Nothing Special   »   [go: up one dir, main page]

SPP20N60C3, SPB20N60C3 SPI20N60C3, SPA20N60C3 Cool MOS™ Power Transistor

Download as pdf or txt
Download as pdf or txt
You are on page 1of 14

SPP20N60C3, SPB20N60C3

Final data SPI20N60C3, SPA20N60C3

Cool MOS™ Power Transistor VDS @ Tjmax 650 V


Feature RDS(on) 0.19 Ω
• New revolutionary high voltage technology ID 20.7 A
• Worldwide best R DS(on) in TO 220
• Ultra low gate charge P-TO220-3-31 P-TO262-3-1 P-TO263-3-2 P-TO220-3-1

• Periodic avalanche rated


• Extreme dv/dt rated 1
2
3

• High peak current capability P-TO220-3-31

• Improved transconductance
• P-TO-220-3-31: Fully isolated package (2500 VAC; 1 minute)

Type Package Ordering Code Marking


SPP20N60C3 P-TO220-3-1 Q67040-S4398 20N60C3
SPB20N60C3 P-TO263-3-2 Q67040-S4397 20N60C3
SPI20N60C3 P-TO262-3-1 Q67040-S4550 20N60C3
SPA20N60C3 P-TO220-3-31 Q67040-S4410 20N60C3
Maximum Ratings
Parameter Symbol Value Unit
SPP_B
SPP_B_I SPA
Continuous drain current ID A
TC = 25 °C 20.7 20.7 1)
TC = 100 °C 13.1 13.1 1)
Pulsed drain current, tp limited by Tjmax ID puls 62.1 62.1 A
Avalanche energy, single pulse EAS 690 690 mJ
ID=10A, VDD=50V

Avalanche energy, repetitive tAR limited by Tjmax2) EAR 1 1


ID=20A, VDD=50V

Avalanche current, repetitive tAR limited by Tjmax IAR 20 20 A


Gate source voltage static VGS ±20 ±20 V
Gate source voltage AC (f >1Hz) VGS ±30 ±30
Power dissipation, TC = 25°C Ptot 208 34.5 W
Operating and storage temperature Tj , Tstg -55...+150 °C

Page 1 2003-10-08
SPP20N60C3, SPB20N60C3
Final data SPI20N60C3, SPA20N60C3

Maximum Ratings
Parameter Symbol Value Unit
Drain Source voltage slope dv/dt 50 V/ns
V DS = 480 V, I D = 20.7 A, T j = 125 °C

Thermal Characteristics
Parameter Symbol Values Unit
min. typ. max.
Thermal resistance, junction - case RthJC - - 0.6 K/W
Thermal resistance, junction - case, FullPAK RthJC_FP - - 3.6
Thermal resistance, junction - ambient, leaded RthJA - - 62
Thermal resistance, junction - ambient, FullPAK RthJA_FP - - 80
SMD version, device on PCB: RthJA
@ min. footprint - - 62
@ 6 cm 2 cooling area 3) - 35 -
Soldering temperature, Tsold - - 260 °C
1.6 mm (0.063 in.) from case for 10s 4)

Electrical Characteristics, at T j=25°C unless otherwise specified


Parameter Symbol Conditions Values Unit
min. typ. max.
Drain-source breakdown voltage V(BR)DSS V GS=0V, ID=0.25mA 600 - - V
Drain-Source avalanche V(BR)DS V GS=0V, ID=20A - 700 -
breakdown voltage
Gate threshold voltage VGS(th) ID=1000µA, V GS=V DS 2.1 3 3.9
Zero gate voltage drain current I DSS V DS=600V, VGS=0V, µA
Tj=25°C - 0.1 1
Tj=150°C - - 100
Gate-source leakage current I GSS V GS=30V, VDS=0V - - 100 nA
Drain-source on-state resistance RDS(on) V GS=10V, ID=13.1A Ω
Tj=25°C - 0.16 0.19
Tj=150°C - 0.43 -
Gate input resistance RG f=1MHz, open drain - 0.54 -

Page 2 2003-10-08
SPP20N60C3, SPB20N60C3
Final data SPI20N60C3, SPA20N60C3

Electrical Characteristics
Parameter Symbol Conditions Values Unit
min. typ. max.
Transconductance g fs V DS≥2*I D*RDS(on)max, - 17.5 - S
ID=13.1A

Input capacitance Ciss V GS=0V, V DS=25V, - 2400 - pF


Output capacitance Coss f=1MHz - 780 -
Reverse transfer capacitance Crss - 50 -
Effective output capacitance, 5) Co(er) V GS=0V, - 83 -
energy related V DS=0V to 480V

