Nothing Special   »   [go: up one dir, main page]

Fines Tank Recirculation Pump Sizing Calculation - SCH 10 Piping

Download as xlsx, pdf, or txt
Download as xlsx, pdf, or txt
You are on page 1of 30

System Curve

Flow System 120.0


Rate, Resistance,
S/N (gpm) ft 100.0
1 20 35.3
2 40 41.9 80.0
3 60 51.8
4 80 65.0

Head, ft
60.0
5 100 81.3

40.0
Pump Curve
Flow
20.0
Rate, Head,
S/N (gpm) ft
1 0 96.8 0.0
0 20 40 60
2 10 96.8
3 20 96.8 Flow Rate, US g
4 30 96.4
5 40 95.2
6 50 92.8
7 60 88.8
8 70 83.6
9 75 79.6
10 80 74
11 85 68.4
12 90 63.2
13 93.5 59.6
System Curve
Pump Curve

40 60 80 100 120

Flow Rate, US gpm


Pump Head Calculation

Fluid Properties
Fluid = Waste Water
Temperature = 85 Deg C
= 185 Deg F
Pressure = 0.00 psig
Density = 66.64 lb/ft3 (1.06*SG)
Viscosity = 10 cP 0.00672 lb/ft-sec
Vapor Pressure = 8.38122 psia ( 1 cP = 0.00067196 lb/ft-sec)

Fines Tank
Pressure on Liq Surface = 0 psig
Tank Diameter = 9.1 feet
Tank Pressure = 0.00 psig Atmospheric
Tank Nozzle Elevation = 1 feet From Grade
Working Liquid Level = 1 ft From Grade
Recirc Pump
Pump Suction Nozzle Elevation = 1 feet From Grade
Pump Flow Rate = 75 US gpm 40090.06 lbm/hr
0.1671 ft3/sec
Waste Tank # 1
Pressure at Receiving Nozzle = 0 psig
Tank Diameter = 12.09 feet
Tank Pressure = 0 psig
Discharge Elevation = 32.5 feet With 25% Design Factor from Grade
Liquid Level = 0 % Discharge at top of the tank
0 feet
Pump Suction Side Pump Discharge Side
This just includes the 1"X2" Expander at Pump discharge. This is NOT a pipe.
Line Size = 3 in NPS Line Size = 1 in NPS
Sch = 10 Sch = 80
Material = SS 316 Material = SS 316
Pipe Roughness, e = 0.0018 in Pipe Roughness, e = 0.0018 in
ID = 3.26 in ID = 0.957 in
0.27167 ft 0.07975 ft

Design Factor = 0 % Design Factor = 25 %


Straight Length = 30 ft Straight Length = 0.00 feet
Length with DF = 30 ft Length with DF = 0.00 ft

Flow Area = 0.05796 ft2 Flow Area = 0.00500 ft2


Flow Rate = 75 US gpm Flow Rate = 75 US gpm
0.1671 ft3/sec 0.1671 ft3/sec
Velocity = 2.88282 ft/sec Velocity = 33.45 ft/sec
Nre = 7767.9 Nre = 26461
Pipe Friction Factor = 0.0341 Fritction Factor = 0.0286

DH, DP, Qt DH, DP,


Fittings Qty L/D K Fittings L/D K
(ft-lbf/lbm) (psi) y (ft-lbf/lbm) (psi)
Straight Pipe 1 110.429 3.8 0.49 0.225 Straight Pipe 1 0 0.0 0.00 0.00
Pipe Entrance 1 14.6 0.5 0.06 0.030 1"X2" Conc Expander 1 7.59 0.2 3.78 1.75
90 Deg LR Elbow 6 30 1.0 0.79 0.367 Swing Check Valve 0 135.0 3.9 0.00 0.00
45 Deg LR Elbow 2 16 0.5 0.14 0.065 Gate Valve 0 13 0.4 0.00 0.00
Gate Valve 1 13 0.4 0.06 0.027 Ball Valves 0 3 0.1 0.00 0.00
3"X2" ECC Reducer 1 9.24 0.3 0.04 0.019 45 LR Elb 0 16 0.5 0.00 0.00
Flow Thru Run 1 20 0.7 0.09 0.041 90 LR Elb 0 30 0.9 0.00 0.00
Pipe Exit 1 29.30 1.0 0.13 0.060 Flow Through run 0 20 0.6 0.00 0.00
Flow Through Branch 0 60 1.7 0.00 0.00
Total 1.80 0.83 Total 3.78 1.75
2" Pipe from Pump Discharge to Waste Tank # 1
Line Size = 2 in NPS
Sch = 10
Material = SS 316
Pipe Roughness, e = 0.0018 in
ID = 2.157 in
0.17975 ft

