1
1 23. Let u( x ) = sin x
Þ |A- 1| =
|A| v( x ) = |x|
\ f ( x ) = vou( x ) = v( u( x ))
é2 1ù é 4 7ù
19. Given, 2 X + ê = = v(sin x ) = |sin x|
ë3 5 úû êë 1 1úû
Q u( x ) = sin x is a continuous function and
é4 7 ù é2 1ù é 2 6ù
v( x ) = |x|is a continuous function
\ 2X = ê - =ê
ë1 1úû êë 3 5 û ë -2 -4 úû
ú
\ f ( x ) = vou( x ) is also continuous everywhere
1é 2 6ù é1 3 ù but v( x ) is not differentiable at x = 0
\ X= ê =ê
2 ë -2 -4 úû ú
ë -1 -2 û Þ f ( x ) is not differentiable where sin x = 0
Þ x = np, n Î Z
20. Range ( f ) = Integers ¹ R and [2 × 3 ] = [2 × 4 ] = 2
Hence, f ( x ) is continuous everywhere but not
Þ f is not one-one. differentiable at x = np, n Î Z.
ì k cos x p 28. R = {(1, 6 ), (2 , 7 ), (3 , 8 )}
ï , if x ¹
24. We have, f ( x ) = í p - 2 x 2
R is not reflexive as (1, 1) Ï R.
ï 3, p
if x = R is not symmetric as (2, 7) Î R but (7, 2) Ï R.
ïî 2
p Now, since there is no pair in R such that ( x , y )
f ( x ) is continuous at x = and ( y , z) Î R, then ( x , z) cannot belong to it.
2
k cos x \ R is transitive.
\ lim =3
p- p - 2x Hence, R is neither reflexive, nor symmetric
x®
2 but transitive.
æp ö 29. Given functions,
k cos ç - h ÷
è2 ø f (x) = x3 + 2 x2 - 4x + 6
Þ lim =3
h ®0 æ p ö
p - 2 ç - h÷ and f ¢ (x) = 3x2 + 4x - 4
è2 ø
Now, for maximum or minimum of f ( x ), put
k sin h
Þ lim =3 f ¢ ( x ) = 0.
h ® 0 2h
Þ 3x2 + 4x - 4 = 0
k
Þ =3Þk =6 Þ 3x2 + 6x - 2 x - 4 = 0
2
Þ ( x + 2 )(3 x - 2 ) = 0
25. Given, y = x x 2
Þ x = -2 ,
Now, Taking log on both sides, we get 3
log y = x log x Now, f ¢ ¢ (x) = 6x + 4
Now, Differentiating both sides w.r.t. x, we get At x = -2 ,
1 dy x f ¢ ¢ ( -2 ) = 6( -2 ) + 4
= + log x
y dx x = -12 + 4 = - 8 < 0
dy [maximum]
Þ = y(1 + log x )
dx So, maximum value of the function f ( x ) exists
Þ
dy
= x x (1 + log x ) at x = -2.
dx a b+c 1
log x 1
26. Let y = 30. Area of triangle, D = b c+ a 1
x 2
c a+b 1
dy 1 1 1
Þ = - 2 log x + × 1
dx x x x = [ a {( c + a) - ( a + b)} - ( b + c)( b - c)
1 2
= 2 (1 - log x ) = 0 +1{b( a + b) - c( c + a)}]
x 1
= [ a( c - b) - b + c + ba + b - c2 - ac]
2 2 2
Þ x=e 2
d 2y 1
At x = e, <0 [maxima] = [ ac - ab - b2 + c2 + ba + b2 - c2 - ac]
dx 2 2
1 1
\ y= = ´ (0 ) = 0 sq units
e 2
27. We have, y = x( x - 3 )2 é p qù
31. Let A = ê ú be a matrix which commute
dy ë r sû
\ = x × 2 ( x - 3 ) × 1 + ( x - 3 )2 × 1
dx é1 1ù
with matrix B = ê ú.
= 2 x2 - 6x + x2 + 9 - 6x ë1 0 û
= 3 x 2 - 12 x + 9
Then, AB = BA
= 3 (x2 - 3x - x + 3)
é p qù é1 1ù é1 1ù é p qù
= 3 ( x - 3 )( x - 1) Þ ê r s ú ê1 =
ë ûë 0 úû êë1 0 úû ê r sú
ë û
+ – +
1 3 é +q
p pù é p + r q + sù
Þ êr+ s =
So, y = x( x - 3 )2 decreases for (1, 3). ë r úû êë p q úû
[since, y ¢ < 0 for all x Î(1, 3 ), hence y is Here, both matrices are equal, so we equate the
decreasing on (1, 3)] corresponding elements.
\ p + q = p + r, p = q + s, r + s = p and r = q log x log a
38. Given, y = + +1+1
Þ r = q and s = p - q log a log x
ép q ù dy 1 log a
\ A= ê Þ = -
ë q p - qúû dx x log a x(log x )2
ép q ù 39. Given, y = ax 3 + bx 2 + cx + d
Hence, the required set is ê ú.