Effective output capacitance, 6) Co(tr) - 160 -


time related
Turn-on delay time td(on) V DD=380V, V GS=0/13V, - 10 - ns
ID=20.7A,
RG=3.6Ω, Tj=125

Rise time tr V DD=380V, V GS=0/13V, - 5 -


Turn-off delay time td(off) ID=20.7A, - 67 100
Fall time tf RG=3.6Ω - 4.5 12

Gate Charge Characteristics


Gate to source charge Qgs V DD=480V, ID=20.7A - 11 - nC
Gate to drain charge Qgd - 33 -
Gate charge total Qg V DD=480V, ID=20.7A, - 87 114
V GS=0 to 10V

Gate plateau voltage V(plateau) V DD=480V, ID=20.7A - 5.5 - V

1Limited only by maximum temperature


2Repetitve avalanche causes additional power losses that can be calculated as PAV=EAR*f.
3Device on 40mm*40mm*1.5mm epoxy PCB FR4 with 6cm² (one layer, 70 µm thick) copper area for drain
connection. PCB is vertical without blown air.
4Soldering temperature for TO-263: 220°C, reflow
5C
o(er) is a fixed capacitance that gives the same stored energy as Coss while VDS is rising from 0 to 80% V DSS.
6C
o(tr) is a fixed capacitance that gives the same charging time as Coss while V DS is rising from 0 to 80% V DSS.

Page 3 2003-10-08
SPP20N60C3, SPB20N60C3
Final data SPI20N60C3, SPA20N60C3

Electrical Characteristics
Parameter Symbol Conditions Values Unit
min. typ. max.
Inverse diode continuous IS TC=25°C - - 20.7 A
forward current
Inverse diode direct current, I SM - - 62.1
pulsed
Inverse diode forward voltage VSD VGS =0V, I F=IS - 1 1.2 V
Reverse recovery time t rr VR =480V, IF=IS , - 500 800 ns
Reverse recovery charge Q rr diF/dt=100A/µs - 11 - µC
Peak reverse recovery current I rrm - 70 - A
Peak rate of fall of reverse di rr/dt Tj=25°C - 1400 - A/µs
recovery current

Typical Transient Thermal Characteristics


Symbol Value Unit Symbol Value Unit
SPP_B_I SPA SPP_B_I SPA
Rth1 0.00769 0.00769 K/W Cth1 0.0003763 0.0003763 Ws/K
Rth2 0.015 0.015 Cth2 0.001411 0.001411
Rth3 0.029 0.029 Cth3 0.001931 0.001931
Rth4 0.114 0.163 Cth4 0.005297 0.005297
Rth5 0.136 0.323 Cth5 0.012 0.008453
Rth6 0.059 2.526 Cth6 0.091 0.412

Tj E xternal H eatsink
R th1 R th,n T case
P tot (t)

C th1 C th2 C th,n

T am b

Page 4 2003-10-08
SPP20N60C3, SPB20N60C3
Final data SPI20N60C3, SPA20N60C3

1 Power dissipation 2 Power dissipation FullPAK


Ptot = f (TC) Ptot = f (TC)

SPP20N60C3
240 35
W
W
200

180
25
160

Ptot
Ptot

140 20

120

100 15

80
10
60

40
5
20

0 0
0 20 40 60 80 100 120 °C 160 0 20 40 60 80 100 120 °C 160
TC TC

3 Safe operating area 4 Safe operating area FullPAK


ID = f ( V DS ) ID = f (VDS)
parameter : D = 0 , TC =25°C parameter: D = 0, TC = 25°C
2
10 10 2

A A

10 1 10 1
ID

ID

10 0 10 0

tp = 0.001 ms
tp = 0.01 ms
tp = 0.1 ms tp = 0.001 ms
tp = 1 ms tp = 0.01 ms
10 -1 DC 10 -1 tp = 0.1 ms
tp = 1 ms
tp = 10 ms
DC

10 -2 0 1 2 3
10 -2 0 1 2 3
10 10 10 V 10 10 10 10 V 10
VDS VDS

Page 5 2003-10-08
SPP20N60C3, SPB20N60C3
Final data SPI20N60C3, SPA20N60C3

5 Transient thermal impedance 6 Transient thermal impedance FullPAK


ZthJC = f (t p) ZthJC = f (t p)
parameter: D = tp/T parameter: D = tp/t
0
10 10 1

