Nothing Special   »   [go: up one dir, main page]

MSE6-E2M 2014-04 8037121g1

Download as pdf or txt
Download as pdf or txt
You are on page 1of 136

Energy efficiency module

MSE6-E2M

Description

8037119
1404NH
[8037121]
MSE6-E2M

GDCB-MSE6-E2M-PB-EN

PROFIBUS® is a registered trademark of its respective trademark holder in certain countries.

Identification of hazards and instructions on how to prevent them:

Warning
Hazards that can cause death or serious injuries.

Caution
Hazards that can cause minor injuries or serious material damage.

Other symbols:
Note
Material damage or loss of function.

Recommendations, tips, references to other documentation.

Essential or useful accessories.

Information on environmentally sound usage.

Text designations:
• Activities that may be carried out in any order.
1. Activities that should be carried out in the order stated.
– General lists.

2 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH –


MSE6-E2M

Table of Contents – MSE6-E2M

1 Safety and requirements for product use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1 Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.1 General safety information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.2 Intended use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.3 Foreseeable misuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Requirements for product use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.1 Technical prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 Qualification of specialised personnel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.3 Range of application and certifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.1 Overview of product features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Mode of operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Commissioning, diagnostics and operational functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Mounting and installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 General instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15


3.2 Mounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Dismantling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.1 General instructions on installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.2 Settings for configuration on the fieldbus module . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.3 Selection of the power supply unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.4 Power supply of the MSE6-E2M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Commissioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Prior to commissioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.1 Module numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.2 Types of parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.3 Options for parameterisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 3


MSE6-E2M

4.3 Brief instructions for Profibus commissioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30


4.3.1 System configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.2 Interfaces and display components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.3 Setting the DIL switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.4 Fieldbus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.5 Bus termination with terminating resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.6 Faultless commissioning, normal operating status . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.7 Error displays of the bus error/status LED BF . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4 Start-up behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Measurement and control functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1 Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3 Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.4 Pressure change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.4.1 Method of measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.4.2 Function structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.5 Shut-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.5.1 Automatic shut-off function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.5.2 User-controlled blocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.5.3 Automatically controlled shut-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.5.4 Switching to the pressurised state after automatically-controlled shut-off . . . . 47
5.5.5 Function structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Input/output data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.2 Description of the I/O data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.2.1 Output word Am.0 “Module control” [Modul control] . . . . . . . . . . . . . . . . . . . . . 50
6.2.2 Input word Em.0 “Flow” [Flow] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.2.3 Input word Em.1 “Consumption” [Consumption] . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.2.4 Input word Em.2 “Pressure P2” [Pressure P2] . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2.5 Input word Em.3 “Module status” [Status] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3 Function Selectable input data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3.1 Output word Am.1 “Input address” [Input address] . . . . . . . . . . . . . . . . . . . . . . 56
6.3.2 Input word Em.4 “Selected input address” [Selected input address] . . . . . . . . . 56
6.3.3 Input word Em.5 “Selected input data” [Selected input data] . . . . . . . . . . . . . . 57

7 Parameterisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.1 Parameterisation information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58


7.2 Description of the parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.2.1 Changeable module parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.2.2 Read-only module parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


MSE6-E2M

8 Diagnostics and error handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

8.1 Summary of diagnostics options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68


8.2 On the spot diagnostics via LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
8.2.1 Terminal-specific LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
8.2.2 Module common error LED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8.3 Diagnosis via status bits or the diagnostic interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8.3.1 Structure of the status bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8.3.2 The I/O diagnostic interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
8.4 Error numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A Technical appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A.1 Technical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83


A.2 Connecting cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

B Parameterisation examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

B.1 Commissioning example for the automatic shut-off function . . . . . . . . . . . . . . . . . . . . . . . 87


B.2 Commissioning example for monitoring the pressure drop . . . . . . . . . . . . . . . . . . . . . . . . . 89

C Parameters and data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

C.1 System parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92


C.2 Diagnostic memory parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
C.3 Diagnostic memory data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
C.4 System diagnostics data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
C.5 Module diagnostics data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
C.6 System data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
C.7 Module data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

D Fundamentals of parameterisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

D.1 Influencing signal states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114


D.1.1 Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
D.1.2 Signal status in the event of an error (fail safe) . . . . . . . . . . . . . . . . . . . . . . . . . . 119
D.2 Diagnostic memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
D.3 Monitoring errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

E Possible error numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

F Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 5


MSE6-E2M

Notes on this description


This description contains general basic information on the assembly, installation and commissioning
the energy efficiency module MSE6-E2M, as well as on its mode of operation.
Special information on commissioning, parameterising and diagnosing with the field bus node you are
using can be found in the appropriate description for the fieldbus node.
Overview of the descriptions  Tab. 1.

Conventions
The section 7.2 describes the parameters and data of the MSE6-E2M. These appear on the operator
unit CPX-MMI-1 in English.
[........] The data and parameters in the text displayed in English on the operator unit are shown in
square brackets in this description, e.g. [Limits]. To the left of this is the translation, e. g.:
Limits [Limits]

Service
Please consult your local Festo repair service if you have any technical problems.

Additional documentation
User documentation for the MSE6-E2M
Title Table of contents
“CPX bus node” Notes on assembly, installation, commissioning and diagnostics
P.BE-CPX-FB13-... of the bus node CPX-FB13 (for use as a participant on the
PROFIBUS-DP).
“Operator unit” Notes on commissioning and diagnostics with the operator unit
P.BE-CPX-MMI-1 CPX-MMI-1
Tab. 1 Descriptions for the MSE6-E2M

6 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


1 Safety and requirements for product use

1 Safety and requirements for product use

1.1 Safety

1.1.1 General safety information


Warning
Danger of injury
If there is an error (e.g. fieldbus interruption, PLC failure, no voltage) on the MSE6-E2M,
then the shut-off valve switches to the initial position (pressurise). If there is a previ-
ously shut-off valve, the system is pressurised suddenly.
• Use suitable measures to ensure that, in case of error, unintentional pressurization
of the system does not result in a hazard.

Warning
Danger of injury due to residual pressure
When venting the system via the MSE6-E2M, a residual pressure P2 < of 1 bar remains.
• Use appropriate measures to ensure that the residual pressure does not result in a
hazard.

Please note
Damage to the product from incorrect handling.
• Switch off the compressed air and supply voltage before performing assembly and
installation work. Switch on supply voltage only when assembly and installation
work are completely finished.
• Observe the handling specifications for electrostatically-sensitive devices.

Please note
The compressed air must not contain ester oils.

1.1.2 Intended use


The energy efficiency module MSE6-E2M is intended for installation in a machine or automated system
and must be used exclusively as follows:
– In perfect technical condition
– In original status, without unauthorised modifications
– Within the limits of the product defined by the technical data ( Appendix A)
– In an industrial environment

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 7


1 Safety and requirements for product use

1.1.3 Foreseeable misuse


Please note
In the event of damage caused by unauthorised manipulation or other than intended
use, the guarantee is invalidated and the manufacturer is not liable for damages.

The following foreseeable misuses are among those not approved as intended use:
– Use outdoors
– Shutting off a system as a safety function
– Use in safety functions:
– The MSE6-E2M must not be installed behind an exhaust valve that fulfils a safety function, since
otherwise the safety functions installed in the system can be impeded.
– For an installation of the MSE6-E2M in front of a safety valve, it must be ensured that this layout
is expressly allowed for the safety valve. For example, mounting of the MSE6-E2M in front of a
soft-start/quick exhaust valve MS6-SV-...-E-... is not permissible.

1.2 Requirements for product use


• Make this documentation available to the design engineer, installer and personnel responsible for
commissioning the machine or system in which this product is used.
• Make sure that the specifications of the documentation are always complied with. Also consider the
documentation for the other components and modules (e. g. bus node).
• Take into consideration the legal regulations applicable for the destination, as well as:
– Regulations and standards,
– Regulations of the testing organisations and insurers,
– National specifications.

1.2.1 Technical prerequisites


General conditions for the correct and safe use of the product, which must be observed at all times:
• Comply with the connection and ambient conditions specified in the technical data of the product
( Appendix A.1).
• Observe the instructions and warnings in this documentation.

1.2.2 Qualification of specialised personnel


The product may only be operated by qualified personnel with knowledge of and experience with elec-
trical and pneumatic control technology.

8 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


1 Safety and requirements for product use

1.2.3 Range of application and certifications


Standards and test values, which the product complies with and fulfils, can be found in the “Technical
data” section ( Appendix A.1). The product-relevant EU directives can be found in the declaration of
conformity.
For certificates and the declaration of conformity for this product please refer to
 www.festo.com/sp.

The product fulfils the requirements of EU directives and is marked with the CE marking.

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 9


2 Overview

2 Overview

2.1 Design
The MSE6-E2M is an intelligent pneumatic service unit, which is equipped with measurement, control
and diagnostic functions and which supports energy-efficient operation of pneumatic systems. The
module is typically assembled behind a service unit combination.
The MSE6-E2M consists of the main components: Shut-off valve, flow sensor, pressure sensor and bus
node. The fieldbus interface allows complete integration into a machine controller. As an alternative to
networked communication, the MSE6-E2M can also be operated using an external handheld or a PC.

2.1.1 Overview of product features


– Control function (energy efficiency function)
– Automatic shut-off on flow underrunning
– User-controlled shut-off and pressurising
– Recording and provision of measurement data
– Output pressure
– Pressure change (for pressure tightness testing)
– Flow
– Air consumption
– Limit monitoring
– Pressure, upper limit value
– Pressure change, upper limit value
– Flow, upper limit value
– Fieldbus connection
– PROFIBUS (CPX-FB13)

10 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


2 Overview

Fig. 2.1 Design

MSE6-E2M Brief description


1 Earth terminal FE connection of the device
2 Pneumatic connections – Pneumatic connection 1: Compressed air inlet
– Pneumatic connection 2: Compressed air outlet
3 Wall bracket Mounting of the device
4 Sensor module Module for measuring pressure, flow and consumption as well as
activation of the shut-off valve
5 Shut-off valve Used to enable and shut-off the system supply air.
6 Bus node Fieldbus module for connection of the MSE6-E2M to a higher-order
control system
7 System supply Electrical power supply of the device
Tab. 2.1 Individual functions

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 11


2 Overview

2.1.2 Mode of operation

Machine/
system

Fig. 2.2 Typical mounting position

The MSE6-E2M is typically assembled behind a service unit combination.


It allows venting of the following system, both in the “Pressurise” state and in the “Shut-
off ” state through a reverse flow (2  1). In the shut-off state, the reverse flow is consid-
erably reduced. For this reason, for more rapid venting, the MSE6-E2M should be in the
“Pressurise” state.

The key functions are:

Standby detection and automatic shut-off of the compressed air supply


The MSE6-E2M uses settable parameters to detect production down times of a pneumatic system. The
system is separated from the compressed air supply using the 2/2 shut-off valve, without venting the
subsequent system. This avoids additional air consumption through leakages. If production is to con-
tinue on the system, then it must be signalled to the MSE6-E2M. The shut-off valve opens and the sys-
tem is again supplied with compressed air.
Automatic shut-off of the compressed air supply can be activated and deactivated by the user. In the
deactivated state, the shut-off valve can be controlled directly by the PLC.

