Nothing Special   »   [go: up one dir, main page]

HW Mat4

Download as docx, pdf, or txt
Download as docx, pdf, or txt
You are on page 1of 13

Numerical Methods Course Home work

Q25.2 Solve the following problem over the interval from x = 0 to 1 using a step size of 0.25 where y(0) =1. Display all your results on the same graph.
dy
=(1+2 x) √ y
dx
(a) Analytically.
(b) Euler’s method.
(c) Heun’s method without the corrector.
(d) Ralston’s method.
(e) Fourth-order RK method.

Solution ……

(a) Analytically.
1
dy
=( 1+2 x ) . dx ≫≫( y ) 2 dy =( 1+ 2 x ) . dx
√y
Integrating x=0 , y = 1

y 1 x

∫ ( y )2 dy=∫ ( 1+2 x ) . dx
1 0

1 1 1
2 y y =x + x 2 x ≫≫ 2 y 2 −2 ( 1 ) 2 =x + x 2−( 0 )
1
2
| 0 |
1
2 x+ x 2 +2 x+ x2 +2 2
y = ≫ ≫ y =( )
2 2
at x = 0 , 0.25 , 0.5 , 0.75 , 1

2 2 2 2
x + x 2 +2 2 0+(0) +2 x + x 2 +2 2 0.25+(0.25) + 2
y ( 0 )=( ) =( ) =1 y ( 0.25 )=( ) =( ) =1.337
2 2 2 2
2 2 2 2
x + x 2 +2 2 0.5+(0.5) +2 x + x 2 +2 2 0.75+(0.75) + 2
y ( 0.5 )=( ) =( ) =1.891 y ( 0.75 )=( ) =( ) =2.743
2 2 2 2
2 2
x + x 2+2 2 1+(1) + 2
y ( 1 )=( ) =( ) =4
2 2
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬

(b) Euler’s method.

when x = 0 , y(0) =1

1 1
y '1=( 1+2 x )( y ) 2 =( 1+2( 0) ) ( 1 ) 2 =1

y i+1 = y i+ ( y '1∗h )=1+(1∗.25)=1.25


Numerical Methods Course Home work
when x = 0.25 , y(0) =1.25

1 1
y '1=( 1+2 x )( y ) 2 =( 1+2( 0.25) ) ( 1.25 ) 2 =1.677

y i+1 = y i+ ( y '1∗h )=1.25+(1.677∗.25)=1.669


when x = 0. 5 , y(0) =1.669

1 1
y '1=( 1+2 x )( y ) 2 =( 1+2( 0.5) ) ( 1.669 ) 2 =2.584

y i+1 = y i+ ( y '1∗h )=1.669+(2.584∗.25)=2.473

when x = 0. 75 , y(0) =2.473

1 1
y '1=( 1+2 x )( y ) 2 =( 1+2(0.75) ) ( 2.473 ) 2 =3.931

y i+1 = y i+ ( y '1∗h )=2.473+(2.473∗.25)=3.464

‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬

(c) Heun’s method without the corrector.

when x = 0 , y(0) =1

1 1
' 2 2
y =( 1+2 x )( y ) =( 1+2(0) ) ( 1 ) =1

y 0' = yi + y '∗h=1+(1∗.25)=1.25
1 1
' 0 2
y =( 1+2 x ) ( y ' ) =( 1+2(0.25) ) ( 1.25 ) 2 =1.677
1

y 0' + y '1 1.25+1.677


y i+1 = y i+
2 (∗h=1+
2 )
∗0.25=1.334 ( )
when x = 0.25 , y(0) =1.334

1 1
' 2 2
y =( 1+2 x )( y ) =( 1+2(0.25)) ( 1.334 ) =1.733

y 0' = yi + y '∗h=1.334 +(1.733∗0.25)=1.768


1 1
' 0 2
y =( 1+2 x ) ( y ' ) =( 1+2(0.5) ) ( 1.768 ) 2 =2.660
1

y 0' + y '1 1.768+2.660


y i+1 = y i+ ( 2 )
∗h=1.334+
2
∗0.25=1.888 ( )
Numerical Methods Course Home work
when x = 0. 5 , y(0) =1.888