Design Factor = 25 %
Straight Length = 70.83 feet
Length with DF = 88.54 ft

Flow Area = 0.02538 ft2


Flow Rate = 75 US gpm
0.1671 ft3/sec
Velocity = 6.5849 ft/sec ( up to 9 ft/sec )
Nre = 11740
Fritction Factor = 0.0312

DH,
Qt DP,
Fittings L/D K (ft-
y (psi)
lbf/lbm)
Straight Pipe 1 493 15 10.36 4.79
1"X2" Conc Expander 0 0.00 0.0 0.00 0.00
Swing Check Valve 1 135.0 4.2 2.84 1.31
Ball Valves 3 3 0.1 0.19 0.09
45 LR Elb 2 16 0.5 0.67 0.31
90 LR Elb 8 30 0.9 5.05 2.34
Flow Through run 3 20 0.6 1.26 0.58
Flow Through Branch 1 60 1.9 1.26 0.58
Pipe Entrance 1 16.02 0.5 0.34 0.16
Pipe Exit 1 32.04 1.0 0.67 0.31
Total 22.65 10.48
Writing Bernoulli Equation Between The Points at Suction Vessel Liquid Level and Discharge Point

𝜂𝑊_𝑃=((𝑃_2−𝑃_1)/𝜌)+ 𝑔/𝑔_𝐶 (𝑍_2−𝑍_1 )


+(𝑉_2^2)/((2∗𝑔_𝑐 ) )+ℎ_𝑓

where
P1 = 0.00 psig Pump Suction Pressure
P2 = 0.00 psig Discharge Point Pressure
RHO = 66.64 lb/ft3 Fluid Density
Z1 = 0.00 ft Liquid Level in Suction Vessel from Pump Centerline
Z2 = 32.50 ft Elevation of Discharge Point from Pump Centerline.
V2 = 6.58 ft/sec
hf = 28.23 ft-lbf/lbm

(p2-p1)/RHO = 0 ft-lbf/lbm
g/gc(Z2-Z1) = 32.50 ft-lbf/lbm
V^2/(2gc) = 0.67394 ft-lbf/lbm
hf = 28.23 ft-lbf/lbm

𝜂𝑊_𝑃 = 61.40 lbf-ft/lbm Work Done by the Pump


∆H = 61.40 lbf-ft/lbm Head Developed by the Pump

Writing Bernoulli Equation between Pump Suction and Discharge

∆𝑃/𝜌=((𝑉_𝑠^2)/((2∗𝑔_𝐶 ) )−
(𝑉_𝑑^2)/((2∗𝑔_𝐶 ) ))+𝜂𝑊_𝑃

Vs = 6.5849 ft/sec Velocity at Pump Suction Flange


Vd = 33.45 ft/sec Velocity at Pump Discharge Flange
𝜂𝑊_𝑃 = 61.40 ft-lbf/lbm
∆P/RHO = 44.68 ft-lf/lbm
∆P = 20.68 psi

Suction Vessel Pressure = 0.00 psig

Suction Side Liquid Head = 0.00 ft


0.00 psi

Suction Piping Pressure Drop = 0.83 psi

Pump Suction Pressure = -0.83 psig


= 13.87 psia

Pump Discharge Pressure = 19.85 psig

Vapor Pressure = 8.38 psia


NPSHA = (Psuction - Vap Pressure)*144/RHO
NPSHA = 11.85 ft

Power Required
Pump Flow Rate = 75 US gpm
= 0.1671 ft3/sec
Density = 66.64 lbm/ft3
Mass Flow Rate = 11.14 lbm/sec
∆H = 61.40 lbf-ft/lbm
Efficiency = 60 % Typical Value, Assumed

𝑃= (𝑚 ̇∆𝐻)/𝜂

Power Required, P = 1139.66 lbf-ft/sec


P = 2.07 HP
Pump Shut-off Pressure Calculation

Shut-off Head = 96.8 ft Taken from 2"X1"-10" Pump Curve for 9" Impeller
Shut-off DP = 44.8 psi
Maxi Suction Liquid Head = 13.6 ft
Max Suction Pressure = 6.3 psig