Pressure tightness testing


When in the shut-off state, the MSE6-E2M measures the pressure curve over time.
Even in well-serviced systems, the pressure falls continuously due to leakages. The fewer leakages the
system has, the slower the pressure drop will be. The measured pressure change serves as a measure
of the leakage existing in the system. If the parameterised limit value is exceeded, then the device will
output a diagnostic message.

Pressure recording
The MSE6-E2M continuously measures the output pressure, prepares the data and makes it available
cyclically.
To detect high operating pressures, the MSE6-E2M offers the option of parameterising limit values for
pressure. If the parameterised limit value is exceeded, then the device will output a diagnostic mes-
sage.

12 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


2 Overview

Flow recording
The MSE6-E2M continuously records the flow, prepares the data and makes it available cyclically.
To detect high flow rates, the MSE6-E2M offers the option of parameterising limit values for the flow. If
the parameterised limit value is exceeded, then the device will output a diagnostic message.

Consumption recording
The MSE6-E2M determines the compressed air consumption by recording the system flow rate. The
user has the option of using appropriate signalling to record the compressed air consumption over a
specific period of time.

2.2 Commissioning, diagnostics and operational functions


The system reaction of the MSE6-E2M can be adapted to the relevant application. The MSE6-E2M
provides extensive functions for commissioning, diagnosis and operation.

Commissioning and operational functions


The MSE6-E2M is supplied from the factory with preset parameters.

The behaviour of the MSE6-E2M can be adapted to the respective requirements through parameterisa-
tion. The following behaviour can be influenced, for example, by accessing the internal parameters:
– The diagnostic behaviour by enabling maskable diagnostic messages
– Specification of the units and the measuring interval
– Setting of limit values
– The operating method of the diagnostic memory.
Caution
A different parameterisation will result in different characteristics.
• In particular, check which settings are required when replacing the MSE6-E2M.
• Ensure that the settings can be restored (e.g. in the start-up phase by the higher-or-
der PLC / IPC).

Basic information on the different parameters can be found in Chapter 7 and C in this
description.

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 13


2 Overview

Diagnostic functions
Extensive diagnostic information can be accessed depending on the fieldbus used.
Diagnostic information Brief description
Status bits Common diagnostic messages (global error messages) are displayed by
means of 8 internal inputs (8 status bits).
I/O diagnostics With fieldbuses that do not possess extensive diagnostic functions, the
interface diagnostic information of the MSE6-E2M is available via the I/O diagnostic
interface. The I/O diagnostic interface enables bus-independent access to
diagnostic information, data and parameters via internal digital I/Os
(16 inputs and 16 outputs).
Diagnostic memory Errors which occur during operation are entered in a diagnostic memory.
The first or the last 40 entries are saved, as well as the respective time
measured from the moment the power supply was switched on.
Fieldbus-specific Special diagnostic functions or communication services are available,
diagnostic functions depending on the fieldbus used, for example communication services via:
– DPV1 (PROFIBUS)
Tab. 2.2 Diagnostic information

14 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


3 Mounting and installation

3 Mounting and installation

3.1 General instructions


Warning
Accidental movements of the connected actuator technology and uncontrollable move-
ments of loose tubing lines can cause injury to people or material damage.
Before carrying out mounting, installation and maintenance work, switch off the follow-
ing:
• Compressed air supply including venting of the system
• Operating and load voltage supplies.

Pay particular attention to the following:


• Screw connections must be fitted without warping and mechanical stress. Position
screws exactly before tightening (otherwise their threads will be damaged).
• Observation of the specified tightening torques.
• Contact surfaces must be clean (avoid leakage and contact errors).
• Seal the unused connections with the protective caps or blanking plugs, in order to
achieve the IP65 degree of protection.
• Electrostatically-sensitive devices.
Do not touch the contact surfaces of the plug connectors on the modules and com-
ponents.

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 15


3 Mounting and installation

3.2 Mounting
Note
Fit the MSE6-E2M so that there is sufficient space for heat dissipation and ensure that
the maximum limit values for temperatures are observed ( Technical data).

Note
Place the MSE6-E2M in such a position in your system that the necessary air quality
class for the operating medium is maintained ( Technical Data).

The MSE6-E2M is intended for mounting on the wall. The mounting brackets are integrated and contain
drill holes for wall mounting.
1. Ensure that the compressed air supply, as well as
the operation and load/actuator supply, are
switched off.
2. Make sure that the fastening surface is flat and can
support the weight of the MSE6-E2M.
3. Adjust the MSE6-E2M when it is standing vertic-
ally (±5°).
4. Fasten the MSE6-E2M using the mounting brackets
and 2 screws each ( Fig. 3.1).

Fig. 3.1

Make sure there is sufficient space for connecting the power supply cables and tubing.

16 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


3 Mounting and installation

Dimension MSE6-E2M

1 Connecting thread M18x1, 4-pin

Type B1 B2 B3 B4 B5 B6 B7 B8 B9
MSE6-E2M 177.2 149.5 124 99 74.9 45 99.3 54.3 62

Type B10 L1 L2 L3 L4 L5 L6 L7 L8
MSE6-E2M 7 284.6 97.3 216.6 196.9 85.3 7 20.7 292
Fig. 3.2 Dimensions table [mm]

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 17


3 Mounting and installation

3.3 Dismantling
Warning
Switch off the following before dismantling the MSE6-E2M:
• Compressed air supply including venting of the system
• Operating and load voltage supplies.

Warning
Danger of injury due to residual pressure
When venting the system via the MSE6-E2M, a residual pressure P2 < of 1 bar remains.
• Use appropriate measures to ensure that the residual pressure does not result in a
hazard.

Warning
Loads which suddenly fall down may cause injury to people.
• Take the product's weight into account. The MSE6-E2M weighs 3.3 kg.

Disconnect all the electrical and pneumatic connections of the MSE6-E2M in this order:
1. Remove the fieldbus cable from the bus node.
2. Remove the electrical connection cable.
3. Remove the earth terminal on the left-hand end place of the electrical interlinking module.
4. Loosen the pneumatic connections.
5. Loosen the screws from all the mounting brackets, one after the other. Start with the screws be-
neath the MSE6-E2M.
6. Remove the complete MSE6-E2M.

18 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


3 Mounting and installation

3.4 Installation

3.4.1 General instructions on installation


Warning
Accidental movements of the connected actuator technology and uncontrolled move-
ments of loose tubing can cause injury to people or material damage.
• Before carrying out installation and maintenance work, switch off the following:
– Compressed air supply including venting of the system
– Operating and load voltage supplies.

Warning
Danger of injury due to residual pressure
When venting the system via the MSE6-E2M, a residual pressure P2 < of 1 bar remains.
• Use appropriate measures to ensure that the residual pressure does not result in a
hazard.

3.4.2 Settings for configuration on the fieldbus module


The characteristics of the MSE6-E2M can be adapted to various requirements. Important application-
specific settings can be made with DIL switches directly on the fieldbus module.

1 Service interface, operator unit 3 DIL switch


2 Fieldbus connection (Sub-D, 9-pin)
Fig. 3.3 Fieldbus module with DIL switch

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 19


3 Mounting and installation

Settings on the bus node


The fieldbus is connected via the integrated fieldbus module, which is matched to the appropriate
fieldbus type. Setting options may vary according to the fieldbus type.
The fieldbus-specific settings can be made with DIL switches on the module. The DIL switches are be-
hind an easily accessible cover on the bus node.

Information on the method of procedure as well as on the setting possibilities on your


fieldbus module  Section 4.3.

3.4.3 Selection of the power supply unit


Warning
• Use only PELV circuits in accordance with IEC/DIN EN 60204-1 (protective extra-low
voltage, PELV) for the electrical power supply.
Also observe the general requirements for PELV circuits in accordance with
IEC/DIN EN 60204-1.
• Use only power sources which guarantee reliable electrical separation of the operat-
ing voltage as per IEC/DIN EN 60204-1.

Protection against electric shock (protection against direct and indirect contact) is guaranteed in ac-
cordance with IEC/DIN EN 60204-1 by using PELV circuits (Electrical equipment of machines, general
requirements).
Recommendation:
• Use regulated power supplies to ensure that the load voltage of the outputs remains within the
permitted tolerances even during continuous operation.
Note
• When selecting the power supplies, check that they have sufficient output.

20 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


3 Mounting and installation

3.4.4 Power supply of the MSE6-E2M


Warning
Danger of injury
If the load of operating voltage of the MSE6-E2M is switched off, then the shut-off valve
switches to the initial position (pressurise). If there is a previously shut-off valve, the
system is pressurised suddenly.
• Use suitable measures to ensure that unintentional pressurisation of the system is
not possible.

Note
Check within the framework of your EMERGENCY OFF system to ascertain the measures
necessary for putting your machine/system into a safe state in the event of an EMER-
GENCY OFF (e.g. switching off the load voltage for the valves, switching off the com-
pressed air, etc.).
If there is an undervoltage, the MSE6-E2M switches to the “Pressurise” status.

Note
Note that the partially lower tolerance range must be observed when the operating and
load voltage supplies are provided by a shared power unit.
Tolerance ranges:
– Operating voltage: ±25%
– Load voltage: -25%,
+10%

Supply of the operating and load voltage


– The load voltage supplied will be available to the integrated module.
– The operating voltage supply is transmitted without interruption.

Pin allocation
Caution
Short circuits can cause damage.
• Secure the system supplies externally.
The permissible current per pin at the supplies is:
– M18 plug, 4-pin: max. 16 A
• Please note that with the 4-pin system supply via pin “0 V”, the sum of both currents
of the operating and load voltages flows.

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 21


3 Mounting and installation

Plug Pin System supply Function


(Top view of device)
M18 1 24 VEL/SEN Power supply for the electronics and sensors
2 24 VOUT/A Power supply for the actuator technology
1 2 3 0 VEL/SEN/ Operating voltage
4 3
0 VOUT/A
4 FE Functional earth
Tab. 3.1 Pin allocation, system supply

Potential equalisation
The MSE6-E2M has two earth terminals for potential equalisation:
– Pin 4 (M18 plug) on the power supply connection of the system supply
– Earth terminal on the left-hand end place of the electrical interlinking module
– Earth terminal on left-hand pneumatic base plate

Note
• Always connect the earth potential to pin 4 (M18 plug) “functional earth”.
• Connect the earth terminal on the left-hand pneumatic base plate with low imped-
ance (short cable with large cross-sectional area) to the left end plate of the electric-
al interlinking module (pre-assembled on delivery).
• Connect the earth terminal on the left-hand end place of the electrical interlinking
module with low impedance to the earth potential.
• With low-impedance connections you can ensure that the earth terminal at the left-
hand end plate and the earth terminal at the power supply connection have the
same potential and that there are no equalising currents.
This prevents interference from electromagnetic sources and ensures electromagnetic
compatibility in accordance with EMC directives.

