Nothing Special   »   [go: up one dir, main page]

Floatmethod

Download as doc, pdf, or txt
Download as doc, pdf, or txt
You are on page 1of 2

Measurement of Stream Discharge using the Float Method

The amount of water passing a point on the stream channel during a given time is a function of
velocity and cross-sectional area of the flowing water.

Q = AV

Where, Q is stream discharge (volume/time), A is cross-sectional area, and V is flow velocity

Materials Required:
 Tape measure
 Stop -watch
 Rod , yard or meter stick to measure depth
 At least three highly visible buoyant objects such as a drifting branches or logs, pine
cone, coffee stir sticks, half filled bottles, or oranges (objects buoyant enough not to be
effected by the wind)
 Stakes for anchoring tape measure to stream banks
 Waders

Approach

Float method – inexpensive and simple. This method measures surface velocity. Mean velocity
is obtained using a correction factor. The basic idea is to measure the time that it takes the
object to float a specified distance downstream.
 
Vsurface = travel distance/ travel time = L/t
 
Because surface velocities are typically higher than mean or average velocities

V mean = k Vsurface

Where, k is a coefficient that generally ranges from 0.8 for rough beds to 0.9 for smooth
beds (0.85 is a commonly used value)
Procedure

Step 1. Choose a suitable straight reach with minimum turbulence (ideally at least 3 channel
widths long).
Step 2. Mark the start and end point of your reach.
Step 3. If possible, travel time should exceed 20 seconds.
Step 4. Drop your object into the stream upstream of your upstream marker.
Step 5. Start the watch when the object crosses the upstream marker and stop the watch when
it crosses the downstream marker.
Step 6. You should repeat the measurement at least 3 times and use the average in further
calculations.
Step 7. Measure stream’s width and depth across at least one cross section where it is safe to
wade. If possible, measure depth across the stream's width at the start and stop

1
markers and average the two but if measuring one cross section choose the
downstream side. Use a marked rod, a yard or meter stick to measure the
depth at regular intervals across the stream. Ten depth measurements is
the minimum required but more is better, especially in larger streams. Or
another method, walks heal to toe, and measure stream depth every left big
toe, along the downstream cross section. Average your cross-
sectional areas (A): Using the average area and corrected velocity, you can
now compute discharge, Q.

Q = Cross section area (A) * mean velocity (V)

Essentially the cross section technique estimates each of the terms on the right hand side of the
equation(s) and multiplies them together. The cross section area of the channel is estimated at a
transect, across which water depth and average water column velocities are measured at a series
of points (verticals).

You might also like