Shut-off Pressure = 51.1 psig

Max Power Calculation


density = 66.64 lb/ft3
Flow Rate,Q = 93 gpm EOC Flow Rate for 2"X1"-10" Pump Curve for 9" Impeller
= 13.8088 lbm/sec
DH = 60 ft-lbf/lbm Head at EOC for 2"X1"-10" Pump Curve for 9" Impeller

Efficiency = 0.37

Power = 2239.26 ft-lbf/sec


4.07 hP
Pipe Inside Diameter Table

Pipe Inside Diameter, ( inches)


NPS Schedule
5 10 20 30 40 60 80 100 120 140 160 STD XS XX
2 3 4 5 6 7 8 9 10 11 12 13 14 15
1/8 - 0.307 - - 0.269 - 0.215 - - - - -
1/4 - 0.41 - - 0.364 - 0.302 - - - - -
3/8 - 0.545 - - 0.493 - 0.423 - - - - -
1/2 0.71 0.674 - - 0.622 - 0.546 - - - 0.464 0.252
3/4 0.92 0.884 - - 0.824 - 0.742 - - - 0.612 0.434
1 1.185 1.097 - - 1.049 - 0.957 - - - 0.815 0.519
1 1/4 1.53 1.442 - - 1.38 - 1.278 - - - 1.16 0.896
1 1/2 1.77 1.682 - - 1.61 - 1.5 - - - 1.338 1.1
2 2.245 2.157 - - 2.067 - 1.939 - - - 1.687 1.503
2 1/2 2.709 2.635 - - 2.469 - 2.323 - - - 2.125 1.771
3 3.334 3.26 - - 3.068 - 2.9 - - - 2.624 2.3
3 1/2 3.834 3.76 - - 3.548 - 3.364 - - - - 2.728
4 4.334 4.26 - - 4.026 - 3.826 - 3.624 - 3.438 3.152
4 1/2 - - - - 4.506 - 4.29 - - - - 3.58
5 5.345 5.295 - - 5.047 - 4.813 4.563 - 4.313 4.063
6 6.407 6.357 - - 6.065 - 5.761 - 5.501 - 5.187 4.897
7 - - - - 7.023 - 6.625 - - - - 5.875
8 8.407 8.329 8.125 8.071 7.98 7.813 7.625 7.437 7.187 7.001 6.813 6.875
9 - - - - 8.941 - 8.625 - - - - 7.875
10 10.482 10.42 10.25 10.136 10.02 9.75 9.562 9.312 9.062 8.75 8.5 -
11 - - - - 11 - 10.78 - - - - 10
12 12.438 12.39 12.25 12.09 11.938 11.63 11.37 11.06 10.75 10.5 10.13 11.75 -
14 - 13.5 13.38 13.25 13.124 12.81 12.5 12.12 11.81 11.5 11.19 13
16 - 15.5 15.38 15.25 15 14.69 14.31 13.94 13.56 13.12 12.81 -
18 - 17.5 17.38 17.124 16.876 16.5 16.12 15.69 15.25 14.88 14.44 17.25 17
20 - 19.5 19.25 19 18.812 18.38 17.94 17.44 17 16.5 16.06 19.25 19 -
22 - 21.5 21.25 21 - 20.25 19.75 19.25 18.75 18.25 17.75 21.25 21 -
24 - 23.5 23.25 22.876 22.624 22.06 21.56 20.94 20.38 19.88 19.31 23.25 23
26 - 25.376 - - - - - - - - - 25.25 25 -
28 - 27.376 27 26.75 - - - - - - - 27.25 27 -
30 - 29.376 29 28.75 - - - - - - - 29.25 29 -
32 - 31.376 31 30.75 30.624 - - - - - - 31.25 31 -
34 - 33.376 33 32.75 32.624 - - - - - - 33.25 33 -
36 - 35.376 - - - - - - - - - 35.25 35 -
42 - - - - - - - - - - - 41.25 41 -
48 - - - - - - - - - - - 47.25 47 -

.
Friction Factors for Fittings for Complete Turbulence
S/N NPS fT
1 1/2 0.027
2 3/4 0.025
3 1 0.023
4 1 1/4 0.022
5 1 1/2 0.02
6 2 0.019
7 2 1/2 0.018
8 3 0.018
9 4 0.017
10 5 0.016
11 6 0.015
12 8 0.014
13 10 0.014
14 12 0.013
15 14 0.013
16 16 0.013