22 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


3 Mounting and installation

Electrical connection example


The diagram below shows as an example the connection of a common 24 V power supply for pins 1
and 2 on the M18 plug. Observe the following:
– Maintain the lower tolerance of the load supply voltage (24 V DC actuator +10/-25 %).
– Connect the earth terminals for potential equalisation and ensure that compensating currents are
prevented.
– Apply the load voltage at pin 2 of the M18 plug (actuator technology) in which a way that it can be
switched off separately.
– Use external fuses, depending on the application (total maximum value at pin “0 V” for both fuses:
16 A).

1 2

4 6 5 4 3

1 Potential equalisation between the earth 4 Potential equalisation of functional


terminal of the left-hand pneumatic base earth (FE)
plate and the left end plate of the electrical 5 External fuses
interlinking module. 6 Separately switchable actuator technology
2 System supply supply
3 Earth terminal on pin 4, rated for max. 16 A
Fig. 3.4 Example – connecting a common 24 V power supply and the potential equalisation

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 23


4 Commissioning

4 Commissioning
Warning
Danger of injury
Stopping the controller (e.g. after the transmission of parameters, system configuration
or controller program) interrupts the communication to the MSE6-E2M and the shut-off
valve then switches to the initial position (pressurise). If there is a previously shut-off
valve, the system is pressurised suddenly.
• Use appropriate measures to ensure that unintentional pressurisation of the system
is not possible.

Warning
Danger of injury
If the load or operating voltage of the MSE6-E2M is switched off, then the shut-off valve
switches to the initial position (pressurise). If there is a previously shut-off valve, the
system is pressurised suddenly.
• Use appropriate measures to ensure that unintentional pressurisation of the system
is not possible.

The MSE6-E2M is equipped with a pneumatically-piloted shut-off valve. When the input pressure P1 is
applied, the valve automatically switches to the “Pressurise” state in the following cases:
– Switch-off of the operating voltage or the load voltage
– Interruption in fieldbus communication
– Stopping of the fieldbus master controller (see manufacturer's specifications), e.g. in the case of
the transmission of control programs, parameters, configuration data.

24 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


4 Commissioning

4.1 Procedure
In order to avoid connecting and addressing errors, you should carry out commissioning in steps as
follows. The individual commissioning steps are shown in the diagram below.

1 Step 1 – Checking of the connected pneumatic application


2 Step 2 – Commissioning on the fieldbus with testing of the address allocation
Fig. 4.1 Commissioning steps

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 25


4 Commissioning

4.2 Prior to commissioning


The connection is made via the bus node that is adapted to suit the fieldbus.
The characteristics of the MSE6-E2M can be adapted to various requirements. You can carry out im-
portant settings as follows:
– With the DIL switch directly on the bus node ( Section 4.3.3).
– By parameterisation ( Section 4.2.2).
The DIL switches and the parameters are preset at the factory.
Caution
Incorrectly set DIL switches and parameters can cause damage during operation. You
must observe the following notes in order to prevent damage.

• Check the DIL switch settings before using or replacing a MSE6-E2M.


• Make sure that the desired parameterisation of the MSE6-E2M in the start-up phase or after field-
bus interruptions is carried out by the plug-in module or the scanner/bus master, providing this is
supported by the fieldbus protocol used. This ensures that, after replacement, the new MSE6-E2M
will also be operated with the desired parameter settings.

Preparations
Prepare the MSE6-E2M for commissioning before commissioning a fieldbus system.
Note
Do not connect the cables for the fieldbus connection when preparing for commission-
ing.

In this way, you can avoid:


– Addressing faults which may occur in various fieldbus systems when address ranges are modified
during operation.
Proceed with preparation as follows:
1. Check the pneumatic tubing connection of the MSE6-E2M.
2. Check the electric cabling of the MSE6-E2M.
3. Check the DIL switch settings of your MSE6-E2M.

4.2.1 Module numbers


The MSE6-E2M is always assigned the number 1 automatically and the number 0 is assigned to the bus
node.

26 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


4 Commissioning

4.2.2 Types of parameters


The parameters are preset at the factory. These presettings can be used for a large number of applica-
tions. Through parameterisation, the behaviour of the MSE6-E2M can be adapted to each particular
application.
The options available depend on the fieldbus protocol used. You can find information on
this in the description of the CPX bus node ( Tab. 1).

A distinction is made between the following types of parameters:


Types of parameters Description
System parameters Influence the behaviour of the complete system
Module parameters Influence the behaviour of a particular module
Diagnostic memory parameters Influence the operating method of the internal diagnostic
memory
Tab. 4.1 Types of parameters

Chapter 7 Parameterisation describes the individual parameters in detail. Fundamentals of using the
parameters can be found in Appendix C. The tables below give a brief overview of the most important
parameters.
System parameters Description
Diagnostics monitoring on under- The monitoring of undervoltage of the load voltage can be
voltage in the actuator technology switched on or off with this parameter.
System start Specifies the start-up behaviour of the MSE6-E2M.
Tab. 4.2 System parameters

Module-specific parameters Description


Changeable module parameters
Diagnostic monitoring with: The monitoring functions shown alongside can be switched on
– Undervoltage of the actuator or off on the module side using this parameter.
supply
– Limit value violation
– Parameterisation error
Monitor limit values startup Defines the period in which limit monitoring remains
deactivated after the power supply is switched on. For flow
monitoring, the diagnostics delay also applies after each
change into the “Pressurise” status.
Units Defines the units, in which the individual input data is shown
and/or processed. In addition, the flow standard is set using
this parameter.

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 27


4 Commissioning

Module-specific parameters Description


Pressure change sample time The parameter specifies the time of the measuring interval,
during which the pressure values for the calculation of the
pressure change are determined. The set time corresponds to
the parameterised value, multiplied by 100 ms.
Limit values This is used to set upper limit values of individual inputs, using
which limit value violations can be monitored. If there are limit
value violations when monitoring is activated, appropriate
diagnostic messages are generated.
Read-only module parameters
Operating hours and cycles counter This provides information on module operational data, such as
operating time and valve switching cycles.
Tab. 4.3 Module-specific parameters

Diagnostic memory parameters Description


Entries are remanent Determines whether the contents of the diagnostic memory
are to be retained after a new Power ON or whether they are to
be deleted.
– Diagnostic memory filters With the diagnostic memory filters, you can suppress the
– Run/stop filter 1 + 2 registering of certain error messages and control both the
– End of error filter starting and stopping of the error recording.
– Error number filter
– Module/channel filter
Tab. 4.4 Diagnostic memory parameters

28 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


4 Commissioning

4.2.3 Options for parameterisation


The parameterisation of the MSE6-E2M can be undertaken as follows, depending on the fieldbus pro-
tocol used:

1 2 3 4

1 Interface module or scanner/bus master; the 3 Fieldbus-specific configurators; parameters


desired parameterisation can be guaranteed can be modified during the commissioning
e.g. in the start-up phase or after fieldbus phase or during troubleshooting.
interruptions. 4 Operator unit; parameters can be modified
2 User program in the higher-order PLC/IPC; during commissioning or during
parameters can be modified during troubleshooting.
operation.
Fig. 4.2 Options for parameterisation

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 29


4 Commissioning

4.3 Brief instructions for Profibus commissioning


This section provides a brief overview of the interfaces of the bus node with Profibus-DP.
Detailed and continuing information on the bus node with Profibus DP can be found in the
description of the CPX bus node ( Tab. 1).

Use the current GSD file for your system. The current version is available from the Festo
Support Portal.  www.festo.com/sp

4.3.1 System configuration


The module consists of two single modules. The CPX-FB13 must be selected as a DP slave as the first
module (m). Then, the energy efficiency module must be loaded into the control configuration as the
second module (m+1).

Fig. 4.3 Sample configuration Step 7

4.3.2 Interfaces and display components

1 Service interface, operator unit 3 Fieldbus connection (Sub-D, 9-pin)


2 Bus status and terminal-specific LEDs 4 DIL switches
Fig. 4.4 Connection and display components

30 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


4 Commissioning

1 2

BF PS

PL

SF

1 Fieldbus-specific LEDs ( Section 4.3.7) 2 Terminal-specific LEDs ( Section 8.2)


Fig. 4.5 LED indicator on the fieldbus module (example)

Bus status LEDs1) Terminal-specific LEDs2)


BF Bus error/status (red) PS Power system (green)
PL Power load (green)
SF System failure (red)
M Modify (yellow)3)
1) If there is no field bus connection, the LED BF will flash
2) In the normal operating status, all the green LEDs light up; the yellow and red LEDs do not light up.
3) Parameterisation modified or Force active
Tab. 4.5 LED indicator

4.3.3 Setting the DIL switch


Note
The bus node includes electrostatically-sensitive components. Touching components
can lead to the destruction of the electronics.
• Do not touch any components, contact surfaces or conductive tracks.
• Observe the handling specifications for electrostatically-sensitive devices.

You can set the following parameters with the DIL switches:
– Operating mode (MSE6-E2M only supports the Remote I/O operating mode)
– PROFIBUS address
– Diagnostic mode.

1. Switch off the power supply.


2. Unscrew the fastening screws of the cover.
3. Lift off the cover.
 In the bus node, you can see three DIL switches ( Fig. 4.6).
4. On DIL switch 3, set an as yet unassigned station number for the MSE6-E2M ( Tab. 4.10).
5. On DIL switch 3, set diagnostic mode.

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 31


4 Commissioning

6. Attach the cover carefully.


7. Tighten the two mounting screws at first by hand and then with 0.4 Nm ±10 %.

1 2
ON ON

1 2 1 2

1 2 3 4 5 6 7 8
4

ON

1 DIL switch 1: Operating mode 3 DIL switch 3: Diagnostic mode (switch


2 DIL switch 2: Reserved element 8)
4 DIL switch 3: Station number (switch
element 1 … 7)
Fig. 4.6 DIL switches in the bus node

Setting the operating mode (DIL switch 1)


The MSE6-E2M only supports the operating mode Remote I/O (factory setting). Settings
are not required.
All the switch elements of the DIL switch 1 must be set to OFF.

Operating mode Setting DIL switch 1


Remote I/O operating mode DIL 1.1: OFF
All the functions of the MSE6-E2M are controlled DIL 1.2: OFF
directly by the PROFIBUS master. (Factory setting)

Tab. 4.6 Setting the operating mode with DIL switch 1

32 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


4 Commissioning

Reserved DIL switch 2


All the switch elements of DIL switch 2 must be set to OFF (factory setting).

Setting DIL switch 2


DIL 2.1: OFF
DIL 2.2: OFF
(Factory setting)

Tab. 4.7 Setting DIL switch 2

Setting the diagnostic mode (DIL switch 3)


With the switch element 8 of DIL switch 3, you can deactivate the device-related diagnosis of the
PROFIBUS-DP.
If device-related diagnostics are deactivated, then no device-related diagnostic information about the
MSE6-E2M will be sent to the master system.
Device-related diagnostics active Device-related diagnostics inactive
8

8
7

7
6

6
5

5
4

4
3

3
2

2
1

DIL 3.8: ON DIL 3.8: OFF


Tab. 4.8 Setting the diagnostic mode (DIL switch 3)

Setting the station number (DIL switch 3)


Station numbers may only be assigned once per fieldbus master.

