量子物理講義
量子物理講義
量子物理講義
清大遠距課程
量子物理講義
目錄
Ch2 ....................................................................................................................................... 1
Ch3 ..................................................................................................................................... 24
Ch4 ..................................................................................................................................... 44
Ch5 ..................................................................................................................................... 68
Ch6 ..................................................................................................................................... 98
1
Chapter 2 Particle properties of waves
Polarization particle?
Wave-particle Duality
2.1Emwaves
speed of the wave, and showed that they both have E and B
2
Principle of Superposition:
When two or more waves of the same nature travel past a point
3
Constructive interference same phase, greater amplitude
4
2.2Blackbody radiation
regardless of frequency.
5
Considering the radiation inside a cavity of absolute temperature
waves.
L n* / 2
The higher ν, the shorter the wavelength, and the greater the
6
An idea gas molecular has three degree of freedom: kinetic
7
Plank Radiation Formula
h is planck’s constant=6.626*10-34Js
No ultraviolet catastrophe.
In general, ex=1+x+x2/2+………
8
How to justify the Plank radiation formula
one energy state to the next lower one, and it jumpsto the next
9
2.3 Photoelectric effect
Current
kinetic energy.
(1)No delay between the arrival of the light at the metal surface
10
(3)The higher the frequency of the light, the more energy the
quanta.
10
11
Explanation of experiments:
Φ=hνo
h = kEmax+hνo
kEmax=h(ν-νo).
Photo energy
E=(6.626*10-34Js/1.602*10-19J/eV )ν=(4.136*10-15)νeVs
ν=c/λ E=1.24*10-6eVm/λ
11
12
What is light
N E2
same as large N
12
13
Wave & quantum theory complement each other.
yes x-ray
V λ min
.most of e΄ heat
13
14
.x-ray are em waves
radiation”)
λmin=(1.24 10-6)/V(m)
14
15
hνmax = Ve = hc/λmin λmin = hc/Ve = (1.24 10-6)/V
electric dipole
15
16
Compton effect
hν -hν΄ =kE
16
17
hν/c = (hν΄/c)cosΦ+ Pcosθ (parallel)……..(1)
(1)&(2)x c
Pc(cosθ) = hν -hν΄cosΦ
Pc(sinθ) = (hν΄)sinΦ
18
& E = KE + moc2 E= mo c 4 P 2c 2
2
Because KE = hν - hν΄
λ=Compton wavelength
18
19
Relativistic formulas
mo c 2
Total energy E= mo= rest mass
v2
1 2
c
mo v
Relativistic momentum P = 2
1 v
c2
E2 = mo2c4 +P2c2
m0 c 4 p 2c 2 Eo p 2c 2
2 2
For all particles E= =
19
20
Pair production
20
21
(momentum is conserved with the help of the nucleus which
P = mv hν = 2mc2(v/c) cosθ
21
22
linear attenuation coefficient
dI
udx I = Ioexp(-ux)
I
Io
ln( )
absolute thickness x= I
u
22
23
Ch3 Wave
properties of
particles
24
CH3 Wave Properties of Particles
nature.
* for photon
P = hν/c =h/λ
De Broglie wavelength
λ= h/P = h/mv
mo
(m = )
2
1 v
c2
25
Example 3.1
λ= h/mv =6.63x10-34Js/(0.046kg)(30m/s)=4.8x10-34m
λ= h/mv =6.63x10-34Js/(9.1x10-31kg)(107m/s)=7.3x10-11m
=0.73Å
structure behavior
26
3.2 Waves of probability
Wave function Ψ
0 probability 1
no negative probability
2
:squae of the absolute value of wave function
probability density
2
proportional to there at t.
but it does not mean that the particle itself is spread out.
27
3.3 Describing a wave
vp =νλ(λ=h/mv)
2 2
hν=mc ν=mc /h
particle velocity)
Because V<C
28
At x=0, y=Acos(2 t) for time=t
x = vpt , t =x/vp
y=Acos2 (t x / v p )
y =Acos2 (vt x / )
y = Acos(ωt – kx)
29
The amplitude of de Broglie waves probability
wave group
2 beats/s
30
(1) If the velocities of the waves are the same the velocity
velocities
group velocity
y1 = Acos[(ωt –ks)]
y2 = Acos[(ω+Δω)t – (k+Δk)x]
Δkx)
Δk << k 2k+Δk 2k
31
Modulation produce wave group
2
vp =
2
phase velocity
k
c2
d
* both ω&k are functions of body’s v vg = dω/dk = dk dv
dv
d 2mo v
dk 2mo
,
2
dv 2 3
h1 v 3 dv 2
c2
h1 v 2
c2
32
Ex 3.3 :
-12
An e' has a de Broglie wavelength of 2pm=2x10 m.Find its kinetic
energy & the phase & group velocity of its de Broglie waves.
