Unit 1 Essay Questions
Unit 1 Essay Questions
Unit 1 Essay Questions
DEPARTMENT OF MATHEMATICS
I B.Tech
QUESTION BANK
Academic Year: 2020– 2021 Name of the Subject: Linear Algebra and Calculus
*****************************************************************************************
*
UNIT-1
Descriptive Questions:
1 2 3 0
1. a) Find the Rank of the Matrix A=
[ ]
2 4 3 2
3 2 1 3
6 8 7 5
By reducing it to Echelon form.
b) Prove that the set of given equations are consistent and solve them3 x+ 3 y +2 z=1, x +2 y =4 ,
10 y +3 z=−2 ,2 x−3 y−z =5
1 2 3 4
4. State Cayley Hamilton theorem, and verify Cayley Hamilton theorem for the matrix
2 1 2
A=
[ 5 3 3
−1 0 −2 ] and hence find A-1 , A4.
8 −8 −2
5. Diagonalizable the matrix A= 4 −3 −2
3 −4 1 [ ] and Find A4
1 1 3
A=
[ 1 3 −3
−2 −4 −4 ] and hence find A-1 .
9. a) If is an Eigen value of A and X be the corresponding Eigen vector, then show that n is the Eigen
n
value of A and X be the corresponding Eigen vector
| A|
b) If is an Eigen value of A then prove that is an Eigen value of adjA
❑
10.Define: i) Triangular Matrix ii) Echelon Form of a matrix
iii) Normal Form of a matrix iv) Eigen value and Eigen vector
v)Non-Homogeneous & Homogeneous system of linear equations Procedure (rules for consistency)
vi) Diagonalization of a matrix
11.For what values of , μ The system of equation x + y + z=6 , x+ 2 y +3 z=10 , x+ 2 y + z=μ have
1 0 0
[
12.Diagonalize the matrix A= 0 3 −1
0 −1 3 ]