You can set the PROFIBUS address of the MSE6-E2Min binary coded form with DIL switch 3.
The following station numbers are permitted:
Protocol Address designation Permissible station numbers
PROFIBUS DP PROFIBUS address 1; ...; 125
Tab. 4.9 Permissible station numbers

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 33


4 Commissioning

Recommendation:
Assign the station numbers in ascending order. Assign the station numbers in accordance
with the machine structure of your system.

Setting the station number


Example: Station number 38
8

8
Switch elements 1 … 7 21 + 22 + 25 =
7

7
2 + 4 + 32 =
6

6
38
5

5
4

4
3

3
2

2
1

Tab. 4.10 Station numbers (binary coded) 1

4.3.4 Fieldbus interface


The fieldbus is connected to the Sub-D socket of the MSE6-E2M. This connection is used for the supply
line and continuing fieldbus cable.
You can use the Festo fieldbus plug FBS-SUB-9-GS-DP-B to connect the MSE6-E2M.

Only the fieldbus plug from Festo guarantees IP65.


Before connecting the Sub-D plugs of other manufacturers:
• Replace the two flat screws with bolts (UNC4-40/M3x5).

Socket PIN Fieldbus plug PROFIBUS DP Designation


IP651)
1 – Screening Connection to functional earth
2 – n.c. Not connected
3 B RxD/TxD-P Received/transmitted data P
4 – CNTR-P Repeater control signal2)
5 – DGND Data reference potential (M5V)
6 – VP Supply voltage positive (P5V)
7 – n.c. Not connected
8 A RxD/TxD-N Received/transmitted data N
9 – n.c. Not connected
Housing Clamp strap Screening Connection to functional earth
1) Festo FBS-SUB-9-GS-DP-B
2) The repeater control signal CNTR-P is realised as a TTL signal.
Tab. 4.11 Pin allocation for the fieldbus interface

34 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


4 Commissioning

Seal unused connections with protective caps or blanking plugs. You will then achieve the
IP65 degree of protection.

Connection with fieldbus plugs from Festo


• Observe the assembly instructions for the fieldbus plug. Turn the two fastening screws at first by
hand and then with 0.5 Nm ±10 %.
With the fieldbus plug from Festo (FBS-SUB-9-GS-DP-B), you can connect the MSE6-E2M
easily to the fieldbus. You can disconnect the plug from the node without interrupting the
bus cable (T-TAP function).

The clamp strap in the fieldbus plug from Festo is connected internally only capacitively
with the metallic housing of the Sub-D plug. This is to prevent compensating currents
flowing through the screening of the fieldbus line.

1 2 3
Bus in

Bus out

A B ON A B

7 6 5 4

1 Folding cover with inspection window 5 Switch for bus terminal and continuing
2 Blanking plug if connection unused fieldbus (DIL switch)
3 Clamp strap for screened connection 6 Fieldbus continuing (OUT)
4 Fieldbus incoming (IN) 7 Only capacitively connected
Fig. 4.7 Fieldbus plug from Festo, FBS-SUB-9-GS-DP-B

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 35


4 Commissioning

DIL switches
Switch position Bus termination The continuing fieldbus cable
OFF Not switched Switched on
ON Switched Switched off
Tab. 4.12 Meaning of switch position

Note the type code of your fieldbus plug. The new plug FBS-SUB-9-GS-DP-B switches the
continuing fieldbus cable off when the bus termination is switched.

4.3.5 Bus termination with terminating resistors


If the MSE6-E2M is at the beginning or end of the fieldbus segment, a bus terminal is
required.
• Fit a bus terminal to both ends of a bus segment.

Use the ready-to-use fieldbus plugs from Festo for the bus terminal. A suitable resistor
network is integrated in the housing of this plug.

Pin 6: Supply voltage

390 Ω
120 nH
Received/transmitted data P
(Data transmission line B) Pin 3

220 Ω
120 nH
Received/transmitted data N
(Data transmission line A) Pin 8

390 Ω

Pin 5: Data reference potential


Fig. 4.8 Circuit diagram for bus termination network for cable type A as per EN 50 170 (switch in
Festo fieldbus plug set to ON)

36 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


4 Commissioning

4.3.6 Faultless commissioning, normal operating status


After faultless commissioning, the LEDs PS (Power System) and PL (Power Load) light up green. The BF
(bus error) LED does not light up. Information on the other LEDs for diagnostics and error handling
 Chapter 8 Diagnostics and error handling.
LED Colour Operating status Error handling
PS LED illuminated Standard None
green

PL LED illuminated Standard None


green

BF LED not illuminated Standard None

Tab. 4.13 Normal operating status of the MSE6-E2M

4.3.7 Error displays of the bus error/status LED BF


If device-related diagnostics are activated, errors will also be sent to the master PLC via the fieldbus.
BF (Bus error)
LED (red) Process Status Error handling
ON No error (if the green PS LED –
OFF lights up)
LED not illu-
minated
ON Fieldbus connection not OK.
OFF Possible causes: Check the:
LED flashes – Station number not correct • Address setting of the DIL
(e.g. address assigned twice) switches in the fieldbus node
– Defective fieldbus interface • Fieldbus interface/master
– Interrupted, short-circuited • Fieldbus connection
or faulty fieldbus connection
– Faulty configuration • Configuration of the master in
respect of the modules of the
CPX terminal
Tab. 4.14 Error diagnostics with the red LED “BF”

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 37


4 Commissioning

4.4 Start-up behaviour


The desired parameterisation should be carried out in the start-up phase or after fieldbus interrup-
tions by the interface module or the scanner/bus master, providing this is supported by the fieldbus
protocol used. In this way, you can be sure that when the MSE6-E2M has been replaced, the new ter-
minal is operated with the same parameter settings.
You can influence the start-up behaviour with the aid of the system parameter System start ( Sec-
tion 4.2.2). Select the setting “System start with default parameterisation and current CPX expansion”.
The desired parameterisation can then be created in the start-up phase or after fieldbus interruptions
e.g. by the plug-in module or the scanner/bus master (depending on the fieldbus used).
If the M LED lights up permanently after system start-up, then “System start with saved parameterisa-
tion and current CPX expansion” is set.
Caution
If the M-LED lights up permanently, parameterisation will not be restored automatically
by the higher-order system if the MSE6-E2M is replaced after servicing. In these cases,
check before replacing to see which settings are required and carry out these settings.

Detailed notes can be found in the description for the appropriate CPX fieldbus module or
the manual for the operator unit.

38 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


5 Measurement and control functions

5 Measurement and control functions


The following sections provide an overview of the individual measurement and control functions of the
MSE6-E2M and present their setting options and their influencing variables.
Individual functions and their behaviour can be controlled using the outputs and/or parameters. Meas-
urement and status signals are available as input values. Diagnostic information is made available as a
combination of the error number and their channel allocation.

5.1 Flow
Input signal
The measured flow value is prepared according to the set parameters “Flow unit” (P8.2-8.3) and “Flow
standard” (P8.6-8.7) and made available as an input signal (Em.0).
Limit value monitoring
A comparator is used to compare the flow measured value with the parameter “Upper limit flow”
(P11-P12). When the time set in the parameter “Monitor limit values startup” (P7) has elapsed and limit
value monitoring is activated (P0.6), the appropriate error/diagnostic message is output on violation of
a limit value.
Monitoring of parameters
The parameters “Unit flow”, (P8.2-8.3), “Flow standard” (P8.6-8.7), “Upper limit flow” (P11-12) and
“Monitor limit values startup” (P7) are checked on entry for permitted values. In case of error, if para-
meterisation error monitoring is activated (P0.7), the appropriate error message is output.
Sensor monitoring
If there is a sensor error, the appropriate error message, which cannot be deactivated, is output.
Module number m = 1
Function number = 4828 + m * 64 + Parameter number

P8.2-8.3 P8.6-8.7 P11-12 P7 P0.6 P0.7

1 2 3 4 5 6

Data check Data check Data check Data check


Error message
Parameterisation
error
Flow Scaling Em.0: Flow

Error message
Comparator
Limit value
Sensor
Error message
error
Flow sensor

1 Parameter Unit flow 4 Parameter Monitor limit values startup


2 Parameter Flow standard 5 Parameter Monitor limit values
3 Parameter Upper limit flow 6 Parameter Monitor parameters
Fig. 5.1 Block diagram of the “Flow” function

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 39


5 Measurement and control functions

5.2 Consumption
Input signal
The consumption value is based on the prepared flow measured value. The value is prepared according
to the parameters “Unit consumption” (P8.4-8.5) and “Flow standard” (P8.6-8.7) and made available
as an input signal (Em.1).
If there is a change to the parameter values “Unit flow” or “Flow standard”, the measured
consumption value is reset to the value “0”.

If there is a change to the parameter value “Unit consumption”, then the current meas-
ured consumption value is saved and is converted to the new consumption unit.

Consumption measurement
Consumption measurement is controlled using two data bits in the output word Am.0. Consumption
measurement is started, continued or stopped using the output “Control bit Consumption measure-
ment” (Am.0.12). The measured consumption value can be reset to the value “0” using the output
“Reset consumption measurement” (Am.0.13).

Monitoring of parameters
The parameters “Unit flow”, (P8.2-8.3), “Flow standard” (P8.6-8.7) and “Unit consumption” (P8.4-8.5)
are checked on entry for permitted values. In case of error, if parameterisation error monitoring is activ-
ated (P0.7), the appropriate error message is output.
Module number m = 1
Function number = 4828 + m * 64 + Parameter number

P8.2-8.3 P8.6-8.7 P8.4-8.5 Am.0.13 Am.0.12 P0.7

1 2 3 4 5 6

Data check Data check Data check

Error message
Sensor Parameterisation
error error
Scaling Reset Run/Stop

Flow Em.1: Consumption


Scaling Consumption measurement

1 Parameter Unit flow 4 Output control bit, Reset consumption meas-


2 Parameter Flow standard urement
3 Parameter Unit consumption 5 Output control bit, Consumption measurement
6 Parameter Monitor parameters
Fig. 5.2 Block diagram of the “Consumption” function

40 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


5 Measurement and control functions

5.3 Pressure

Input signal
The measured pressure value is prepared according to the set parameter “Unit pressure” (P8.0-8.1)
and made available as an input signal (Em.2).

Limit value monitoring


A comparator is used to compare the measured pressure value with the parameter “Upper limit pres-
sure” (P13-14). When the time set in the parameter “Monitor limit values startup” (P7) has elapsed and
limit value monitoring is activated (P0.6), the appropriate error/diagnostic message is output on viola-
tion of a limit value.

Monitoring of parameters
The parameters “Unit pressure”, (P8.0-8.1), “Upper limit pressure” (P13-14) and “Monitor limit values
startup” (P7) are checked on entry for permitted values. In case of error, if parameterisation error mon-
itoring is activated (P0.7), the appropriate error message is output.