17 18 0.012

18 20 0.012
19 22 0.012
20 24 0.012
Pump Results Summary

S/N Parameter Value Unit


1 Flow rate 75.0 US gpm
2 Mass Flow Rate 40090.1 lbm/hr
3 Head Developed 61.4 ft
4 Differential Pressure 20.68 psi
5 Suction Pressure -0.83 psig
6 Discharge Pressure 19.85 psig
7 NPSHA 11.85 ft
8 Power 2.07 HP

A) Normal Condition
1) Liquid Level at the normal operating level of 14.00 ft from grade
2) Normal pumping temperature of 65 Deg C
3) Normal pump flow rate of 75 gpm
S/N Parameter Value Unit
1 Flow rate 75.0 US gpm
2 Mass Flow Rate 40090.1 lbm/hr
3 Head Developed 48.4 ft
4 Differential Pressure 14.66 psi
5 Suction Pressure 5.18 psig
6 Discharge Pressure 19.85 psig
7 NPSHA 35.12 ft
8 Power 1.63 HP

B) Rated Condition
1 Liquid Level is minimum at the tan nozzle elevation
2 Pumping temperature = 85 Deg C
3) Pump flow Rate = 75 gpm, same as Normal flow rate
S/N Parameter Value Unit
1 Flow rate 75.0 US gpm
2 Mass Flow Rate 40090.1 lbm/hr
3 Head Developed 61.4 ft
4 Differential Pressure 20.68 psi
5 Suction Pressure -0.83 psig
6 Discharge Pressure 19.85 psig
7 NPSHA 11.85 ft
8 Power 2.07 HP
Rated Condition Normal Condition
Sch 40 Sch 40
S/N Parameter Value Unit S/N
1 Flow rate 75.00 US gpm 1
2 Mass Flow Rate 40090.05 lbm/hr 2
3 Head Developed 65.41 ft 3
4 Differential Pre 25.07 psi 4
5 Suction Pressur -1.07 psig 5
6 Discharge Pres 24.00 psig 6
7 NPSHA 11.35 ft 7
8 Power 2.21 hP 8

Rated Condition Normal Condition


Sch 10 Sch 10
S/N Parameter Value Unit S/N
1 Flow rate 75.00 US gpm 1
2 Mass Flow Rate 40090.05 lbm/hr 2
3 Head Developed 60.24 ft 3
4 Differential Pre 22.62 psi 4
5 Suction Pressur -0.83 psig 5
6 Discharge Pres 21.78 psig 6
7 NPSHA 11.85 ft 7
8 Power 2.03 hP 8
Normal Condition

Parameter Value Unit


Flow rate 75.00 US gpm
Mass Flow 40090.05 lbm/hr
Head Deve 52.41 ft
Differentia 19.05 psi
Suction Pr 4.95 psig
Discharge 24.00 psig
NPSHA 34.62 ft
Power 1.77 hP

Normal Condition

Parameter Value Unit


Flow rate 75.00 US gpm
Mass Flow 40090.05 lbm/hr
Head Deve 47.24 ft
Differentia 16.60 psi
Suction Pr 5.18 psig
Discharge 21.78 psig
NPSHA 35.12 ft
Power 1.59 hP
Friction Factor Calculation

Churchill equation
1/√𝑓 = -4 log[(0.27 ∈/𝐷)+(7/𝑁_𝑅𝑒 )^0.9 ]

e/D = 0.000552147239
Nre 7767.895262798

(7/Nre)^0.9 = 0.001816833842

1/SQRT(f) = 10.82574229432

fFanning = 0.0085 Fanning Friction Factor


fDarcy = 0.0341
Friction Factor Calculation

Churchill equation
1/√𝑓 = -4 log[(0.27 ∈/𝐷)+(7/𝑁_𝑅𝑒 )^0.9 ]

e/D = 0.00188
Nre 26461

(7/Nre)^0.9 = 0.000602892824

1/SQRT(f) = 11.8175662815

fFanning = 0.0072 Fanning Friction Factor


fDarcy = 0.0286
Friction Factor Calculation

Churchill equation
1/√𝑓 = -4 log[(0.27 ∈/𝐷)+(7/𝑁_𝑅𝑒 )^0.9 ]

e/D = 0.00083449235
Nre 11740

(7/Nre)^0.9 = 0.001252807952

1/SQRT(f) = 11.32116018417

fFanning = 0.0078 Fanning Friction Factor


fDarcy = 0.0312
3"X2" ECC Reducer

3"X2" ECC Reducer

3" OD, d2 = 3.5 inch


2" OD, d1 = 2.375 inch
H = 3.5 inch

x = 3.69 inch 𝑥= ((𝑑_1/2)∗𝐻)/((𝑑_2−𝑑_1 ) )