1 1
' 2 2
y =( 1+2 x )( y ) =( 1+2(0.5) ) ( 1.888 ) =2.748

y 0' = yi + y '∗h=1.888+(2.748∗0.25)=2.575
1 1
' 0 2
y =( 1+2 x ) ( y ' ) =( 1+2(0.75) ) ( 2.575 ) 2 =4.012
1

y 0' + y '1 2.575+ 4.012


y i+1 = y i+ ( 2 )
∗h=1.888+
2
∗0.25=2.711 ( )
When x = 0. 75 , y(0) =2.711

1 1
' 2 2
y =( 1+2 x )( y ) =( 1+2(1) ) ( 2.711 ) =4.112

y 0' = yi + y '∗h=2.711+(4.112∗0.25)=3.740
1 1
' 0 2
y =( 1+2 x ) ( y ' ) =( 1+2(1) ) (3.740 )2 =5.802
1

y 0' + y '1 3.740+5.802


y i+1 = y i+ ( 2 )
∗h=2.711+
2
∗0.25=3.904 ( )
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬

(d) Ralston’s method.

when x = 0 , y(0) =1

1 1
k 1=f ( x , y ) =( 1+ 2 x ) ( y )2 = ( 1+ 2(0) ) ( 1 ) 2 =1

3 3
k 2=f ( xi + h , y i + k 1 h)=¿
4 4

y i+1 = y i+ ( 13 k + 23 k )∗h=1+( 13 1+ 23 1.498 )∗0.25=1.333


1 2

when x = 0.25 , y(0) =1.333

1 1
k 1=f ( x , y ) =( 1+ 2 x ) ( y )2 = ( 1+ 2(0.25) ) ( 1.333 ) 2 =1.732

3 3
k 2=f ( xi + h , y i + k 1 h)=¿
4 4
Numerical Methods Course Home work

y i+1 = y i+ ( 13 k + 23 k )∗h=1.333+( 13 1.732+ 23 2.414 )∗0.25=1.879


1 2

when x = 0.5 , y(0) =1.879

1 1
k 1=f ( x , y ) =( 1+ 2 x ) ( y )2 = ( 1+ 2(0.5) ) ( 1.879 ) 2 =2.741

3 3
k 2=f ( xi + h , y i + k 1 h)=¿
4 4

y i+1 = y i+ ( 13 k + 23 k )∗h=1.879+( 13 2.741+ 23 3.674)∗0.25=2.719


1 2

when x = 0.75 , y(0) =2.719

1 1
2 2
k 1=f ( x , y ) =( 1+ 2 x ) ( y ) = ( 1+ 2(0.75) ) ( 2.719 ) =4.122

3 3
k 2=f ( xi + h , y i + k 1 h)=¿
4 4

y i+1 = y i+ ( 13 k + 23 k )∗h=2.719+( 13 4.122+ 23 5.373)∗0.25=4.070


1 2

‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬

(e) Fourth-order RK method.

when x = 0 , y(0) =1

1 1
2 2
k 1=f ( x , y ) =( 1+ 2 x ) ( y ) = ( 1+ 2(0) ) ( 1 ) =1

1 1
k 2=f ( xi + h , y i + k 1 h)=¿
2 2

1 1
k 3=f (xi + h , y i + k 2 h)=¿
2 2
1 1
k 4=f ( x i +h , y i+ k 3 h)=( 1+2 ( x +h ) ) ( y+ k 3 h ) 2 =( 1+2 ( 0+0.25 ) ) ( 1+1.350∗0.25 ) 2 =1.735
Numerical Methods Course Home work

h 0.25
y i+1 = y i+ ( k 1 +2∗k 2 +2∗k 3 +k 4 )=1+ ( 1+2∗1.325+2∗1.350+1.735 )=1.337
6 6
when x = 0.25 , y(0) =1.337

1 1
k 1=f ( x , y ) =( 1+ 2 x ) ( y )2 = ( 1+ 2(0.25) ) ( 1.337 )2 =1.734

1 1
k 2=f ( xi + h , y i + k 1 h)=¿
2 2

1 1
k 3=f (xi + h , y i + k 2 h)=¿
2 2
1 1
2 2
k 4=f ( x i +h , y i+ k 3 h)=( 1+2 ( x +h ) ) ( y+ k 3 h ) =( 1+2 ( 0.25+0.25 ) ) ( 1.337+2.220∗0.25 ) =2.751

h 0.25
y i+1 = y i+ ( k 1 +2 k 2 +2 k 3 +k 4 ) =1.337+ ( 1.734+2∗2.181+2∗2.220+2.751 ) =1.891
6 6