Sensor monitoring
If there is a sensor error, the appropriate error message, which cannot be deactivated, is output.
Module number m = 1
Function number = 4828 + m * 64 + Parameter number

P8.0-8.1 P13-14 P7 P0.6 P0.7

1 2 3 4 5

Data check Data check Data check


Error message
Parameterisation
error
Pressure Scaling Em.2: Pressure

Error message
Comparator
Limit value
Sensor
Error message
error
Pressure sensor

1 Parameter Unit pressure 4 Parameter Monitor limit values


2 Parameter Upper limit pressure 5 Parameter Monitor parameters
3 Parameter Monitor limit values startup
Fig. 5.3 Block diagram of the “Pressure” function

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 41


5 Measurement and control functions

5.4 Pressure change

5.4.1 Method of measurement


The pressure change DP2 is determined cyclically at intervals, the settable pressure change sample
time DT. To determine the differential pressure, the difference between the current measured pressure
value and the measured pressure value P2, based on the pressure change sample time, is calculated:
DP2 = P2(t) - P2(t-DT); t = Current measuring time.

The start of the measuring cycle to determine the pressure change is automatically synchronised to the
activation signal of the shut-off valve. The current pressure change value DP2 remains constant up to
the next measuring time point.
In the shut-off state, the amount of the pressure change value is compared to the upper pressure
change limit value DP2_OGR and monitored for violation of the limit value. If limit value diagnostics are
activated, a diagnostic message is generated when:
ABS(DP2) > DP2_OGR.

42 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


5 Measurement and control functions

1 P2
DP2

DT

Pressurise Shut-off
DT synchronisation on
switching on the locking
valve

2 DP2

DP2 signal extension


for DT synchronisation

3 ABS(DP2)

DP2_OGR

DP2_OGR
No evaluation of ABS(DP2) Limit value
overrun

P2 Output pressure P2 DP2_OGR Upper limit value for the pressure


DP2 Pressure change change DP2
ABS(DP2) Amount of the pressure change DT Pressure change sample time
Fig. 5.4

– Time diagram 1 in Fig. 5.4 shows a sample pressure curve with switching of the valve from the
pressurised to the shut-off state.
– Time diagram 2 in Fig. 5.4 shows the resulting curve of the pressure change signal.
– Time diagram 3 in Fig. 5.4 shows the derived amount with a sample limit value violation at the start
of the shut-off state.

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 43


5 Measurement and control functions

5.4.2 Function structure

Input signal
The pressure change sample value is prepared according to the set parameters “Pressure unit”
(P8.0-8.1) and “Flow standard” (P10) and made available as an input signal (Em.5).

Limit value monitoring


If the shut-off valve is in the “Shut-off ” state, the amount of the measured pressure change is com-
pared with the parameter “Upper limit pressure change” (P15-16) using a comparator. If limit value
monitoring is activated (P0.6), the appropriate error/diagnostic message is output on violation of a
limit value.

Monitoring of parameters
The parameters “Unit pressure”, (P8.0-8.1), “Pressure change sample time” (P10) and “Upper limit
pressure change” (P15-16) are checked on entry for permitted values. In case of error, if parameterisa-
tion error monitoring is activated (P0.7), the appropriate error message is output.

Module number m = 1
Function number = 4828 + m * 64 + Parameter number

P8.0-8.1 P10 P15-16 P0.6 P0.7

1 2 3 4 5

Data check Data check Data check


Error message
Parameterisation
error
Measurement Em.5:
Pressure Scaling
Pressure change Pressure change
Status
Comparator Error message
Shut-off
Limit value
valve

1 Parameter Unit pressure 4 Parameter Monitor limit values


2 Parameter Press. change sample time 5 Parameter Monitor parameters
3 Parameter Upper limit pressure change
Fig. 5.5 Block diagram of the “Pressure change” function

44 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


5 Measurement and control functions

5.5 Shut-off

5.5.1 Automatic shut-off function


If the shut-off valve is in the “Pressurise” state, then, if the output “Control bit Auto shut-off ” (Am.0.1)
is activated, the measured flow is compared with the limit settable in the parameter “Auto shut-off flow
limit” (P19-20). If this limit value is not reached for the length of the value set in the parameter “Auto
shut-off delay time” (P17-18), then the shut-off valve will switch to the “Shut-off ” state.
Short-time Short-time Auto shut-off
Q production production Delay time
downtime downtime

Auto shut-off
Flow limit

Pressurise Shut-off
Fig. 5.6 Function “Auto block”

5.5.2 User-controlled blocking


If the output “Control bit Auto shut-off ” (Am.0.1) is inactive, then the shut-off valve can be controlled
directly using the “Control bit shut-off ” output (Am.0.0). The output “Control bit Pressurise” (Am.0.2)
has no influence on the switching status of the shut-off valve.

Active
Am.0.1:
Control bit Auto shut-off
Inactive

Active
Am.0.0:
Control bit Shut-off Inactive

Shut-off
Em.3.0:
Status bit Shut-off valve
Pressurise

Fig. 5.7 Behaviour of user-controlled shut-off

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 45


5 Measurement and control functions

5.5.3 Automatically controlled shut-off


The automatic shut-off function is activated when the output “Control bit Auto shut-off ” (Am.0.1) is
activated and the output “Control bit Shut-off ” (Am.0.0) is inactive. In this state, the flow measured
value is compared with the limit value set in the parameter “Auto shut-off flow limit” (P19-20). If the
limit value is underrun, the “Auto shut-off timer” is started.
The status of the timer is available in the input “Status bits Auto shut-off timer” (Em.3.4-3.5) and can
assume the following values:
RESET: The timer is reset and not started,
the shut-off valve is in the “Pressurise” state.
RUN: Timer is started,
the time delay has not yet elapsed,
the shut-off valve is in the “Pressurise” state.
UP: The time delay has elapsed,
the shut-off valve is in the “Shut-off ” state.

Active
Am.0.1:
Control bit Auto shut-off
Inactive

Active
Am.0.0:
Control bit Shut-off Inactive

Auto shut-off Underrun


Auto shut-off
Flow limit
Delay time
Not underrun

Em.3.4-3.5:
RESET RUN UP
Status bit Auto shut-off timer

Shut-off
Em.3.0
Status bit Shut-off valve
Pressurise

Fig. 5.8 Behaviour of automatically-controlled shut-off

46 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


5 Measurement and control functions

5.5.4 Switching to the pressurised state after automatically-controlled shut-off


When the “Auto shut-off timer” has expired (Status = UP), the blocked shut-off valve can only be
switched to the “Pressurise” state when controlled by the user. There are the following options for
switching:
• Flank-controlled: Positive signal flank at the output “Control bit Pressurise” (Am.0.2).
Detection of a positive flank resets the timer to the “RESET” status once only. Automatically-con-
trolled shut-off remains active.
• Level-controlled: Deactivation of the output “Control bit Auto shut-off ” (Am.0.1).
The timer remains in the “RESET” status for as long as this output is deactivated. When the “Control
bit Auto shut-off ” output is reactivated, automatically-controlled shut-off is active again.
When the timer is reset and the “Control bit Shut-off ” (Am.0.0) is deactivated, the shut-off valve
switches to the “Pressurise” state.

Am.0.1: Active
Control bit Auto shut-
off Inactive

Am.0.0: Active
Control bit Shut-off
Inactive

Am.0.2: Active
Control bit Pressurise
Inactive

Em.3.4-3.5:
Status bits Auto shut-off timer UP RESET RUN

Shut-off
Em.3.0:
Status bit Shut-off valve
Pressurise

Fig. 5.9 Flank-controlled pressurising

Active
Am.0.1:
Control bit Auto shut-off
Inactive

Active
Am.0.0:
Control bit Shut-off
Inactive

Em.3.4-3.5:
Status bits Auto shut-off timer UP RESET RUN

Shut-off
Em.3.0:
Status bit Shut-off valve
Pressurise

Fig. 5.10 Level-controlled pressurising

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 47


5 Measurement and control functions

5.5.5 Function structure

Control shut-off valve


The shut-off valve can be controlled by the user or, with appropriate activation, automatically:
– If the output “Control bit Auto shut-off ” (Am.0.1) has been deactivated, then the shut-off valve is
switched directly using the “Control bit shut-off ” output (Am.0.0).
– When the output is activated, the shut-off valve switches to the shut-off state
– When the output is deactivated, the shut-off valve switches to the pressurise state.
– When the output “Control bit Auto shut-off ” (Am.0.1) is activated and the output “Control bit shut-
off ” (Am.0.0) is deactivated, the switching status of the shut-off valve is determined by the “Status
bit Auto shut-off timer” (Em.3.4-3.5) (timer of the function for automatic shut-off ). After the expiry
of the parameterised delay time (“Auto shut-off delay time”, P17-18), the shut-off valve is automat-
ically switched to the status “Shut-off ”.
– When the output “Control bit Shut-off ” (Am.0.0) is activated, the shut-off valve always switches to
the status “Shut-off ”, irrespective of other signal statuses.
The switching status of the shut-off valve is signalled via the input “Status bit Shut-off valve” (Em.3.0)
and the number of valve switching cycles via the parameter “Valve switching cycles” (P31-32).

Auto shut-off timer


The status of the auto shut-off timer is determined by the following input variables:
– If the parameterised value “Auto shut-off low flow limit” is underrun, a comparator activates
(P19-20) the Auto shut-off function.
– Activating the output “Control bit Auto shut-off ” (Am.0.1) activates the auto shut-off function.
– The output “Control bit Pressurise” (Am.0.2) can be used to switch the shut-off valve back to the
pressurise status after an automatic shut-off operation. Automatically-controlled shut-off remains
active.
The status of the auto shut-off timer is signalled via the input “Status bits Auto shut-off timer”
(Em.3.4-3.5).

Monitoring of parameters
The parameters “Unit flow”, (P8.2-8.3), “Flow standard” (P8.6-8.7) and “Auto shut-off low flow limit”
(P19-20) are checked on entry for permitted values. In case of error, if parameterisation error monitor-
ing is activated (P0.7), the appropriate error message is output.

