Transformation From Spatial To Geographical Coordinates: B. R. Bowring
Transformation From Spatial To Geographical Coordinates: B. R. Bowring
Transformation From Spatial To Geographical Coordinates: B. R. Bowring
B. R. Bowring
ABSTRACT
Formulae relating cartesian to spheroidal coordinate systems are examined. A simple equation
eliminating the usual need for iteration is presented. Tests show that this formula is virtually
rigorous for terrestrial stations.
NOTATION
THE PROBLEM
ITERATIVE SOLUTION
In Fig. 1, OG =e 2
v. sin ¢ so that in triangle PGN
~ Z + e2 v . sin ¢
tan,+, = X . (2)
This can be used to obtain ¢ by. iteration using a starting value of ¢ such as fron1
323
TRANSFORMATION FROM SPATIAL TO GEOGRAPHICAL COORDINATES
z
x
N
o
x
c
Fig. 1
tan 4>= (1 + 8)(Z/ X). This value of 4> is for the point Po where PO cuts the
spheroid.
Putting H = Q.e2 v,
X = (1 + e2 Q) v cos 4>
so
tan 4>= (Z/X)(1 +e2 Q)/[1 +e2(Q-l)].
In the absence of any knowledge of the value of H, the equation (3.2) would
appear to be the most sensible for earth bound stations.
The centre of curvature C of the spheroid corresponding to P' (the foot of the
normal P P') is the point
where u is the parametric latitude of the point P'. Therefore (see Fig. 1)
A" Z + e . b . sin 3 u
tan'f'=----- (4)
X -e2 a.cos3 u
This is clearly an iterative solution; but it has been found that this formula is
extremely accurate on test using the single first approximation for u for the right-
hand side from tan u = (Z/X) (a/b).
324
B. R. BOWRING
EXAMPLE 1
Spheroid: a = 6378249·145 m e2 = 0·0068035111
b = 6356514·870 m e = 0·0068501160
Given point: X = 4114496·258 m Z = 4870157·031 m
Solution: tan u = (a/b)(Z/X) = 1·1877053292
cos u = 1/v"(1 +tan2 u) = 0·6440705847
sin u = v"(I-cos 2
u) = 0·7649660659
Then by (4) tan if1 = 1·1917535925
if1 = 50°00'00·0000"
The formula will now be proved analytically.
b Z + e . b . sin 3 0
- -;; X _e2 a.cos3 O·
Formula (4) then follows because tan ¢ = (a/b) tan u. Using now the next
term of Taylor's Series,
tan u = tan 0
(e2 a/X) sin O-e2 tan 0
+ -------------------------
1
1- (e2 a/X) cos3 0 + 2! [3(e2 a/X) cos4 0 sin O][(e2 a/ X)sin 0 - e2 tan OJ
So
b Z+e.b.sin30
tanu = -. ----- -At
a X -e2 a.cos3 0
where
325
TRANSFORMATION FROM SPATIAL TO GEOGRAPHICAL COORDINATES
TABLE 1
- 5 OOO}Earth 0·0000
a bound 0·0000
+ 10 000 region 0·0000 ~ Maximum 0·000 000 030"
400 000 0·0000 in earth bound region
500 000 0·0001
1 000 000 0·0002
2 500 000 0·0007
5 000 000 0·0013
10 000 000 0·0018 ~ Maximum o· 0018/1 at H = 2a
20 000 doo 0·0017
30 000 000 0·0014
100 000 000 0·0006
500 000 000 0·0003
1 000 000 000 0·0001
2 000 000 000 0·0000
00 0·0000
Now
Then
!J.t = +i[(R -1)2/R3] e6 sin30 cos O.
With enough accuracy for !J.t,
R = OP/a = (H+a)/a,
and 0 may be replaced by ¢. So
!J.t = +1-e6 a[H2/(a+H)3] sin3 ¢ cos ¢. (5)
It follows that the corresponding error in latitude will be
!J.¢ = +1-e6[aH2/(a+H)3] sin3 ¢ cos3 ¢
!J.¢" = +1-e6 [206265 aH2/(a+H)3] sin3 ¢ cos3 ¢
} (6)
EXAMPLE 2
326
n. R. nOWRING
HEIGHT
Once the latitude ¢ has been determined the height is given by the closed
formulae:
1-1 = X sec4>-v = Z cosec4>-(1-e2) v. (8)
Reference
1. R. A. Hirvonen and H. Moritz (1963): Practical Computations of Gravity at High iltitudes
Report No 27. Inst. Geod. Phot. Cart. Ohio State Univ.
327