when x = 0.5 , y(0) =1.891

1 1
2 2
k 1=f ( x , y ) =( 1+ 2 x ) ( y ) = ( 1+ 2(0.5) ) ( 1.891 ) =2.750

1 1
k 2=f ( xi + h , y i + k 1 h)=¿
2 2

1 1
k 3=f (xi + h , y i + k 2 h)=¿
2 2
1 1
k 4=f ( x i +h , y i+ k 3 h)=( 1+2 ( x +h ) ) ( y+ k 3 h ) 2 =( 1+2 ( 0.5+0.25 )) ( 1.891+3.42∗0.25 ) 2 =6.864

h 0.25
y i+1 = y i+ ( k 1 +2 k 2 +2 k 3 +k 4 ) =1.891+ ( 2.75+ 2∗3.364+ 2∗3.42+6.864 )=2.857
6 6
when x = 0.75 , y(0) =2.857

1 1
k 1=f ( x , y ) =( 1+ 2 x ) ( y )2 = ( 1+ 2(0.75) ) ( 2.857 ) 2 =4.226

1 1
k 2=f ( xi + h , y i + k 1 h)=¿
2 2

1 1
k 3=f (xi + h , y i + k 2 h)=¿
2 2
Numerical Methods Course Home work
1 1
2 2
k 4=f ( x i +h , y i+ k 3 h)=( 1+2 ( x +h ) ) ( y+ k 3 h ) =( 1+2 ( 0.75+0.25 ) ) ( 2.857+5.137∗0.25 ) =6.105

h 0.25
y i+1 = y i+ ( k 1 +2 k 2 +2 k 3 +k 4 ) =2.857+ ( 4.226+ 2∗5.06+2∗5.137+6.105 ) =4.140
6 6

x 0 0.25 0.50 0.75 1.00


Analytically 1 1.337 1.891 2.743 4.00
Euler’s method 1 1.250 1.669 2.473 3.464
Heun’s method 1 1.334 1.888 2.711 3.904
Ralston’s method 1 1.333 1.879 2.719 4.071
Fourth-order RK method 1 1.337 1.891 2.857 4.14

4.5

3.5

3
alytically
2.5
Euler’s method
Heun’s method
2
Ralston’s method
Fourth-order RK method
1.5

0.5

0
0 0.25 0.5 0.75 1 1.25

‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬

Q25.4 Solve the following problem with the fourth-order RK method ,

d2 y dy
2
+0.5 +7 y
dx dx
where y(0) = 4 and y(0) = 0. Solve from x = 0 to 5 with h = 0.5 Plot your results.

Solution ……
Numerical Methods Course Home work

dy
Let = y'
dx

d y' '
=−0.5 y −7 y
dx

x y
y; k 11 k 12 y mid y ,mid ❑ k 21 k 22 y mid y ,mid ❑ k 31 k 32 y end y , end k 41 k 42
0 4 0 0 -28 4 -7 -7 -31.5 2.25 -7.875 -7.875 -11.813 0.0625 -5.906 -5.906 2.516
0.5 1.028 -9.34 -9.34 -2.526 -1.305 -9.97 -9.97 14.12 -1.463 -5.81 -5.81 13.14 -1.875 -2.77 -2.77 14.51
1 -2.147 -3.91 -3.91 16.984 -3.125 0.336 0.336 21.7 -1.389 1.515 1.515 13.68 -1.389 2.93 2.93 8.258
1.5 -2.497 4.09 4.09 15.434 -2.47 7.95 7.95 13.315 -0.51 7.42 7.42 -0.144 1.213 4.02 4.02 -10.50
2 0.7405 6.7 6.7 -8.534 2.24 4.67 4.67 -17.735 1.908 2.27 2.27 -14.5 -0.546 -0.546 -0.546 57.162
2.5 -0.92 5.38 5.38 3.75 0.425 6.32 6.32 -6.135 0.66 3.85 3.85 -6.545 1.005 2.11 2.11 -8.09
3 1.4 2.905 2.905 -11.25 2.13 0.092 0.092 -14.96 1.423 -0.834 -0.834 -9.54 0.983 -1.867 -1.867 -5.95
3.5 1.36 -2.61 -2.61 -8.215 0.7075 -4.66 -4.66 -2.62 0.195 -3.27 -3.27 0.27 -0.275 -2.48 -2.48 3.165
4 -0.386 -3.23 -3.23 4.317 -1.19 -2.15 -2.15 9.43 -0.923 -0.87 -0.87 6.9 -0.821 0.219 0.219 5.64
4.5 -1.14 0.32 0.32 7.82 -1.06 2.28 2.28 6.28 -0.57 1.89 1.89 3.045 -0.195 1.843 1.843 0.444
5 -0.195 0.444 0.444 1.143 -0.084 0.729 0.729 0.223 -0.013 0.5 0.5 -0.15 0.055 0.365 0.365 -0.567