48 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


5 Measurement and control functions

Module number m = 1
Function number = 4828 + m * 64 + Parameter number

P8.2-8.3 P8.6-8.7 P19-20 P17-18 P0.7 P0.2

1 2 3 4 5 6

Data check Data check Data check


Error message
Parameterisation
error
Em.3.4-3.5:
Timer Timer status
Flow Scaling Comparator Auto
shut-off

Error message
Undervoltage
Shut-off Em.3.0: Status bit
valve Shut-off valve
P31-32:
Valve switch-
ing cycles
Am.0.2 Am.0.1 Am.0.0

9 8 7

1 Parameter Unit flow 6 Parameter Monitor actuator supply


2 Parameter Flow standard 7 Output “Control bit Shut-off ”
3 Parameter Auto shut-off low flow limit 8 Output “Control bit Auto shut-off ”
4 Parameter Auto shut-off delay time 9 Output “Control bit Pressurise”
5 Parameter Monitor parameters
Fig. 5.11 Block diagram of the “Shut-off ” function

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 49


6 Input/output data

6 Input/output data

6.1 Overview
The MSE6-E2M possesses multiple items of functional module data, which can be replaced with the
higher-order controller using the I/O data presented below.
Data field for Input word Output word
Flow measurement Em.0 –
Consumption measurement
– Measured value Em.1 –
– Function status Em.3 –
– Control/operation – Am.0
Pressure measurement Em.2 –
Pressure change measurement Via selectable input data  Section 6.3
Shut-off function
– Function status Em.3 –
– Control/operation – Am.0
Selectable input data
– Input address Em.4 Am.1 ( Section 6.3)
– Input data Em.5 –
Tab. 6.1 Overview of I/O data

6.2 Description of the I/O data

6.2.1 Output word Am.0 “Module control” [Modul control]


The output word is shown in Motorola format (MSB-LSB).
In the output word Am.0, the user can control the consumption measurement and the shut-off function
of the shut-off valve.
The output value (2-byte, 16-bit) is transmitted by the higher-order controller.

50 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


6 Input/output data

Data format “Output word, 16 bits right-justified”


D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0
MSB LSB
Abbreviations used
B0: Control bit Shut-off
B1: Control bit Auto shut-off
B2: Control bit Pressurise
B12: Control bit Consumption measurement
B13: Reset consumption measurement
B3 … B11: Irrelevant data bits
B14, B15: Irrelevant data bits
D0 … D15 16-bit output data field
MSB/LSB Most significant bit / least significant bit
Tab. 6.2 Data format “Output word, 16 bits right-justified”

Output data, shut-off function


Data bit B0 has the following values:
– 0 = Open shut-off valve (Pressurise status - default value)
– 1 = Close shut-off valve (Shut-off status)

Data bit B1 has the following values:


– 0 = Deactivation of the automatic shut-off function (Auto shut-off ), activation of the shut-off valve
via the output bit B0 (default value)
– 1 = Activation of the automatic shut-off function (Auto shut-off )

Data bit B2 has the following values:


– 0/1 = Open shut-off valve (pressurise state) on positive signal flank
– 0 = No change in status in the case of static signal level (default value)
– 1 = No change in status in the case of static signal level

Output data, consumption measurement


Data bit B12 has the following values:
– 0 = Consumption measurement inactive. Consumption measurement is stopped (default value)
– 1 = Consumption measurement active. Consumption measurement is started or continued.

Data bit B13 has the following values:


– 0 = Reset function, consumption measurement, inactive (default value)
– 1 = Reset function, consumption measurement, active. The consumption measurement value is
reset to the value 0.

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 51


6 Input/output data

6.2.2 Input word Em.0 “Flow” [Flow]


The input word is shown in Motorola format (MSB-LSB).
Depending on the parameterised flow unit and the parameterised flow standard, the measured flow is
transferred to the higher-order control system as the input word (2-byte, 16-bit).
Data format of input word, “Sign + 15 bits, right-justified”
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
Sig B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0
n
MSB LSB
Abbreviations used
Sign: Sign (for data format “Sign + 15 bits” always = 0, i.e. a positive value)
B0 … B14: Flow rate
D0 … D15 16-bit input data field
MSB/LSB Most significant bit / least significant bit
Tab. 6.3 Data format of input word, “Sign + 15 bits, right-justified”

Flow Input value


[l/min] [l/min.] [scfm/10]
0 0 0
50 50 18
… … …
5000 5000 1766
Tab. 6.4 Unit-dependent flow rates

6.2.3 Input word Em.1 “Consumption” [Consumption]


The input word is shown in Motorola format (MSB-LSB).
Depending on the parameterised air consumption unit and the parameterised flow standard, the air
consumption measured is transferred to the higher-order control system as the input word (2-byte,
16-bit).
Data format of input word, “16 bits, right-justified”
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0
MSB LSB
Abbreviations used
B0 … B15: Consumption measurement
D0 … D15 16-bit input data field
MSB/LSB Most significant bit / least significant bit
Tab. 6.5 Data format of input word “16 bits, right-justified”

52 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


6 Input/output data

6.2.4 Input word Em.2 “Pressure P2” [Pressure P2]


The input word is shown in Motorola format (MSB-LSB).
Depending on the parameterised pressure unit, the pressure P2 is transferred to the higher-order con-
trol system as the input word (2-byte, 16-bit).
The input word is always specified in the data format “Sign + 15 bits”. The pressure value is stored in
the input word as follows.
Data format of input word, “Sign + 15 bits, right-justified”
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
Sig B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0
n
MSB LSB
Abbreviations used
Sign: Sign (for data format “Sign + 15 bits” always = 0, i.e. a positive value)
B0 … B14: Pressure value
D0 … D15 16-bit input data field
MSB/LSB Most significant bit / least significant bit
Tab. 6.6 Data format of input word, “Sign + 15 bits, right-justified”

The default setting of the “Unit pressure” module parameter is “mbar”. With this setting, the pressure
is represented in the input word as follows:
Pressure P2 Input value
[bar] [mbar] [kPa] [psi/10]
0 0 0 0
1 1000 100 145
2 2000 200 290
… … … …
7.36 7360 736 1067
… … … …
14 14000 1400 2030
Tab. 6.7 Unit-dependent pressure values

The pressure measurement data is presented according to the unit and is rounded off.
Measured value resolution:
– mbar: 20
– kPa: 2
– psi/10: 5

The meaning of the module parameter “Upper limit pressure” is dependent on the mod-
ule parameter “Unit pressure”. When the module parameter “Unit pressure” changes, the
value of the module parameter “Upper limit pressure” is retained unchanged and is not
adjusted automatically.

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 53


6 Input/output data

Input word Em.5 “Pressure change”


The pressure change value is solely transmitted as a selectable input word Em.5. It is specified in the
data format “Sign + 15 bits”.
The input word is shown in Motorola format (MSB-LSB).
Depending on the parameterised pressure unit and the parameterised measurement interval, the pres-
sure change is transferred to the higher-order control system as the input word (2-byte, 16-bit).
The pressure change value is stored in the input word as follows.
Data format of input word, “Sign + 15 bits, right-justified”
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
Sig B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0
n
MSB LSB
Abbreviations used
Sign: Positive/negative sign
B0 … B14: Pressure change value
D0 … D15 16-bit input data field
MSB/LSB Most significant bit / least significant bit
Tab. 6.8 Data format of input word, “Sign + 15 bits, right-justified”

54 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


6 Input/output data

6.2.5 Input word Em.3 “Module status” [Status]


The input word is shown in Motorola format (MSB-LSB).
The status information of the module (consumption measurement and shut-off function of the shut-off
valve) is transferred to the higher-order control system as the input word (2-byte, 16-bit).
Data format of input word “16 bits, right-justified”
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0
MSB LSB
Abbreviations used
B0: Status bit Shut-off valve
B4, B5: Status bits Auto shut-off timer
B12: Status bit Consumption measurement
B1 … B3: Reserved, with fixed value “0”
B6 … B11: Reserved, with fixed value “0”
B13 … B15: Reserved, with fixed value “0”
D0 … D15 16-bit output data field
MSB/LSB Most significant bit / least significant bit
Tab. 6.9 Data format of input word “16 bits, right-justified”

Input data, shut-off function


Data bit B0 has the following values:
– 0 = Shut-off valve opened, status “Pressurised”
– 1 = Shut-off valve closed, status “Shut-off ”

Data bit B4, B5 has the following values:


– 0 = Timer not started, Timer status = RESET
– 1 = Timer running, Timer status = RUN
– 2 = Timer expired, Timer status = UP

Input data, consumption measurement


Data bit B12 has the following values:
– 0 = Consumption measurement inactive.
– 1 = Consumption measurement active.

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 55


6 Input/output data

6.3 Function Selectable input data


The function Selectable input data allows extended read access to functional module data (e. g. pres-
sure change). The extended read access must be performed by the user as follows.
1. Setting of the address of the desired date with output word Am.1
2. Read-in of the current input address from input word Em.4
3. Comparison of output and read-in address
4. Case distinction
• Address identical = Read in input word Em.5
• Addresses different = Desired address not available (ERR = 1)
• Addresses different = Internal module data provision not yet completed(BUSY = 1)

6.3.1 Output word Am.1 “Input address” [Input address]


The output word is shown in Motorola format (MSB-LSB).
In so doing, the address of the desired date is transmitted.
Data format, output word “16 bits right-justified”
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0
MSB LSB
Abbreviations used
B0 … B13: SEL_ADR: 14-bit address of the requested read value
B14, B15: Output bits with fixed value “0”
D0 … D15 16-bit output data field
MSB/LSB Most significant bit / least significant bit
Tab. 6.10 Data format, output word “16 bits right-justified”

6.3.2 Input word Em.4 “Selected input address” [Selected input address]
The input word is shown in Motorola format (MSB-LSB).
In so doing, the current address is transmitted.
Data format of input word “16 bits, right-justified”
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0
MSB LSB
Abbreviations used
B0 … B13: ADR: 14-bit address of the shown read value
B14: BUSY: 1 = Data provision still underway
B15: ERR: 1 = Faulty/unsupported address
D0 … D15 16-bit output data field
MSB/LSB Most significant bit / least significant bit
Tab. 6.11 Data format of input word “16 bits, right-justified”

56 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


6 Input/output data

6.3.3 Input word Em.5 “Selected input data” [Selected input data]
The input word is shown in Motorola format (MSB-LSB).
In so doing, the current data of the requested read value is transmitted.
Data format of input word “16 bits, right-justified”
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0
MSB LSB
Abbreviations used
B0 … B15: DAT: Data of the requested read value
D0 … D15 16-bit output data field
MSB/LSB Most significant bit / least significant bit
Tab. 6.12 Data format of input word “16 bits, right-justified”

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 57


7 Parameterisation

7 Parameterisation

7.1 Parameterisation information

General notes on parameterisation


The characteristics of the MSE6-E2M can be parameterised.
Due in some cases to necessary calculations, modified parameters are not valid until they have been
thoroughly checked and saved. Until then, as in the case of invalid parameters, the previous internal
settings apply.
Depending on the parameter, no valid input data is available for up to max. 30 ms after a value modific-
ation.

Special notes on avoiding parameterisation errors


In order to avoid parameterisation errors, note the sequence described below when modifying the fol-
lowing parameters:
– Units
– Upper limit value x

Example: Parameterisation of pressure


Sequence for first or startup parameterisation (MSE6-E2M in delivery status, monitoring of paramet-
erisation errors active):
1. Set the desired unit in the module parameter “Units”.
2. Set the upper and lower limit values in the module parameter “Limit values pressure”.

Sequence for modifying the parameterisation:


1. Deactivate the monitoring for parameterisation errors in the module parameter “Monitoring”.
2. Parameterise the MSE6-E2M.
• In the “Limit values” module parameter, set the upper limit value to 32767.
• Set the desired unit in the module parameter “Unit pressure”.
• If necessary, set the upper and lower limit values in the module parameter “Limit values”.
3. Activate the monitoring for parameterisation errors in the module parameter “Monitoring”.