Theta = 0.31100 radians


= 17.8189 Degrees
𝜃= 〖𝑇𝑎𝑛〗 ^(−1) (𝐷_1/(2.𝑥))

β = 0.679

(1−𝛽^2 ) = 0.540
β^4 = 0.2120

K2 = 0.3153 Based on Larger Pipe Diameter

f = 0.0341

K = f (L/D)

L/D = 9.2

K Factor Calculation Based on the Below book Reference


Reference: "Pipe Flow- A Practical and Comprehensive Guide"
by Donald C. Rennels and Hobart M. Hudson

𝛼=2 〖𝑡𝑎𝑛〗 ^(−1) ((𝑑_1−𝑑_2)/1.20𝐿)

𝐾_2=𝐾_𝑓2,2+𝐾_(𝐶𝑜𝑛𝑐,2)

𝐾_(𝑓𝑟,2)=𝑓(1−𝛽^4 )/(8∗𝑆𝑖𝑛(𝛼⁄2) )

𝐾_(𝑐𝑜𝑛𝑐,2)=0.0696∗𝑆𝑖𝑛(𝛼⁄2)∗(1−𝛽^5 )∗𝜆^2+(𝜆−1)^2

𝜆=1+0.622∗(𝛼⁄180)^(4/5)∗(1−0.215∗𝛽^2−0.785∗𝛽^5 )

3", OD, d1 = 3.5 inches


2" OD, d2 = 2.375 inches
L = 3.50 inches

α = 0.5234 𝛼=2 〖𝑡𝑎𝑛〗 ^(−1) ((𝑑_1−𝑑_2)/1.20𝐿)


radians
= 29.99 Degrees

f = 0.0341
β = 0.679 𝐾_(𝑓𝑟,2)=𝑓(1−𝛽^4 )/(8∗𝑆𝑖𝑛(𝛼⁄2) )

Kfr,2 = 0.0130

𝜆=1+0.622∗(𝛼⁄180)^(4/5)∗(1−0.215∗𝛽^2−0.785∗𝛽^5 )
Jet Contraction Ratio, λ = 1.117

Kconc,2 = 0.033 𝐾_(𝑐𝑜𝑛𝑐,2)=0.0696∗𝑆𝑖𝑛(𝛼⁄2)∗(1−𝛽^5 )∗𝜆^2+(𝜆−1)^2

K2 = 0.0459 Based on Small Pipe Diameter

K1 = 0.2164 Based on Larger Pipe Diameter

(L/D) = 6.341
d1 3.5
d2 2.374
L 3.5

Alpha 0.268095
0.523871
30.01561
1−0.215∗𝛽^2−0.785∗𝛽^5 )

)∗(1−𝛽^5 )∗𝜆^2+(𝜆−1)^2
1.5" X2" Expander

2" OD, d2 = 2.375 inch


1" OD, d1 = 1.315 inch
H = 3 inch

x = 3.72 inch
𝑥= (𝑑_1∗𝐻)/((𝑑_2−𝑑_1 ) )
Theta/2 = 0.17 radians
Theta = 0.35 radians
= 20.0 Degrees
𝜃⁄2= 〖𝑇𝑎𝑛〗 ^(−1) (𝑑_1/(2∗𝑥))

β = 0.554

(1−𝛽^2 )^2 = 0.481


β^4 = 0.094

K2 = 2.314279
K1 = 0.217502
f = 0.0286

K = f (L/D)

L/D = 7.59
Pump Affinity Laws

1 Constant Impeller Dia, Pump RPM Varying

Q2/ Q1 = N2/ N1
(DH2/DH1) = (N2/N1)^2
(P2/P1) = (N2/N1)^3

2 Pump RPM Constant, Impeller Being Trimmed

(Q2/Q1) = ( D2/D1)
(DH2/DH1) = (N2/N1)^2
(P2/P1) = (N2/N1)^3

3 Pump RPM Constant, Impeller Dia is changed Significantly

(Q2/Q1) = (D2/D1)^3
(DH2/DH1) = (D2/D1)^2
(P2/P1) = (D2/D1)^5
Water Density

𝜌=𝐶_1/(𝐶_2^[1+(1−𝑇/𝐶_3 )^(𝐶_4 ) ] )