-15 8 -12
pc = hc/λ= (4.136x10 ev.s)(3x10 m/s)/(2x10 ) =
5
6.2x10 ev=620kv
33
3.5 particle diffraction e'-beam diffraction
point of scattering.
10
34
11
35
3.6 particle in a box
λn =2L/n n=1,2,3……
2 2 2 2
KE=1/2(mv )=(mv) /2m=h /(λ 2m)
particle in a box
En=n2h2/8mL2 n=1,2,3……..
level.(n=quantum number)
For example
e-
nucleus
12
36
1. Atraped particle cannot have an arbitrary energy, as a free
particle can .
Ex 3.4
When n=1 38 ev
n=3 342 ev
13
37
Ex 3.5
marble.
30
For a reasonable speed 1/3 m/s n=10 !!
Uncertainty principle
position precise.
precise
14
38
uncertainty principle:
shape.
x g k cos kxdk Fourier integral
0
of φ(x)
15
39
* wave numbers needed to represent a wave group extend from
x xo 2
1 2 2
*Gaussian function: f(x)= e
2
1 n
Standard deviation xi xo 2 (square-root-mean)
n i 1
p x o f x dx 0.683
x o
16
40
Min ΔxΔk occur for Gaussian function
Ex 3.6
17
41
look at e' light of wavelengthλ P=h/λ when one
magnitude as P) Δx~λ
frequencyν.
18
42
∵Frequency of wave = # of wave/time interval Δν≧ 1/Δt
ex 3.9
19
43
Ch4 Atomic
structure
44
Chapter 4. Atomic structure
Thomson model of the atom
particle (helium atoms lost two e', leaving charge of +2e) would
go right through the foil with hardly any deflection. (Since the
particle)
45
Although most of the alpha particles indeed were not deviated
Rutherford model
field scatters it through a large angle. The e' is do light that they
nuclear charge.
All the atoms of any one element turned out to have the same
periodic table.
46
The nuclear charges turned out to be multiples of +e, the number
element.
N(θ) number of alpha particles per unit area that reach the screen
t=foil thickness
47
Because N(θ) is inversely proportional to sin4(θ/2): only 0.14
1o.
Nuclear Dimensions
48
particle=7.7Mev)
-14 -4
For gold . Z=79 R(Au)=3x10 m (<<10 the radius of atom)
Electron orbits
that can keep them in place against the electric force pulling
1 e2 e
Fc = Fe mv2/r = v=
4 o r 2 4 o mr
e2
Total energy E = KE + PE =(1/2)mv2+(- )
4 o r
e2 e2
= -
8 o r 4 o r
e2
Total energy of H atom E= - (negative energy e' is
8 o r
bound to nucleus)
49
The failure of classical physics
50
Atomic spectra
51
Absorption line
spectrum.
Spectral series
52
Lyman series 1/λ=R(1/12 –1/n2) n=2,3,4…….
53
10
54
4.4 Bohr atom
e h 4 o r
v
4 o rm e m
-11
let r =5.3x10-11m λ= 33x10 m
h 4 o
n 2rn (see Fig 4.12,4.13,4.14)
e m
n 2 h 2 o
Orbital radii in Bohr atom r n= n=1,2,3…..
me2
11
55
4.5 energy level and spectron
En= me 1 E1
4
e2
∵ En= 2 2 2
2
8 o rn 8 o h n n
These levels are all “-“, which signifies that the e' does not have
E1 : ground state
energy = - E1
Ei - Ef = hν
2 2 2 2
E1 (1/ni – 1/nf ) = -E1(1/nf -1/ni ) =hν
2 2
ν= -E1/h(1/nf -1/ni )
2 2
1/λ= (-E1/ch)(1/nf -1/ni ) (see fig 4.16)
4
the constant E1
= me3 3 1.097 107 m1 =Rydberg constant
ch 8 o ch
12
56
4.6 Correspondence Principle
e
Frequency of revolution f = v/2πr =
2 4 0 mr 3
n 2 h 2 o me4 2 E1 2
∵ rn f
me2 8 0 h3 n3
2
h n3
E1 1 1
h n f 2 ni 2
E1 1 1 E1 2np p 2
h n p 2 n 2 h n 2 n p 2
E1 2 p
h n3 same as classical em theory
13
57
4.7 Nuclear Motion
Both nucleus & e' revolve around their common center of mass,
heavier particle.
me 1 m E1
4
En
8 o h 2 n 2 m n 2
2
In H m'/m=0.99945
14
58
∵ mass increases spectral lines of D shifted to shorter
wavelength.