58 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


7 Parameterisation

7.2 Description of the parameters


The following tables offer an overview of the module parameters of the function module. A distinction is
made between “Changeable module parameters” and “Read-only module parameters”.

Function no. 1) Changeable module parameters Validity

Flow measurement

Blocking function
Pressure change
measurement

measurement
Consumption

Pressure
4828 + m * 64 + 0 Monitoring
Bit 2: Undervoltage in actuator supply – – – – 
Bit 6: Limit values  –   –
Bit 7: Parameterisation errors     
4828 + m * 64 + 7 Monitor limit values startup  –  – –
4828 + m * 64 + 8 Units     –
4828 + m * 64 + 10 Pressure change sample time – – –  –
4828 + m * 64 + 11…12 Upper limit flow  – – – –
4828 + m * 64 + 13…14 Upper limit pressure – –  – –
4828 + m * 64 + 15…16 Upper limit pressure change – – –  –
4828 + m * 64 + 17…18 Auto shut-off delay – – – – 
4828 + m * 64 + 19…20 Auto shut-off low flow limit – – – – 
1) m=1
Tab. 7.1 Overview - Changeable module parameters

Function no. 1) Read-only module parameters


4828 + m * 64 + 29…30 Module operating time
4828 + m * 64 + 31…32 Shut-off valve switching cycles
1) m=1
Tab. 7.2 Overview - Read-only module parameters

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 59


7 Parameterisation

7.2.1 Changeable module parameters


Module parameter: Monitoring [Monitor]
Function no. 4828 + m * 64 + 0 m = Module number (1)
Description With the MSE6-E2M, monitoring of individual errors can be independently activ-
ated or deactivated (suppressed).
Active monitoring causes the error:
– To be sent to the bus node
– To be displayed by the module common error LED.
Bit Description
2 Monitor undervoltage in actuator supply [Monitor Vout/Vval]
6 Monitoring of limit values [Monitor limit values]
7 Monitoring parameterisation errors [Monitor parameters]
All other bits are reserved.
Values 1 = Active (presetting) [Active]
0 = Inactive [Inactive]
Comment – Monitoring parameterisation errors:
Some parameters are checked for non-permitted values during parameterisa-
tion:
– Monitor limit values startup
– Units
– Limit values
Tab. 7.3 Monitoring

Module parameter: Monitor limit values startup [Monitor limit values startup]
Function no. 4828 + m * 64 + 7 m = Module number (1)
Description Specifies the time after the supply voltage has been switched on, during which
limit monitoring is deactivated.
Bit Bit 0…7 Monitor limit values startup
Values
Bit 2 1 0 Value Meaning
0 0 0 0 0s
0 0 1 1 3s
0 1 0 2 5s
0 1 1 3 10 s (presetting)
1 0 0 4 30 s
1 0 1 5 60 s
1 1 0 6 120 s
1 1 1 7 300 s
… 8 … 255 Not permissible
Comment If parameterisation error monitoring is active (P0.7), invalid values will lead to
the parameterisation error FN29  Tab. 8.12
Tab. 7.4 Monitor limit values startup

60 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


7 Parameterisation

Module parameter “Units”


The parameter specifies in which unit flow, air consumption, module output pressure P2 and the stand-
ard conditions for the flow measurement of the MSE6-E2M are transmitted to the control system. In
addition, the standard conditions for the measurement of the flow are specified.
The data width is 8 bits (1 byte).
In the module parameter “Units”, the parameters “Unit pressure”, “Unit flow”, “Unit consumption” and
“Flow standard” each occupy 2 bits.

Module parameter: Unit pressure [Unit Pressure]


Function no. 4828 + m * 64 + 8 m = Module number (1)
Description Specifies the unit for all pressure-related input values and parameters.
Bit Bit 0, 1: Unit pressure
All other bits are reserved.
Values
Bit 1 0 Value Meaning
0 0 0 mbar (presetting)
0 1 1 kPa
1 0 2 psi/10
1 1 3 Not permissible
Comment If parameterisation error monitoring is active (P0.7), invalid values will lead to
the parameterisation error FN29  Tab. 8.12
Tab. 7.5 Unit pressure

Module parameter: Unit flow [Unit Flow]


Function no. 4828 + m * 64 + 8 m = Module number (1)
Description Specifies the unit for all flow-related input values and parameters.
Bit Bit 2, 3: Unit flow
All other bits are reserved.
Values
Bit 3 2 Value Meaning
0 0 0 l/min (presetting)
0 1 1 Not permissible
1 0 2 scfm/10
1 1 3 Not permissible
Comment If parameterisation error monitoring is active (P0.7), invalid values will lead to
the parameterisation error FN29  Tab. 8.12
Tab. 7.6 Unit flow

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 61


7 Parameterisation

Module parameter: Unit consumption [Unit Consumption]


Function no. 4828 + m * 64 + 8 m = Module number (1)
Description Specifies the unit for all consumption-related input values and parameters.
Bit Bit 4, 5: Unit consumption
All other bits are reserved.
Values
Bit 5 4 Value Meaning
0 0 0 l (presetting)
0 1 1 m3
1 0 2 scf
1 1 3 Not permissible
Comment If parameterisation error monitoring is active (P0.7), invalid values will lead to
the parameterisation error FN29  Tab. 8.12
Tab. 7.7 Unit consumption

Module parameter: Flow standard [Unit Flow standard]


Function no. 4828 + m * 64 + 8 m = Module number (1)
Description Specifies the flow standard for all flow and consumption-related input values
and parameters.
Bit Bit 6, 7: Flow standard
All other bits are reserved.
Values
Bit 7 6 Value Meaning
0 0 0 DIN 1343 (presetting)
0 1 1 ISO 2533
1 0 2 ISO 6358
1 1 3 Not permissible
Comment If parameterisation error monitoring is active (P0.7), invalid values will lead to
the parameterisation error FN29  Tab. 8.12
Tab. 7.8 Flow standard

62 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


7 Parameterisation

Module parameter “Pressure change sample time”


The parameter specifies the time of the measuring interval, during which the pressure values for the
calculation of the pressure change are determined. The set time corresponds to the parameterised
value, multiplied by 100 ms.
The data width is 8 bits (1 byte).
Module parameter: Pressure change sample time [Pressure change sample time]
Function no. 4828 + m * 64 + 10 m = Module number (1)
Description Specifies the time interval between two pressure measurements, from whose
measured values the pressure change is calculated.
Bit Bit 0 … 8: Time interval between two measurements
Values 1 … 255 100 … 25500 ms
Comment If parameterisation error monitoring is active (P0.7), invalid values will lead to
the parameterisation error FN29  Tab. 8.12
Tab. 7.9 Pressure change sample time

Module parameter “Limit values”


The module parameter “Limit values” can be used to specify the specific limit values “Upper limit pres-
sure”, “Upper limit flow” and “Upper limit pressure change”.
The data width is 16 bits (2 bytes).
If the unit is changed, the data for the limit values is not changed and may need to be
adjusted separately.

The following diagram shows an example of the data format “Sign + 15 bits, right-justified” with the
limit value:
– Upper limit pressure = 10000

1 2 1

0 10000 32767

1 End values of the data range 3 Limit value overrun


2 Upper limit pressure
Fig. 7.1 Limit monitoring

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 63


7 Parameterisation

Module parameter: Upper limit flow [Upper limit flow]


Function no. 4828 + m * 64 + 11 (Low Byte) m = Module number (1)
4828 + m * 64 + 12 (High Byte)
Description An upper flow limit can be set for the module.
Values 2-byte value: Low Byte + 256 * High Byte
Presetting: 32767 (Low Byte = 255; High Byte = 127)
Permitted values: 0 … 32767
Comment If the flow set according to the parameterisation (unit) exceeds the parameterised
upper limit, the diagnostic message FN10 is output (if “Monitoring limits” is active
in the standard parameter).
Permitted limit values:
The limit values are checked for validity during parameterisation. Invalid paramet-
erisations are not accepted; the module uses the previous (last valid) internal
parameterisation values.
If the monitoring of parameterisation errors in the module parameter “Monitoring”
is set to “active,” the relevant error will be displayed. The monitoring of limit val-
ues only becomes active after the expiry of the time parameterised in the para-
meter “Monitor limit values startup”.
Tab. 7.10 Upper limit flow

Module parameter: Upper pressure limit [Upper limit pressure]


Function no. 4828 + m * 64 + 13 (Low Byte) m = Module number (1)
4828 + m * 64 + 14 (High Byte)
Description An upper pressure limit can be set for the module.
Values 2-byte value: Low Byte + 256 * High Byte
Presetting: 32767 (Low Byte = 255; High Byte = 127)
Permitted values: 0 … 32767
Comment If the pressure P2 set according to the parameterisation (unit) exceeds the para-
meterised upper limit, the diagnostic message FN10 is output (providing that
“Monitoring limits” is active in the standard parameter).
Permitted limit values:
The limit values are checked for validity during parameterisation. Invalid paramet-
erisations are not accepted; the module uses the previous (last valid) internal
parameterisation values.
If the monitoring of parameterisation errors in the module parameter “Monitoring”
is set to “active,” the relevant error will be displayed. The monitoring of limit val-
ues only becomes active after the expiry of the time parameterised in the para-
meter “Monitor limit values startup”.
Tab. 7.11 Upper limit pressure

64 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


7 Parameterisation

Module parameter: Upper limit pressure change [Upper limit pressure change]
Function no. 4828 + m * 64 + 15 (Low Byte) m = Module number (1)
4828 + m * 64 + 16 (High Byte)
Description An upper pressure limit for pressure change can be set for the module.
Values 2-byte value: Low Byte + 256 * High Byte
Presetting: 32767 (Low Byte = 255; High Byte = 127)
Permitted values: 0 … 32767
Comment If the amount of the pressure change set according to the parameterisation (unit)
exceeds the parameterised limit, the diagnostic message FN10 is output (provid-
ing that “Monitoring limits” is active in the standard parameter).
Permitted limit values:
The limit values are checked for validity during parameterisation. Invalid paramet-
erisations are not accepted; the module uses the previous (last valid) internal
parameterisation values.
If the monitoring of parameterisation errors in the module parameter “Monitoring”
is set to “active,” the relevant error will be displayed. The monitoring of limit val-
ues only becomes active after the expiry of the time parameterised in the para-
meter “Monitor limit values startup”.
This comparison function is only active in the module status “Shut-off ”.
Tab. 7.12 Upper limit pressure change

Module parameter: Auto shut-off delay [Auto shut-off delay time]


Function no. 4828 + m * 64 + 17 m = Module number (1)
4828 + m * 64 + 18
Description Time in minutes which is waited after an uninterrupted underrun of the parameter
value “Auto shut-off low flow limit” before the MSE6-E2M automatically switches
to the “Shut-off ” status.
Values 2-byte value: Low Byte + 256 * High Byte
Presetting: 10 (Low Byte = 10; High Byte = 0)
Permitted values: 0 … 65535
Comment – Data transfer only takes place in the module status “Pressurise”. In the case of
a valve which has already been shut-off automatically, the parameter value
only takes effect on the next auto shut-off operation.
– The automatic shut-off function is also influenced by the parameter “Auto
shut-off low flow limit”.
– The automatic shut-off function is only activated with an appropriately set
output data bit ( Section 6.2.1).
Tab. 7.13 Auto shut-off delay