T 85 Deg C
358.15 Deg K

333.15<T<403.15 403.15<T<647.13
if T < 333.15 Deg K 333.15 403.15 Deg K 403.15 647.13 Deg K
60 Deg C 60 130 Deg C 130 373.98 Deg C

C1 5.459 C1 4.9669 C1 4.391


C2 0.30542 C2 2.78E-01 C2 2.49E-01
C3 647.13 C3 6.47E+02 C3 6.47E+02
C4 0.081 C4 1.87E-01 C4 2.53E-01

1-T/C3 0.446556 0.446556 0.446556


(1-T/C3)^C4 0.936785 0.859779 0.815227

Density 54.29 kmol/m3 53.75 kmol/m3 54.90 kmol/m3


978.39 kg/m3 968.60 kg/m3 989.25 kg/m3
61.13 lb/ft3 60.51 lb/ft3 61.80 lb/ft3

Density 60.51 lb.ft3


Water Viscosity

Viscosity
Temperat
ure,
(Deg C) X10-3 Pa-sec cP Sat. water Viscos
Pa-sec
2.000
0 1.793 0.0018 1.793
1 1.732 0.0017 1.732 1.800
2 1.675 0.0017 1.675 1.600 f(x) = − 2.8274244282351E-06 x³ +
+ 1.74447257031253
3 1.621 0.0016 1.621 1.400 R² = 0.998135958333267
4 1.569 0.0016 1.569

Viscosity, cP
1.200
5 1.520 0.0015 1.520 1.000
6 1.474 0.0015 1.474 0.800
7 1.429 0.0014 1.429 0.600
8 1.387 0.0014 1.387
0.400
9 1.346 0.0013 1.346
0.200
10 1.308 0.0013 1.308
0.000
11 1.271 0.0013 1.271 0 20 40
12 1.236 0.0012 1.236
Temp
13 1.202 0.0012 1.202
14 1.170 0.0012 1.170
15 1.139 0.0011 1.139
16 1.110 0.0011 1.110
17 1.081 0.0011 1.081 y = -3E-06x3 + 0.0006x2 - 0.0476x + 1.7445
18 1.054 0.0011 1.054
19 1.028 0.0010 1.028 T 80
20 1.003 0.0010 1.003
21 0.979 0.0010 0.979
22 0.955 0.0010 0.955 Coeff Exponent
23 0.933 0.0009 0.933 6
24 0.911 0.0009 0.911 5
25 0.891 0.0009 0.891 4
26 0.871 0.0009 0.871 -3E-06 3
27 0.852 0.0009 0.852 0.0006 2
28 0.833 0.0008 0.833 -0.048 1
30 0.798 0.0008 0.798 1.7445 0
32 0.765 0.0008 0.765
34 0.734 0.0007 0.734 Viscosity =
36 0.705 0.0007 0.705
38 0.679 0.0007 0.679
40 0.653 0.0007 0.653
42 0.629 0.0006 0.629
44 0.607 0.0006 0.607
46 0.586 0.0006 0.586
48 0.566 0.0006 0.566
50 0.547 0.0005 0.547
55 0.504 0.0005 0.504
60 0.467 0.0005 0.467
65 0.434 0.0004 0.434
70 0.405 0.0004 0.405
75 0.378 0.0004 0.378
80 0.355 0.0004 0.355
85 0.334 0.0003 0.334
90 0.315 0.0003 0.315
95 0.298 0.0003 0.298
100 0.282 0.0003 0.282
Sat. water Viscosity Vs. Temperature
0
0
0 f(x) = − 2.8274244282351E-06 x³ + 0.000608574476847 x² − 0.04760495467452 x
+ 1.74447257031253
0 R² = 0.998135958333267
0
0
0
0
0
0
0
0 20 40 60 80 100 120
Temperature, Deg C

+ 0.0006x2 - 0.0476x + 1.7445

Deg C

0.0000
0.0000
0.0000
-1.5360
3.8400
-3.8080
1.7445

0.2405 cP
Vapor Pressure of Water

Ref :Perry's Chemical Engineer's Handbook


𝑉𝑎𝑝. 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒=𝑒𝑥𝑝[𝐶_1+𝐶_2/𝑇+𝐶_3∗𝑙𝑛(𝑇)+𝐶_4∗𝑇^(𝐶_5 ) ]