K/W K/W

10 -1 10 0

ZthJC
ZthJC

10 -2 D = 0.5 10 -1 D = 0.5
D = 0.2 D = 0.2
D = 0.1 D = 0.1
D = 0.05 D = 0.05
D = 0.02 D = 0.02
D = 0.01 D = 0.01
10 -3 10 -2
single pulse single pulse

10 -4 -7 -6 -5 -4 -3 -2 0
10 -3 -6 -5 -4 -3 -2 -1 1
10 10 10 10 10 10 s 10 10 10 10 10 10 10 s 10
tp tp

7 Typ. output characteristic 8 Typ. output characteristic


ID = f (VDS); Tj=25°C ID = f (VDS); Tj=150°C
parameter: tp = 10 µs, VGS parameter: tp = 10 µs, VGS
80 45
20V A 20V
A 10V 10V
8V 7V
7V 35 6V
60

30
ID

ID

50 6,5V
5.5V
25
40
6V 20

30 5V
15
5,5V
20 4.5V
10
5V
10 5
4,5V

0 0
0 5 10 15 V 25 0 2 4 6 8 10 12 14 16 18 20 22 V 25
VDS VDS

Page 6 2003-10-08
SPP20N60C3, SPB20N60C3
Final data SPI20N60C3, SPA20N60C3

9 Typ. drain-source on resistance 10 Drain-source on-state resistance


RDS(on)=f(ID) RDS(on) = f (Tj)
parameter: Tj=150°C, VGS parameter : ID = 13.1 A, VGS = 10 V
SPP20N60C3
1.5 1.1
Ω Ω

1.3 0.9
1.2

RDS(on)
RDS(on)

0.8
1.1
4V 0.7
1
4.5V
5V 0.6
0.9 5.5V
6V 0.5
0.8 6.5V
20V 0.4
0.7
0.3
0.6
98%
0.5 0.2
typ

0.4 0.1

0.3 0
0 5 10 15 20 25 30 A 40 -60 -20 20 60 100 °C 180
ID Tj

11 Typ. transfer characteristics 12 Typ. gate charge


ID= f ( VGS ); VDS≥ 2 x ID x RDS(on)max VGS = f (Q Gate)
parameter: tp = 10 µs parameter: ID = 20.7 A pulsed
SPP20N60C3
80 16

A V

25°C
60 12

0,2 VDS max


VGS
ID

50 10 0,8 VDS max

40 8

150°C
30 6

20 4

10 2

0 0
0 1 2 3 4 5 6 7 V 9 0 20 40 60 80 100 nC 140
VGS Q Gate

Page 7 2003-10-08
SPP20N60C3, SPB20N60C3
Final data SPI20N60C3, SPA20N60C3

13 Forward characteristics of body diode 14 Typ. switching time


IF = f (VSD) t = f (ID), inductive load, T j=125°C
parameter: Tj , tp = 10 µs par.: V DS=380V, VGS=0/+13V, R G=3.6Ω
10 2 SPP20N60C3
10 2

td(off)
A

ns

10 1
IF

t
td(on)
10 1

tf

10 0
Tj = 25 °C typ
tr
Tj = 150 °C typ
Tj = 25 °C (98%)
Tj = 150 °C (98%)

10 -1 10 0
0 0.4 0.8 1.2 1.6 2 2.4 V 3 0 4 8 12 16 A 24
VSD ID

15 Typ. switching time 16 Typ. drain current slope


t = f (RG ), inductive load, Tj=125°C di/dt = f(R G), inductive load, Tj = 125°C
par.: VDS =380V, VGS=0/+13V, ID=20.7 A par.: V DS=380V, VGS=0/+13V, ID=20.7A
3
10 5000

A/µs
ns td(off)

4000

3500
10 2
di/dt

3000
t

td(on)
di/dt(on)
2500

2000
10 1
1500

1000
di/dt(off)
tr
tf 500

10 0 0
0 5 10 15 20 25 30 Ω 40 0 5 10 15 20 25 30 Ω 40
RG RG

Page 8 2003-10-08
SPP20N60C3, SPB20N60C3
Final data SPI20N60C3, SPA20N60C3

17 Typ. drain source voltage slope 18 Typ. switching losses


dv/dt = f(RG), inductive load, Tj = 125°C E = f (ID), inductive load, Tj=125°C
par.: VDS =380V, VGS=0/+13V, ID=20.7A par.: V DS=380V, VGS=0/+13V, R G=3.6Ω
150 0.08
*) Eon includes SPD06S60 diode
commutation losses
mWs
V/ns
dv/dt(off)