15
59
4.8 Atomic excitation
hν
collision
16
60
Photon absorption
hν hν radiation
contributing to current I
17
61
Franck-Hertz experiment when V # of e’ I it is
almost no KE loss)
In elastic
18
62
4.9 Laser: light amplification by stimulated emission of
radiation
.coherent: in phase
.monochromatic: single λ
.intense
19
63
Three kinds of transition between two energy levels.
three-level laser
amplification of light.
20
64
population inversion an assembly of atoms in which the
No laser amplification
21
65
∵ very few atoms in intermediate modest amount of
22
66
He-Ne laser: 10He/1Ne at low pressure.
collisions
Ne
Since the e’ impacts the excite He&Ne occur all the time
23
67
Ch5 Quantum
Mechanics
68
Chapter 5 Quantum Mechanics
1. Can not explain why certain spectral lines are more intense
than others.
mechanics(1925~1926)
mechanics
Wave function φ.
2
probability of finding the body for complex φ 2=
69
* *
φ*φ (φ : complex conjugate)
* * 2 2
φ=A+ιB φ =A-ιB φ φ=A +B
“
well behaved” wave function
momentum consideration)
y z
2
= probability density P
pdv 1 dv 1
2
normalization
px1 x 2 dx
2
probability
x1
never happen.
70
5.2 wave equation
2 y 1 2 y
solution: y=F(t x/v)
2 x v 2 2t
71
5.3 Schrodinger’s equation : time dependent form
(t x / v ) 2i (t x
for a free particle Ae i Ae
)
h 2
E h 2 ,
p p
i ( Et px)
Ae h
............( A)
+x direction
for v<<c
p2
E U ( x, t )
2m
p 2
E U
2m
2 2
i U
t 2m x 2
restrictio n U
φcan be solved.
72
5.4 Expectation value
N1 at x1 , N2 at x2 ;……………
x
N1 x1 N 2 x2 N3 x3 .......
N x i i
N1 N 2 N3 ...... N i
replaced Ni by probability Pi
pi i dx
2
x
2
dx
x
2
dx
If φ is a normalized function
dx 1
2
x x
2
dx
Expectation value of position
G x G x dx
2
73
5.5 Schrodinger’s equation: steady-state form
t
iE
Ψ is the product of a time-dependent function e and a
position-dependent functionψ
If Ψ=F(x)×F'(t)
unrestricted particle.
t
iE
∵ substituting e into time-dependent eq
2 2
i U
t 2m x 2
iE t 2 iE t 2 iE t
Ee e Ue
2m x 2
2m
2
2 2 E U 0
x
74
** For Schrodinger’s steady-state eq, if it has one or more
quantization
λn=2L/n+1 , n=0,1,2,3……
me4 1
En , n 1,2,3,..........
32 2 o 2 n 2
2
75
are an example of a set of eigenvalues.
76
5.6 particle in a box
wall(it U(0)=U(L)=∞)
U(0<x<L)=0=constant
dx
En= n
2 2 2
n=1,2,3……….
2mL2
2mEn
n A sin x
n 2 2 nx
En n A sin (eigenfunct ions )
2mL L
77
these eigenfunction meet all requirements
n
φn is a finite, single-valued, and n & continuous
x
To normalize φ
dx 1
2
n
nx
L L
n dx A2 sin 2
2
dx
0 0 L
A2 2nx
L L
dx cos dx
2 0 L
0
( sin 2
1
1 cos 2 )
L 2
A2 L 2nx L
x m sin A2 1
2 L 0 2
2
A
L
2 nx
n sin , n 1,2,3.........
L L
10
78
2 nx
* n sin
L L
(∵ n
2
is probability density of
n
2
n=2 , =0 in the middle of the box.
Ex 5.3
11
79
Classically, we expect the particle to be in this region 10% of
depending on n
x2
Px1 , x 2
2
n dx
x1
2nx
x
2 2
sin 2 dx
L x1 L
2nx 2
x
x 1
sin
L 2n L x1
12
80
ex 5.4
2
2 x
2
x sin
L cos
2nx
L
x dx
L : 4 4 n 8 n
2
<x>= L L
0
2
2L L
x
L 4 2
13
81
5.7 finite potential well
finite height
regions Ⅰ&Ⅲ
*In Ⅰ&Ⅲ
2 2m
E U 0
x 2 2
d 2
2
a 2 0 x<0 , x>L
dx
2mU E
a
Ae ax Be ax
ax -ax -ax
φⅢ = Ce +De ∵e ∞ when x -∞
ax
e ∞ when x ∞
ax -ax
∴ B=C=0 φⅠ=Ae , x<0 φⅢDe ,x>L
14
82
** these wave functions decrease exponentially inside the
barrier.