0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
y
-2
y2
-4

-6

-8

-10

-12

‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬

Q 25.7 Use (a) Euler’s and (b) the fourth-order RK method to solve
2
dy
=−2+4 e−x dz =− y z
dx dx 3
Numerical Methods Course Home work
over the range x = 0 to 1 using a step size of 0.2 with y(0) = 2 and z(0) = 4.

Solution ……

(a) Euler’s method

dy
=−2 y+ 4 e−x
dx

when x = 0 , y(0) =2

y '1=−2 y + 4 e−x =−2 ( 2 ) + 4 e−0=0

y i+1 = y i+ ( y '1∗h )=2+(0∗.2)=2


when x = 0.2 , y(0) =2

y '1=−2 y + 4 e−x =−2 ( 2 ) + 4 e−0.2=−0.725

y i+1 = y i+ ( y '1∗h )=2+(−0.725∗.2)=1.855


when x = 0.4 , y(0) =1.855

‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬

dz − y z 2 dz −4 x e−x ∗z2
= ≫≫ ≫ =
dx 3 dx 9

when x = 0 , z(0) = 4

2
−4 x e−x∗z 2 −4 (0)e ∗(4)
−0
z i=f ( x , z ) = = =0
9 9

z i+1=z i + ( z '1∗h )=4+ ( 0∗.2 ) =4


when x = 0.2 , z(0) = 4

−4 x e−x∗z 2 −4 ( 0.2 ) e ∗( 4 )2
−0.2
z i=f ( x , z ) = = =−1.164
9 9

z i+1=z i + ( z '1∗h )=4+(−1.164∗.2)=3.77


when x = 0.4 , z(0) = 3.77
Numerical Methods Course Home work

x y z
0 2 4
0.2 2 4
0.4 1.855 3.77
0.6 1.65 3.43
0.8 1.429 3.08
1 1.22 2.78

‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬

b) the fourth-order RK method


dy
=−2 y+ 4 e−x
dx
when x = 0 , y(0) =2

k 1=f ( x , y ) =−2 y + 4 e− x =−2∗2+ 4 e−0 =0

1 1 0 0.2
( 2 2 )
k 2=f xi + h , y i + k 1 h =−2∗2+ ∗0.2+ 4 e−0+
2 2
=−0.1

1 1 −0.1 0.2
( 2 2 )
k 3=f xi + h , y i + k 2 h =−2∗2+
2
∗0.2+ 4 e−0+
2
=0.09

k 4=f ( x i+ h , y i +k 3 h )=−2∗2+0.09∗0.2+ 4 e−0 +0.2=0.218

h 0.2
y i+1 = y i+ ( k 1 +2∗k 2 +2∗k 3 +k 4 )=2+ ( 0−2∗0.1+ 2∗0.09+ 0.218 )=2.006
6 6
when x = 0.2 , y(0) =2.006

k 1=f ( x , y ) =−2 y + 4 e− x =−2∗2.006 +4 e−0.2=−0.737

1 1 −0.737 0.2
( 2 2 )
k 2=f xi + h , y i + k 1 h =−2∗2.006+
2
∗0.2+ 4 e−0.2 +
2
=−0.711

1 1 −0.711 0.2
( 2 2 )
k 3=f xi + h , y i + k 2 h =−2∗2.006+
2
∗0.2+ 4 e−0.2 +
2
=−0.708

k 4=f ( x i+ h , y i +k 3 h )=−2∗2.006−0.708∗0.2+ 4 e−0.2 +0.2=−1.25


Numerical Methods Course Home work

h 0.2
y i+1 = y i+ ( k 1 +2∗k 2 +2∗k 3 +k 4 )=2.006+ (−0.737−2∗0.711−2∗0.708−1.25 )=1.859
6 6
when x = 0.4 , y(0) =1.845

k 1=f ( x , y ) =−2 y + 4 e− x =−2∗1.845+ 4 e−0.4 =−1.009

1 1 −1.009 0.2
( 2 2 )
k 2=f xi + h , y i + k 1 h =−2∗1.845+
2
∗0.2+ 4 e−0.4 + =−1.01
2