ë q p - qû \
dy
= 3 ax 2 + 2 bx + c
æ - 1ö æ p öö dx
- 1æ 1 ö - 1æ
32. tan - 1 ç ÷ + cot ç ÷ + tan ç sin ç - ÷ ÷ d 2y
è 3ø è 3ø è è 2 øø Þ = 6 ax + 2 b
-p p dx 2
= + + tan - 1( - 1) æ d 2y ö
6 3 æ -bö
Now, ç 2 ÷ = 6 a ç ÷ + 2 b = -2 b + 2 b = 0
é -1 æ - 1 ö - p - 1æ 1 ö p ù è dx ø b è 3a ø
êQ tan çè 3 ÷ø = 6 , cot çè 3 ÷ø = 3 ú x =-
3a
ê ú
ê æ- pö ú 40. Given, y = sin(cos x 2 )
êë and sin ç ÷ = -1 ú
è 2 ø û dy d
Therefore, = sin(cos x 2 )
-p p p -p dx dx
= + - = d
6 3 4 12 = cos(cos x 2 ) (cos x 2 )
dx
33. Given, f ( x ) = 1 - x 2 d
= cos(cos x )( - sin x 2 ) ( x 2 )
2
\ f ( A) = I - A2 dx
é 1 0 ù ì é 1 1 ù é 1 1 ùü = - sin x 2 cos(cos x 2 )(2 x )
\ f ( A) = ê ú - íê úê úý
ë0 1û îï ë0 -1û ë0 -1ûþ = - 2 x sin x 2 cos(cos x 2 )
é 1 0 ù é 1 0 ù é0 0 ù 4 - x2 (4 - x2 )
=ê ú-ê ú=ê ú 41. We have, f ( x ) = =
ë0 1û ë0 1û ë0 0 û 4x - x3 x (4 - x2 )
34. The given relation is (4 - x2 ) 4 - x2
= =
R = {(1, 1), (2, 2), (3, 3), (1, 3)} on the set 2
x (2 - x ) 2 x (2 + x ) (2 - x )
A = {1, 2, 3}.
Clearly, f ( x ) is discontinuous at exactly three
Clearly, R is reflexive and transitive. points x = 0 , x = - 2 and x = 2
To make R symmetric, we need (3, 1) as
42. Given, x 2 - 2 yx + y 2 + 2 x + y - 6 = 0
(1, 3) Î R.
On differentiating w.r.t. x, we get
\If (3, 1) Î R, then R will be an equivalence
relation. Hence, (3, 1) is the single ordered pair æ dy ö dy dy
2 x - 2 çy + x ÷ + 2 y + 2 + =0
which needs to be added to R to make it the è dx ø dx dx
smallest equivalence relation.
At (2, 2),
h g æ dy ö dy dy
35. A31 = ( - 1)3 + 1 M31 = = hf - bg 4 - 2 ç2 + 2 ÷ + 4 +2 + =0
b f è dx ø dx dx
36. Given, y = log(sin ex ) dy
Þ = -2
dy 1 dx
Þ = (cos ex )( ex ) Equation of tangent at (2, 2) is
dx sin( ex )
dy ( y - 2 ) = -2 ( x - 2 )
Þ = ex cot( ex )
dx Þ 2x + y = 6
37. If n( A) = x and n( B) = y, then number of 43. We have, y x = ey - x
one-one functions from A to B is given by y Px , Taking log both sides, we get
where x £ y. x log y = y - x
3 3! 3!
P3 = = Þ x (log y + 1) = y
(3 - 3 )! 0 ! y
Þ =x
= 3 ´2 ´1 = 6 [Q0 ! = 1] 1 + log y
On differentiating w.r.t. x, we get dy 1 cos 2 ( a + y )
Þ = =
æ æ1ö ö dx dx sin a
ç (1 + log y ) - ç ÷ y ÷
ç è y ø ÷ dy dy
ç (1 + log y )2 ÷ dx = 1
46. From the given graph, we can clearly see that
çç ÷÷
è ø point (10, 10) is in the feasible region or
feasible solution.
log y dy
Þ =1 Hence, option (a) is correct.
(1 + log y )2 dx
47. To know the maximum value of Z, we need
dy (1 + log y )2
Þ = coordinates of all the corner points.
dx log y
We have, equation of lines x + y = 50 …(i)
44. Given, y = A emx + B enx …(i) and 2 x + y = 80 …(ii)
On differentiating twice w.r.t. x, we get For point A, put y = 0 into Eq. (ii),
dy d d 2 x + 0 = 80 Þ x = 40 Þ A( 40 , 0 )
= Aemx ( mx ) + Benx ( nx )
dx dx dx For point C, put x = 0 into Eq. (i),
= A emx m + B enx n …(ii) 0 + y = 50 Þ y = 50 Þ C(0 , 50 )
2
d y
Þ = m2 Aemx + n2 Benx …(iii) Now,
dx 2
Using Eqs. (i), (ii) and (iii), we get Corner Z = 10500 x + 9000 y
d 2y dy Points
2
- ( m + n) + mny
dx dx O(0, 0) 10500 ´ 0 + 9000 ´ 0 = 0
= m2 Aemx + n2 Benx - ( m + n) { Amemx + nBenx } A(40, 0) 10500 ´ 40 + 9000 ´ 0 = 42000
+ mn { Aemx + Benx }
2
d y dy 10500 ´ 30 + 9000 ´ 20 = 495000
B (30, 20)
i.e. 2
- ( m + n) + mny = 0 (Maximum)
dx dx
Þ k =0 C (0, 50) 10500 ´ 0 + 9000 ´ 50 = 450000