∵φ is continuous
∴φⅠ(x=0)=φⅡ(x=0) φⅡ(x=L)=φⅢ(x=L)
-aL
∴ A=F = De
solve E (E≠0)
at x=0 & x=L is continuous
x
**Because the wavelengths that fit into the well are longer than for
15
83
5.8 Tunnel effect
Particle strikes a potential U(E<U) the barrier has finite width (see
Ex: tunnel diode: e' pass through potential barrier even though their
KE<barrier height
d 2 2m
E 0
dx 2 2
Ae ik x Be ik x
1 1
Fe ik x Geik x
1 1
2mE p 2
k1= (eq 5.43)
ei cos i sin
e i cos i sin
1 Aeik x 1
represents incoming wave
1 Be ik x 1
represent reflected wave
16
84
φⅠ=φⅠ+ +φⅠ-
G 0 φⅢ=φⅢ+= Feik x 1
17
85
v1= is the group velocity of incoming wave (equal to v of
particles)
S 1 v
2
Transmission probability
2
v FF * v
T
2
v AA * v
In region Ⅱ Sch eq
d 2 2m
2 E U 0
dx 2
2 m E U
Ce k x Dek x , k2
2 2
∵exp are real quantities φⅡ does not oscillate and 2 is not zero
18
86
applying B.C. & need to be continuous
x
d d
at x=o (see Fig 5.9)
dx dx
at x=L φⅡ=φⅢ
dφⅡ/dx =dφⅢ/dx
A+B=C+D
A 1 i k k 1 i k k
2 1 e(ik1 k 2 ) L 2 1 eik1 k 2 L
F 2 4 k1 k2 2 4 k1 k2
2mE k2 k
k1 1
k1 k2
2m( E U ) k k k
k2 2 1 2
k1 k2 k1
e k 2 L e k 2
A 1 ik
2 eik1 k 2 L
F 2 4k1
A 1 ik 2 ik1 k 2 L
* e
F 2 4k1
+ - + -
Here vⅢ =vⅠ ∴vⅢ /vⅠ = 1
19
87
FF * v
AA * 1
16
T
e 2 h2 L
FF *
2
AA * v 4 k2
k
1
2mU E / 2 U
2
k2
1
k1 2mE / 2 E
approximation 1
T e 2k 2 L
20
88
5.9 Harmonic oscillator
disturbed.
x A cos2t
1 k
frequency of harmonic oscillator
2 m
A: amplitude
21
89
.Maclaurin’s series
2 3
F(x)=Fx>0 + ( dF )x=0 X + 1/2( d F
)x=0 X2 + 1/6( d F
)x=0 X3 + ……
dx dx 2 dx 3
2 3
for small x x ,x is much smaller than x F(x)=(dF/dx)x=0 X
.sch eq
2 2 2
+ 2m/h (E-1/2kx )φ=0……(5.75)
y 2
1/2 1/2
let c=(1/h hm ) , y=(1/h hm ) x=cx
2 y
= c
y 2 x y x x y
y 2
2
= c
c y 2
y y x
2 2 2 2
eq5.75 c +2m/ (E-1/2kx )φ=0
y 2
2 2
+2E/ ( m/k φ)- mk / × x φ=0
y 2
for ∫
2
dy=1
22
90
*for(5.78) only when α=2n+1 n=1,n=2,n=3……
∴En=(n+1/2)hν n=0,n=1,n=2……
23
91
H atom
A particle in a box
A harmonic oscillator
≠0”
24
92
for harmonic oscillator
each αn En φn
1
2m 4 n 21
y 2
n 2 n! H n y e 2
decreasing probability.
25
93
Classical: max at end
n=0
QM: n=10
When n
QM classical
When n
penetration
E E
2
dx ??