1 1 −1.01 0.2
( 2 2 )
k 3=f xi + h , y i + k 2 h =−2∗1.845+
2
∗0.2+ 4 e−0.4 +
2
=−1.01

k 4=f ( x i+ h , y i +k 3 h )=−2∗1.845−1.041∗0.2+ 4 e−0.4 +0.2=−1.011

h 0.2
y i+1 = y i+ ( k 1 +2∗k 2 +2∗k 3 +k 4 )=1.845+ (−1.009−4∗1.01−1.011 )=1.643
6 6
when x = 0.6 , y(0) =1.643

k 1=f ( x , y ) =−2 y + 4 e− x =−2∗1.643+ 4 e−0.6 =−1.091

1 1 −1.091 0.2
( 2 2 )
k 2=f xi + h , y i + k 1 h =−2∗1.643+
2
∗0.2+ 4 e−0.6 +
2
=−1.100

1 1 −1.1 0.2
( 2 2 )
k 3=f xi + h , y i + k 2 h =−2∗1.643+
2
∗0.2+ 4 e−0.6 +
2
=−1.101

k 4=f ( x i+ h , y i +k 3 h )=−2∗1.643−1.101∗0.2+ 4 e−0.6 + 0.2=−1.111

h 0.2
y i+1 = y i+ ( k 1 +2∗k 2 +2∗k 3 +k 4 )=1.643+ (−1.091−2∗1.1−2∗1.101−1.111 )=1.423
6 6
when x = 0.8 , y(0) =1.423

k 1=f ( x , y ) =−2 y + 4 e− x =−2∗1.423+ 4 e−0.8 =−1.049

1 1 −1.049 0.2
( 2 2 )
k 2=f xi + h , y i + k 1 h =−2∗1.423+
2
∗0.2+ 4 e−0.8 n+
2
=−1.054

1 1 −1.054 0.2
( 2 2 )
k 3=f xi + h , y i + k 2 h =−2∗1.423+
2
∗0.2+ 4 e−0.8 n +
2
=−1.054

k 4=f ( x i+ h , y i +k 3 h )=−2∗1.423−1.054∗0.2+ 4 e−0.8 +0.2=−1.06


Numerical Methods Course Home work

h 0.2
y i+1 = y i+ ( k 1 +2∗k 2 +2∗k 3 +k 4 )=1.423+ (−1.049−4∗1.054−1.06 )=1.212
6 6

dz − y z 2 dz −4 x e−x ∗z2
= ≫≫ ≫ =
dx 3 dx 9
when x = 0 , z(0) = 4

2
−4 x e−x∗z 2 −4 (0) e ∗( 4)
−0
l 1=f ( x , z ) = = =0
9 9

0.2 0.2 ( ) 2
h h (
− 4 ( 0 ) e−0+
2 )(
∗ 4+
2
0 )
(
l 2=f x + , z+ l 1 =
2 2 ) 9
=−0.1778

2
0.2 0.2 (
h h (
− 4 ( 0 ) e−0+
2 )(
∗ 4+
2
−1.778 ) )
(
l 3=f x + , z+ l 2 =
2 2 ) 9
=−0.1762

2
−4 x e−x∗z 2 −4 ( 0 ) e + 0.2∗( 4−0.1762 )
−0
l 4 =f ( x +h , z+l 3 ) = = =−0.325
9 9

h 0.2
z i+1=z i + ( l 1 +2∗l 2 +2∗l 3+ l 4 )=4+ (−0−2∗0.1778−2∗0.1762−0.325 )=3.966
6 6
when x = 0.2 , z(0) = 3.966

2
−4 x e−x∗z 2 −4 ( 0.2 ) e ∗( 3.966 )
−0.2
l 1=f ( x , z ) = = =−1.145
9 9
2
0.2 0.2 (
h h (
− 4 ( 0.2 ) e−0.2 +
2 )(
∗ 3.966+
2
−1.145 ) )
(
l 2=f x + , z+ l 1 =
2 2 ) 9
=−1.244