C1 = 73.649
C2 -7258.2
C3 -7.3037
C4 4.17E-06
C5 2

T = 85 Deg C
358.15 Deg K

Vapor Pressure = 5.78E+04 Pa


= 8.381 psia
Design Basis:
(i) The basis for the capacity for the Fines Tank Recirculation pump is the capacity required
to empty the working volume of Fines Tank in less than 2 hours time.
(ii) The basis for the Head calculated for the pump shall the elevation of the Waste Water
tank receiving nozzle and the frictional pressure in the piping from pump discharge to
Waste Water Tank as it is the elevation and piping length are maximum for the Waste
Water Tank.

(i) Recirculation Pump Capacity Estimation

Fines Tank, Diameter 9.1


= ft
Tank Height 15.75
= ft
Working Height 13.75
= ft
Height of Pump-Out Nozzle from Grade 1.5
= ft
Working Volume 796.7
= ft3
5959.9 US Gallons
Time to empty the Tank = 1.4 Hours 85.14148 mins
Pump recirculation Capacity = 70.0 gpm

Part of the flow shall be directed towards the New PH meter for PH measurement

Flow to New PH Meter = 5.0 US gpm ( Assumed Value)

Corrected Recirc Pump capacity = 75.0 US gpm

Fluid Data and Properties

Fluid = Waste Water


Temperature = 60 Deg C
Density = 1.06678 gm/cm3 ( Measured value as 25 August 2020)
= 66.65 lb/ft3
Viscosity = 10 cP (Assumed Value)
Data for Filling Pump Data Sheet

Min Normal Max Rated


Pumping Temperature 50 65 85 85 Deg C
122 149 185 185 Deg F

A) Rated Conditons
1 Fines Tank Liquid Level = 1 ft from Grade
2 Pumping Temperature = 85 Deg C
3 Pump Flow Rate = 75 US gpm

B) Normal Conditions
1 Fines Tank Liquid Level = 13.58 ft from Grade
2 Pumping Temperature = 65 Deg C
3 Pump Flow Rate = 75 US gpm

C) Fluid Properties
Min Normal Max Rated
Pumping Temperature = 50 65 85 85 Deg C
Specific Gravity = 1.068 1.068 dimensionless
Density = 66.643 66.643 lb/ft3
Viscosity = 10 10 cP
Vapor Pressure = 3.629 8.381 8.381 psia
Specific Heat 0.998696 1.00011 1.00332 1.00332 Btu/lb-Deg F

Note: The density and viscosity of the fluid at rated conditions has been taken same
as that at normal conditions for conservative purposes.

Atmospheric Boiling Point = 100 Deg C


= 212 Deg F
Pressure = 14.7 psia

D) Fluid Characteristic
Property of the Liquid = Hazardous
Is the Liquid Acidic/Basic = Acidic
PH = 4

Is the Liquid Erossive or Corrosive = Yes


ason for Erosive/ Corrosive Nature = Liquid is Acidic and Has Solid Particles

PH = 4
% Solids = 12 %
Particle Size = 1000 micrometers
= 0.03936 inches
E) Site Conditions and Utilities

Location = Outdoor
Altitude = 318 ft
Ambient Temperatures = -20 Deg F -29 Deg C (Min) Winter
= 95 Deg F 35 Deg C (Max) Summer

Electrical Area Classification = Non-Hazardous

Electricity
Voltage = 575 volts
Phase = 3
Frequency = 60 hertz

Cooling Water
Source = City Water
Supply Temperature = 60.08 Deg F 15.6 Deg C
Max, Return Temperature = 72 Deg F 22.2 Deg C
Supply Pressure = 60 psig
Design Pressure = 120 psig
Min Return Presure = psig
Max Allowable DP = psi

Chloride Concentration = 20 ppm


Drop Down

Liquid Property Erosion / Corrosion


Hazardous Yes
Flammable No

Acidic/Basic
Acidic
Basic
Neutral

Indoor
Outdoor

Non-Hazardous
Class I Div 1
Class 1 Div 2
Class 2 Div 1
Class 2 Div 2
Class 3 Div 1
Class 3 Div 2
Electrical Power cost 0.125 $/KWH

Power 1.36 HP
1.014152 KW

Time 365 day


8760 hours

Cost Incur 1110.496 $

2.54 1.76 1.36


2074.015 1437.113 1110.496

You might also like