26
94
Et px
i
for free particle Ae
i
p p
x i x
i
E E i
t t
P
i x operator
E i
t
E KE U
1 2 2
2
p2
KE KE
2m 2m i x 2m x 2
2 2
i U
t 2m x 2
2 2
i U sch eq
t 2m x 2
p pdx dx
i x
dx
i x
E Edx
i t dx
= i dx
t
expectation value
of an operator Gx, p Gdx
eigenvalue eq G n Gn n
2 2
H U
Hamiltonian operator 2m x 2
H n En n
27
95
*Particle in a box
2 nx d 2 n nx
n sin cos
L L dx L L L
d
dx
p pdx i dx
2 n nx nx
L
i L L 0 sin
L
cos
L
dx
0
2 n
E p pn 2mEn momentum
2m L
eigenvalue
average pav
n L n L 0
L
d 2 nx n 2 nx
sin cos pn n
i dx L
L i L L L
e i e i 1 1
sin ei e i
2i 2i 2i
28
96
1 2 inx L
n e
2i L
momentum eigenfunction
1 2 inx L
n e
2i L
29
97
Ch6
98
Chapter 6
6.1 Schördinger Equation for H atom
2 2 2 2m
E U 0
x 2 y 2 z 2 2
e2
electric potential energy U
40 r
fig 6.1 )
= x2 y2 z2
z
= cos 1 ( zenith angle )
x2 y2 z2
y
= tan 1 ( azimuth angle )
x
99
*In spherical polar coordinates, Schördinger Equation
1 2 1 1 2 2m
r sin E U 0
r 2 r r r 2 sin r 2 sin 2 2
2 2 2mr 2 sin 2 e2
sin r
2
sin sin E 0
r r 2 2 40 r
------(6.4)
box in x,y,z.
number.
100
6.2 Separation of Variables
R dR
r r dr
d
R R
d
2 2 d 2
R 2 R 2
2 d
Schördinger Equation
This eq. can be correct only if both sides of it are equal to the
1 2
me2
2
101
1 d 2 dR 2mr 2 e 2 me2 1 d d
r 2 E sin
R dr dr 40 r sin sin d
2
d
side => both sides equal to the same constant. This constant is
called 1
me2 1 d d
sin 1
sin 2 sin d d
1 d 2 dR 2mr 2 e 2
r 2 E 1
R dr dr 4 0r
d 2
me2 0 eq. for Φ
d 2
1 d d me2
sin 1 2 0 eq. for Θ
sin d d sin
1 d 2 dR 2m e 2 1
r E R 0 eq. for R
r 2 dr dr 2 40 r r 2
=> φ can be separated into RΘΦ, only R is dependent on U.
102
6.3 Quantum Number
2
Aeim Aeim 2
e e
me4 1 E
En n=1,2,3,…
32 2 02 2 n 2 n 2
=> =0,1,2,3,…,(n-1)
Rnl m m
103
6.4 Principle quantum Number (Quantization of energy)
In Q.M. of H atom => the electron energy may have any positive
E1
values are En
n2
104
7
105
6.5 Orbital Quantum Number (Quantization of Angular
Momentum Magnitude)
1 d 2 dR 2m e 2 1
r
E R 0
r 2 dr dr 2 40 r r 2
E includes the e’ kinetic energy of orbital motion which should
E=kEradial+kEorbital+U
e2
40 r
Inserting this expression into eq(6.14)
1 d 2 dR 2m 2 1
=> 2 r kEradial kEorbital R 0 …(6.19)
r dr dr 2 2mr 2
2 1
if kEorbital
2mr 2
L2
∵ kEorbital L m orbital r
2mr 2
L2
=> kEorbital
2mr 2
L2 2 1
=>
2mr 2 2mr 2
106
=> L 1 ( =0,1,2,3,…,(n-1))
=0,1,2,3,4,5,6,…
s,p,d,f,g,h,i,…
4s => n=4, =0
5d => n=5, =2
e’ angular momentum.
the direction
fig(6.3))
107
magnetic dipole.
If B direction // z direction
=> Lz me , me 0,1,2,...,
shown in fig(6.4)
10
108
*Why is only one component of L quantized?
11
109
12
110
6.7 Electron Probility Density
(fig(6.7))
Q.M.:
111
R
2 2 2 2
Aeim e
* A2 e im eim A2
2
e e
*
2
for s state is a constant
∵
2
is independent of ψ, we can obtain a three-dimensional
picture of
2
by rotating the representation about a vertical
axis.
14
112
Similarly, 3d with me 2 , 4f with me 3
R depends on r and n,
=0)
15
113
dV dr rd r sin d
pr dr R 2 dV
2 2
2
r 2 R dr 0 sin d 0 d
2 2 2
r2 R
2
(∵ Θ & Φ are normalized function)
from it.
16
114
The most probable value of r for s e’ = a0 the orbital radius of a
1 1
of is
r a0
17
115
6.8 Radiative Transitions
Em En
h
time-varying function
n En h
n n e i E n t
n* n*eiE n t
i E n i E n t
=> x xn* n dx x n* n e
dx
x n* n dx
No radiation
not radiate.