2
0.2 0.2 (
h h (
− 4 ( 0.2 ) e−0.2 +
2 )(
∗ 3.966+
2
−1.244 ) )
(
l 3=f x + , z+ l 2 =
2 2 ) 9
=−1.238

−4 x e−x∗z 2 −4 ( 0.2 ) e +0.2∗( 3.966−1.238 )2


−0.2
l 4 =f ( x +h , z+l 3 ) = = =−0.707
9 9

h 0.2
z i+1=z i + ( l 1 +2∗l 2 +2∗l 3+ l 4 )=3.966+ (−1.145−2∗1.244−2∗1238−0.707 )=3.739
6 6
Numerical Methods Course Home work
when x = 0.4 , z(0) = 3.739

2
−4 x e−x∗z 2 −4 ( 0.4 ) e ∗ (3.739 )
−0.4
l 1=f ( x , z ) = = =−1.666
9 9
2
0.2 0.2 (
h h (
− 4 ( 0.4 ) e−0.4 +
2 )(
∗ 3.739+
2
−1.666 ) )
(
l 2=f x + , z+ l 1 =
2 2 ) 9
=−1.663

2
0.2 0.2 (
h h (
− 4 ( 0.4 ) e−0.4 +
2 )(
∗ 3.739+
2
−1.663 ) )
(
l 3=f x + , z+ l 2 =
2 2 ) 9
=−1.664

−0.4 2
−4 x e−x∗z 2 −( 4 ( 0.4 ) e + 0.2 )∗( 3.739−1.664 )
l 4 =f ( x +h , z+l 3 ) = = =−0.609
9 9

h 0.2
z i+1=z i + ( l 1 +2∗l 2 +2∗l 3+ l 4 )=3.739+ (−1.666−2∗1.663−2∗1.664−0.609 )=3.441
6 6
when x = 0.6 , z(0) = 3.441

2
−4 x e−x∗z 2 −4 ( 0.6 ) e ∗( 3.441 )
−0.6
l 1=f ( x , z ) = = =−1.733
9 9
2
0.2 0.2 (
h h (
− 4 ( 0.6 ) e−0.6 +
2 )(
∗ 3.441+
2
−1.733 ) )
(
l 2=f x + , z+ l 1 =
2 2 ) 9
=−1.681

2
0.2 0.2 (
h h (
− 4 ( 0.6 ) e−0.6 +
2 )(
∗ 3.441+
2
−1.681 ) )
(
l 3=f x + , z+ l 2 =
2 2 ) 9
=−1.687

−0.6 2
−4 x e−x∗z 2 −( 4 ( 0.6 ) e +0.2 )∗( 3.441−1.681 )
l 4 =f ( x +h , z+l 3 ) = = =−0.522
9 9

h 0.2
z i+1=z i + ( l 1 +2∗l 2 +2∗l 3+ l 4 )=3.441+ (−1.733−2∗1.681−2∗1.687−0.522 )=3.141
6 6
when x = 0.8 , z(0) = 3.141

2
−4 x e−x∗z 2 −4 ( 0.8 ) e ∗( 3.141 )
−0.8
l 1=f ( x , z ) = = =−1.576
9 9
Numerical Methods Course Home work
2
0.2 0.2 (
h h (
− 4 ( 0.8 ) e−0.8 +
2 )(
∗ 3.141+
2
−1.576 ) )
2(
l 2=f x + , z+ l 1 =
2 ) 9
=−1.521

2
0.2 0.2 (
h h (
− 4 ( 0.8 ) e−0.8+
2 )(
∗ 3.141+
2
−1.521 ) )
2(
l 3=f x + , z+ l 2 =
2 ) 9
=−1.527

−0.8 2
−4 x e−x∗z 2 −( 4 ( 0.8 ) e +0.2 )∗( 3.141−1.527 )
l 4 =f ( x +h , z+l 3 ) = = =−0.474
9 9

h 0.2
z i+1=z i + ( l 1 +2∗l 2 +2∗l 3+ l 4 )=3.141+ (−1.576−2∗1.521−2∗1.527−0.474 )=2.87
6 6
x y z
0 2 4
0.2 2 4
0.4 1.855 3.77
0.6 1.65 3.43
0.8 1.429 3.08
1 1.22 2.78

4.5

3.5

2.5 y1
Z1
2 y2
Z2

1.5

0.5

0
0 0.25 0.5 0.75 1 1.25

You might also like