0.06
dv/dt

100
0.05

E
Eoff
75 0.04

0.03
50 Eon*
dv/dt(on)
0.02

25
0.01

0 0
0 5 10 15 20 25 30 Ω 40 0 3 6 9 12 15 A 21
RG ID

19 Typ. switching losses 20 Avalanche SOA


E = f(RG), inductive load, Tj=125°C IAR = f (tAR)
par.: VDS =380V, VGS=0/+13V, ID=20.7A par.: Tj ≤ 150 °C
0.4 20
*) Eon includes SPD06S60 diode
commutation losses
mWs

A
0.3

Eoff
IAR

0.25
E

Tj(Start)=25°C

0.2 10
Eon*

0.15

0.1 5 Tj(Start)=125°C

0.05

0 0 -3 -2 -1 0 1 2 4
0 5 10 15 20 25 30 Ω 40 10 10 10 10 10 10 µs 10
RG t AR

Page 9 2003-10-08
SPP20N60C3, SPB20N60C3
Final data SPI20N60C3, SPA20N60C3

21 Avalanche energy 22 Drain-source breakdown voltage


EAS = f (Tj) V(BR)DSS = f (Tj)
par.: ID = 10 A, VDD = 50 V
SPP20N60C3
750 720
mJ
V

600
680

V(BR)DSS
550
500 660
EAS

450
640
400
350
620
300
250 600
200
580
150
100
560
50
0 540
20 40 60 80 100 120 °C 160 -60 -20 20 60 100 °C 180
Tj Tj

23 Avalanche power losses 24 Typ. capacitances


PAR = f (f ) C = f (VDS)
parameter: E AR=1mJ parameter: V GS=0V, f=1 MHz
500 10 5
pF

W
10 4
Ciss
PAR

10 3
C

300

Coss
200 10 2

Crss
100 10 1

0 4 5 6
10 0
10 10 Hz 10 0 100 200 300 400 V 600

f VDS

Page 10 2003-10-08
SPP20N60C3, SPB20N60C3
Final data SPI20N60C3, SPA20N60C3

25 Typ. Coss stored energy


Eoss=f(VDS)

14
µJ

12

11

10
Eoss

0
0 100 200 300 400 V 600
VDS

Definition of diodes switching characteristics

Page 11 2003-10-08
SPP20N60C3, SPB20N60C3
Final data SPI20N60C3, SPA20N60C3

P-TO-220-3-1
B
10 ±0.4 4.44
A
3.7 ±0.2 2.8 ±0.2 1.27±0.13
15.38 ±0.6

0.05

9.98 ±0.48
13.5 ±0.5
5.23 ±0.9

0.5 ±0.1
3x
0.75 ±0.1 2.51±0.2
1.17 ±0.22
2x 2.54
0.25 M A B C

All metal surfaces tin plated, except area of cut.


Metal surface min. x=7.25, y=12.3

P-TO-263-3-2 (D 2-PAK)

Page 12 2003-10-08
SPP20N60C3, SPB20N60C3
Final data SPI20N60C3, SPA20N60C3

P-TO-262-3-1 (I 2-PAK)
10 ±0.2
A B
0...0.3 4.4
1)
8.5 1 ±0.3 1.27

0.05
1)

9.25 ±0.2
11.6 ±0.3
7.55

2.4
13.5 ±0.5
4.55 ±0.2

0...0.15 0.5 ±0.1


1.05 2.4
3 x 0.75 ±0.1
2 x 2.54
0.25 M A B C

1)
Typical
Metal surface min. X = 7.25, Y = 6.9
All metal surfaces tin plated, except area of cut.

P-TO-220-3-31 (FullPAK)

Please refer to mounting instructions (application note AN-TO220-3-31-01)

Page 13 2003-10-08
SPP20N60C3, SPB20N60C3
Final data SPI20N60C3, SPA20N60C3

Published by
Infineon Technologies AG,
Bereichs Kommunikation
St.-Martin-Strasse 53,
D-81541 München
© Infineon Technologies AG 1999
All Rights Reserved.

Attention please!
The information herein is given to describe certain components and shall not be considered as warranted
characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement,
regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office in Germany or our Infineon Technologies Reprensatives worldwide (see address list).

Warnings
Due to technical requirements components may contain dangerous substances.
For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express
written approval of Infineon Technologies, if a failure of such components can reasonably be expected to
cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device
or system Life support devices or systems are intended to be implanted in the human body, or to support
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.

Page 14 2003-10-08

You might also like