18
116
*consider e’ shift from one state to another, e.g.
Ψ=aφn+bΨm
from m to n
E En
i sin m t xb a m n a b n m dx
* * * *
19
117
E En
cos m t xb a m n a b n m dx
* * * *
for real part, it varies with time
E En Em En
cos m t cos 2 t cos 2t
h
Em En
h
20
118
6.9 Selection Rules
= 0→forbidden transition
(u represents either x, y or z)
21
119
6.10 Zeeman Effect
Um, by definition Um = 0 when
2
U m d uB sin d uB cos u B
2 2
u=IA
22
120
If e’ makes frev/s in a circular orbit of r
e
u L -:negative charge
2 m
(-e/2m):gyromagnetic ratio
e
Um LB cos
2m
L 1
e
magnetic energy U m m B
2 m
e
:Bohr magneton
2m
uB = 9.274×10-24 J/T
= 5.788×10-5 eV/T
depends on m & n.
are slightly more or less than the energy of the state in the
absence of field.
23
121
Individual spectral lines “splitting” into separate lines
Zeeman Effect
m have 2 1 values
difference is uBB
24
122
eB B
ν0 into 1 0 0 uB
4m h
2 0
eB B
3 0 0 uB
4m h
ex 6.4
field & suitably excited. How far apart are the Zeeman
Sol.
eB
4m
c d
d c
2
2 eB2
=> 2.83 1012 m 0.00283nm
c 4mc
25
123
Ch7
124
Chapter 7
7.1 Electron Spin
n = 3 → n = 2 => 656.3nm
Zeeman Effect:
125
Every electron has an intrinsic angular momentum, called
spin, whose magnitude is the same for all e’. Associated with
Classical picture:
∵negative charge
Effect
126
*From this picture, in order to have observed angular
1 3
s => S ss 1
2 2
number)
1
2s+1=2 orientations => ms spin up
2
1
ms
2
1
S z ms
2
e
spin magnetic moment us S (gyromagnetic ratio=2 for e’ spin)
m
e
usz uB
2m
127
Stern & Gerlach found the initial beam split into two
quantization.
possible state of an e’
n, , m ,&ms
128
7.2 Exclusion Principle
chemically different
n, , m , ms .
129
7.3 Symmetric & antisymmetric Wave Function
2
are the same if particles ate
exchanged.
1,2 2,1
2 2
I a 1 b 2
a 2 b 1
II
130
∵ two particles are indistinguishable => no way to know
of the system.
Symmetric s
1
a 1 b 2 a 2 b 1
2
Antisymmetric A
1
a 1 b 2 a 2 b 1
2
1
is needed for normalization.
2
in the same state with a=b but in the antisymmetric case, if a=b
=> A
1
a 1 b 2 a 2 b 1 0
2
131
Pauli found that two e’ in an atom can be in the same quantum
state.
1 3
half-integral spins , ,... have wave functions that are
2 2
132
*Spin-orbit Coupling
momenta.
coupling.
133
every quantum state (except s states 0 ) is split into two
substates.
Example 7.3
corresponds to 2p state.
Sol:
u0 I
B
2r
u0 fe
=> B
2r
v
f and r n 2 a0
2r
4 107 8.4 1014 s 1 1.6 1019 C
B
2 2.1 1010 m
134
U m uB B 9.27 1024 J T 0.4T
= 3.7×10-24 J = 2.3×10-5 eV
1
J j j 1 j s J z m j , m j j,... j
2
○For J , L, S , both magnitude & direction are quantized for
135
136
* L & S interact magnetically. If no external field => L & S
precess around J
137
LS Coupling
L LL 1
Lz M l
138
S S S 1
Sz M s
J J J 1
J z M j
is involved.
Example 7.5
Sol:
1 2
139
∴L=1,2,3.
1
The spin quantum number s is always
2
S=1,0.
J=0,1,2,3,4.
Term Symbols
1 1
If s = => multiplicity is 2 (doublet state) J L
2 2
140
The total angular-momentum quantum number J is used as a
1 3
S , L=1, J
2 2
In the event that the angular momentum of the atom arises from
prefix.
Ground state of sodium => 32 s 1
2
1 1
n 3, 0, s , j
2 2
It is conventional to denote the above state by 32 s 1 with 2
2
Example 7.6
For 32 s 1 & 32 p 1 list possible quantum number n,, j, m j
2 2
1 1
Sol: 32 s 1 : n 3, 0, j , m j
2 2 2
1 1
32 p 1 : n 3, 1, j , m j
2 2 2
141
For kα L electron drops to K state.
mz 1 e 4 1 1 2 1 1
2
=> CR z 1 2
8 02 h 3 n 2f ni2 1 2
1
3CRz 1
2
R=1.07×107 m-1
142
Ch8 Molecules
143
Chapter 8 Molecules
8.1
between them.
H2 + 4.5 eV → H + H
144
By comparison
H +13.6 eV → p+ + e’
the other and the resulting positive & negative ions attract
145
8.2 Electron sharing → The mechanism of the covalent bond
one box will tunnel through the wall & get into the other box,
146
The probability of an e’ pass through the region of high
from an proton.
147
→look like 1s wave function of H
When R~a0,
Enhanced like hood of finding e’
between protons.
=> sharing e’ by protons
148
φA does not approach 2p wave
function of He+ which has a node
at the origin.
149
System Energy
e2
Up
40 R
150
For antisymmetric case.
13.6 eV
2
2p state of He+ → E n z
n2
∵ when R → ∞ => EA → -13.6 eV electron energy ~
const (but small dip) The dip is not enough to form bond.
151
8.4 H2 molecule
H2 molecule has two e’, both e’ can share the same orbital
contradict.
sSA or ASs
152
If spins of two e’ are parallel => spin function is symmetric.
σ corresponds to L = 0, π corresponds to L
e’, the other two 2p orbital are only singly occupied and so
10
153
bonding orbital. The mutual repulsion between H nuclei
widens the angles between the bond axes from 90º to 104.5º
* Hybrid orbital → The way in H2O can not be used for CH4
expect CH2 with two sp bonding => not the case. (i.e. 2s
11
154
Hybrid orbital that consist of mixtures of s & p orbital occur
hybrids.
12
155
8.6 Rotation Energy Levels
(1um~0.1mm)
UV region
m1m 2
I r1 r2 2 m' R 2
m1 m 2
13
156
m1 m 2
reduced mass m'
m1 m 2
Angular momentum L
L is quantized
1 2 L2 JJ 1 2
rotational energy levels E J I (see ex
2 2I 2I
8.1)
energy states.
transitions is J 1
14
157
In practice, rotational spectra are always obtained in absorption.
E EJ 1 EJ
J J 1 J 1 => equally spaced.
h h 2I
From the data, I can be calculated. Bond length in molecular can
15
158
8.7 Vibrational Energy Levels (for diatomic molecule)
1
=> U U 0 k R R 0
2
R0:equilibrium separation
2
dU
F k R R 0 => interatomic force (restoring
dR
force)
16
159
Classically, the frequency of vibrating body of m connected
1 k
to a spring of force constant k is 0
2 m
1 k m1 m 2
For two-body oscillator 0 m'
2 m' m1 m 2
1
For harmonic oscillator E h 0
2
1
The lowest vibration state ν = 0 => E 0 h 0 0 =>
2
uncertainty principle.
1 k
E v v
2 m
states.
17
160
* Vibration-Rotation Spectra
are rotating
18
161
1 k 2
For diatomic molecule E vJ v JJ 1
2 m' 2I
For v = 0 → v =1 transitions
The spacing between p & R branch is
2I
pure-rotation spectrum)
162
For example, thioacetic acid
20
163
21
164
8.8 Electronic Spectra of Molecules
absorbed.
22
165
In molecular spectra
in phosphorescent radiation.
23
166
Ch9
167
Chapter 9
n(ε) = g(ε)f(ε)
Maxwell-Boltzman distribution
168
1 3 5
(3) Identical particles of odd half integer spin ( , , ,…)
2 2 2
wave function
169
9.2 Maxwell-Boltzman Statistics
state of energyε
normalization constant
170
9.3 Molecular Energy in an Ideal Gas
betweenε&ε+dε
&ε+dε
is specified by
p 2m p 2x p 2y p 2z
171
=> g(p)dp 4π2p·dp = Bp2dp (B:constant)
g(ε)dp = Bp2dp
md
∵p2 = 2mε => dp
2m
n d C e
kT
d ( C 2m3 2 AB cons tan t )
To find C,
1 1
0 xe ax dx a
2a a kT
C 2N
kT 2
3
=> N => C
kT 2
3
2
2N
n d
e kTd
kT 2
3
172
Total energy E 0 n d
2N 3 2 kT
3 0 e d
kT 2
2N 3
4 kT 2
kT
kT 2
3
3
NkT
2
3
average molecular energy kT independent of
2
1
molecule’s massεat RT~0.04 eV eV
25
173
*Distribution of Molecular Speeds
1
mv 2 dε=mvdv
2
3
m 2 2 mv
=> n v dv 4N ve
2
2 kT
dv see fig 9.3
2 kT
1 3 3kT
mv 2 kT => v rms v 2
2 2 m
dvv
*Most probable speed 0
dv
2kT
=> v p (smaller than v & v2 )
m
I a 1b 2
for distinguishable particle
II a 2b 1
for Bosons B
1
a 1b 2 a 2b 1 symmetric
2
7
174
for Fermions F
1
a 1b 2 a 2b 1
2
antisymmetric
M a 1a 2
B
1
a 1b 2 a 1a 2 2 a 1a 2
2 2
F
1
a 1a 2 a 1a 2 0
2
175
*Bose-Einstein distribution
1
f BE
e e kT
1
*Fermi-Dirac distribution
1
f FD α:depends on properties of system and
ee kT
1
may be function of T
1
*When ε=-2kT, f FD
2
1
=> f FD
e F kT
1
176
*Consider T = 0
1
Forε<εF, f FD 1
e 1
1
Forε>εF, f FD 0
e 1
aboveεF
177
*Rayleigh-Jeans formula (for black body radiation)
half-wavelengths.
2L
jx 1,2,3,...
2
2L 2L
jy 1,2,3,... => jx jy jz
2 2 2
2L
jz 1,2,3,...
11
178
To constant number of standing wave g(λ)dλ within the
1
g jdj 2 4j2 dj j2 dj
8
Only count first Octant
Two perpendicular directions of polarization
2L 2L 2L
j dj d
c c
2L 2L 8L3 2
2
g d d 3 d
c c c
1 82 d
G d 3 g d
L c3
* Classical Theory
82 kTd
Rayleigh-Jeans formula.
c3
12
179
u(ν)↑ withν2↑ => wrong !!
h
h
e kT
1
8h 3d
u d G d 3 h
c e kT 1
1
n n h , not nh
2
1
including zero-point energy h
2
h
is not equal to h
e kT
1
Bose-Eistein statistics.
13
180
The average number of photons f(ν) in each state of energy
1
f h (α= 0)
e kT
1
u d hG f d
8h 3d
3 h
c e kT 1
hc
4.965
kT max
hc
max T 2.898 103 m K
4.965
increased.
14
181
*Stefan-Boltzman Law
85 k 4 4
u 0 u d
3 3
T aT 4
15c h
ac
5.67 108 W m 2 K 4
4
15
182
9.7 Specific Heats of Solids
harmonic oscillators.
E = 3N0kT = 3RT
E
C v 3R 5.97 kcal mol K (Dulong-Petit law)
T v
Cv << 3R at 20℃
16
183
Einstein’s Law
h
hf h (average phonon energy per one
e kT
1
3N 0 h
E 3N 0 h
e kT
1
h
E h
2
e kT
C v 3R h
T v kT e kT 1
2
○ at high temperature, hν<<kT
h h
e kT
1
kT
kT Cv 3R (Dulong-Petit values)
17
184
Why the zero-point energy does not enetr this analysis?
E 1
∵ C v zero-point energy 0 h function of T
T v 2
18
185
9.8 Free Electron in Metal
*If e’ behave like the molecules of an ideal gas => each would
3
have kT , kinetic energy
2
3 3
Ee N 0 kT RT
2 2
E 3
C ve e R
T v 2
3 9
total specific heat C v 3R R R at high T
2 2
1
f FD F
e kT
1
now, we would like to find g(ε)dε,number of quantum
g(j)dj = πj2dj
2L h
j for e’ & p 2mE
p
2L 2Lp 2L 2mE L 2m
j dj d
h h h
19
186
8 2L3 m
3
g d
2
d
h3
8 2Vm
3
g d
2
d
h3
*Femi energy
16 2Vm 2 3 2
3
∴ N 0 g d
f
f
3h 3
2
h 2 3N 3
f
2m 8V
20
187
9.9 Electron-Energy Distribution
3
=> n d
3 N 2 f
2
d
see fig 9.10
f
e kT
1
*The total energy E0 at 0 K
E 0 0 n d
f
e kT e 0
f
3N 23 32 3
E0 f 0 d N f
f
2 5
3
average energy for e’ at T = 0 0 f
5
several eV.
188
2 kT
C ve R
2 f
at room temperature, kT 0.016 0.0021 very small
f
*Ony if T is very low => Cve become significant ( C v T 3 but
C ve T )
22
189