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 65


7 Parameterisation

Module parameter: Auto shut-off low flow limit [Auto shut-off low flow limit]
Function no. 4828 + m * 64 + 19 m = Module number (1)
4828 + m * 64 + 20
Description Flow threshold value which must be underrun for the parameterised “Auto shut-off
delay” time for the MSE6-E2M to switch automatically to the “Shut-off ” status.
Values 2-byte value: Low Byte + 256 * High Byte
Presetting: 0 (Low Byte = 0; High Byte = 0)
Permitted values: 0 … 32767
Comment – Data transfer only takes place in the module status “Pressurise”. In the case of
a valve which has already been shut-off automatically, the parameter value
only takes effect on the next auto shut-off operation.
– The automatic shut-off function is also influenced by the parameter “Auto
shut-off delay”.
– The automatic shut-off function is only activated with an appropriately set
output data bit ( Section 6.2.1).
– The limit values are checked for validity during parameterisation. Invalid para-
meterisations are not accepted; the module uses the previous (last valid) in-
ternal parameterisation values.
– If parameterisation error monitoring is active (P0.7), invalid values will lead to
the parameterisation error FN29  Tab. 8.12
Tab. 7.14 Auto shut-off low flow limit

7.2.2 Read-only module parameters


Module parameter: Module operating time [Module time of operation]
Function no. 4828 + m * 64 + 29 (Low Byte) m = Module number (1)
4828 + m * 64 + 30 (High Byte)
Description Operating time of the function module in hours.
The operating time is the time with which the module is supplied with electrical
energy, irrespective of the pneumatic flow.
Values Unsigned binary number with the decimal value range:
0 … 65535 hours (Low Byte + 256 * High Byte)
Comment The operating time is limited to a maximum value of 65535.
The operating hours counter is increased by 1 each time the supply voltage is
switched on and then when each additional hour elapses.
If the operation takes place more often than 65535 times, then the parameter
remains at this value.
This parameter can only be read.
Tab. 7.15 Module operating time

66 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


7 Parameterisation

Module parameter: Shut-off valve switching cycles [Shut-off Valve cycles]


Function no. 4828 + m * 64 + 31 (Low Byte) m = Module number (1)
4828 + m * 64 + 32 (High Byte)
Description Counting the switching cycles of the shut-off valve.
Values Unsigned binary number with the decimal value range:
0 … 65535 cycles (Low Byte + 256 * High Byte)
Comment The switching cycles counter is limited to a maximum value of 65535.
If the operation takes place more often than 65535 times, then the parameter
remains at this value.
This parameter can only be read.
Tab. 7.16 Shut-off valve switching cycles

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 67


8 Diagnostics and error handling

8 Diagnostics and error handling

8.1 Summary of diagnostics options


The MSE6-E2M offers comprehensive options for diagnostics and error handling. The following options
are available ( Also Tab. 8.1):

1 On the spot diagnostics via LEDs 3 Diagnostics via the fieldbus


2 On the spot diagnostics via the operator unit
Fig. 8.1 Diagnostics options

Diagnostics options Description See


1 On-site via LEDs The LEDs on the module display hardware errors, Section 8.2
bus errors, etc.
2 On-site via the operator The operator unit: Description of
unit – Shows current error messages in plain text CPX-MMI
– Offers access to the diagnostic memory. operator unit
( Tab. 1)

68 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


8 Diagnostics and error handling

Diagnostics options Description See


3 System status scanning The 8 status bits display common diagnostic Section 8.3.1
with the fieldbus (status messages (global error message).
bits scanning)
System diagnostics with Internal diagnostics data can be read via the I/O Section 8.3.2
the fieldbus (via I/O diagnostics interface. In this way, detailed
diagnostics interface) diagnostic information can be accessed, even if
the fieldbus used does not offer any extensive
fieldbus-specific diagnostic functions.
The I/O diagnostic interface offers:
– Access to the current error message
– Access to the diagnostic memory
– Read access to internal parameters and data.
Fieldbus-specific Diagnostic functions or communication services Description of
diagnostic functions via DPV1 (PROFIBUS) CPX bus node
( Tab. 1)

Tab. 8.1 Diagnostics options

On the spot diagnostics via module common error LEDs


The LEDs of the MSE6-E2M are located under the transparent cover on the top side of the interlinking
block.
LEDs of the fieldbus modules
CPX fieldbus modules possess fieldbus and terminal-specific LEDs. The terminal-specific LEDs exist on
each fieldbus module:

1 2

PS

PL

SF

1 Fieldbus-specific LEDs ( Section 4.3.7) 2 Terminal-specific LEDs ( Section 8.2)


Fig. 8.2 LED display on the fieldbus module (example)

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 69


8 Diagnostics and error handling

8.2 On the spot diagnostics via LEDs

8.2.1 Terminal-specific LEDs


PS (power system) – power sensor/logic supply
LED (green) Sequence Status Significance / error handling
ON No error. Operating –
OFF voltage/sensor supply applied
LED
illuminated
ON Operating voltage/sensor supply Eliminate undervoltage.
OFF outside of tolerance range
LED flashing
ON The operating voltage/sensor Check the operating voltage
OFF supply is not applied connection of the electronics.
LED not
illuminated
Tab. 8.2 LED PS

PL (power load) – power load supply (electrical actuators and outputs)


LED (green) Sequence Status Significance / error handling
ON No error. Load voltage applied –
OFF
LED
illuminated
ON Load voltage at the system infeed Eliminate undervoltage.
OFF outside tolerance range
LED flashing
Tab. 8.3 LED PL

70 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


8 Diagnostics and error handling

SF (system failure) – system error


LED (red) Sequence 1) Status Significance / error handling
ON No error –
OFF
LED not illu-
minated
ON Simple error/information Description of the error numbers
OFF (Error class 1)  Section 8.4
LED flashing
ON Error Description of the error numbers
OFF (Error class 2)  Section 8.4
LED flashing
ON Serious error Description of the error numbers
OFF (Error class 3)  Section 8.4
LED flashing
1) The system error LED flashes depending on the error class.
Error class 1 (simple error): 1 * flash, pause
Error class 2 (error) 2 * flash, pause
Error class 3 (serious error): 3 * flash, pause
Tab. 8.4 LED SF

M (modify) – parameterisation modified or Force active


LED (yellow) Sequence Status Significance / error handling
ON System start with default –
OFF parameterisation (factory setting)
LED not illu-
has been set
minated
– External parameterisation
possible (presetting)
ON Force is active 1) The Force function is enabled.
OFF
LED flashing
ON System start with saved Caution when replacing the
OFF parameterising has been set. MSE6-E2M with saved paramet-
LED – Parameters are saved reman- erisation. Parameterisation is not
illuminated ently carried out automatically by the
– External parameterisation is higher-order PLC/IPC on replace-
blocked 1) ment. In these cases, check which
settings are required before the
replacement and make these set-
tings if necessary.
1) The display of the Force function (LED flashes) has priority over the display of the setting for the system start (LED lights up).
Tab. 8.5 LED M

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 71


8 Diagnostics and error handling

8.2.2 Module common error LED


Errors of the module are indicated via the module common error LED on the electrical interlinking block
and can, if necessary, be evaluated using the operator unit or a PC with diagnostic software.
The errors are indicated on the module common error LED and are reported to the bus node, dependent
on the module parametrisation, where they can be evaluated according to the fieldbus protocol used.
Specific errors of the module can be masked. Maskable errors are only indicated when the appropriate
monitoring has been activated.
The representation of the faults in the various bus nodes depends on the fieldbus pro-
tocol ( Description of the CPX bus node).

The module is equipped with a red module common error LED, which signals the presence of a module
error.

1 Module common error LED (red)


Fig. 8.3 LED on the module

MSE6-E2M Module common error LED


LED (red) Sequence Status Significance / error handling
ON No error –
OFF
LED not illu-
minated
ON Module common error Description of the error numbers
OFF  Section 8.4
LED
illuminated
Tab. 8.6 Module common error LED

72 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


8 Diagnostics and error handling

8.3 Diagnosis via status bits or the diagnostic interface


The MSE6-E2M offers the following two modes for diagnostics:
Mode Description
Status bits The status bits serve to display common diagnostic messages (global error
(System status) message). Access to the status bits is made via 8 internal inputs
( Section 8.3.1).
I/O diagnostics The I/O diagnostic interface is a fieldbus-independent diagnostic interface.
interface This can be used to read out all the internal data and parameters via 16
(System diagnostics) internal inputs and 16 outputs ( Section 8.3.2 and Appendix B). All
diagnostic information is then also available even if the fieldbus protocol
used does not offer any extensive diagnostic functions.
Tab. 8.7 Fieldbus-independent diagnostic modes

8.3.1 Structure of the status bits


Irrespective of the bus node used, the MSE6-E2M provides 8 status bits for displaying common dia-
gnostic messages (global error messages).
Status bits are configured like inputs. The input addresses, which are to be assigned to
status bits, depend on the fieldbus protocol used ( Description of the CPX bus node).

The status bits supply coded diagnostic information. Bits 0 to 3 specify the module types in which
faults have occurred. Bits 4 to 7 specify the type of fault.
Bit Diagnostic information with 1 signal Description
0 Error does not occur on the MSE6-E2M in the current equipment level.
1 Error at output Module type, on which an error has oc-
2 Error at input curred
3 Error on MSE6-E2M
4 Undervoltage Error type
5 Short circuit/overload
6 Wire break
7 Other error
Tab. 8.8 Structure of the status bits

If all status bits supply a 0 signal, no error will be reported.

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 73


8 Diagnostics and error handling

Examples of typical status information


No error signalled
Other Wire Short Under- Funct./ Input Output Valve
error break circuit voltage analogue
Bit 7 6 5 4 3 2 1 0
Status 0 0 0 0 0 0 0 0
Tab. 8.9 Example 1 – no fault

Exceeding of upper flow limit


Other Wire Short Under- Funct./ Input Output Valve
error break circuit voltage analogue
Bit 7 6 5 4 3 2 1 0
Status 1 0 0 0 1 0 0 0
Tab. 8.10 Example 2 - Exceeding of upper flow limit value

If different errors occur simultaneously on different types of modules, errors cannot be


distinguished. Use the I/O diagnostic interface in order to distinguish errors clearly.

8.3.2 The I/O diagnostic interface

Organisation of internal data and parameters


Internal data and parameters of the MSE6-E2M are stored in a common memory area. With the I/O
diagnostic interface, read access can be achieved with the aid of the function number to individual
bytes of this memory area.
Parameters can be modified with the aid of fieldbus-specific functions (depending on the
fieldbus used) or using the operator unit ( Also Section 4.2.3).

74 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


8 Diagnostics and error handling

Mode of operation of the I/O diagnostic interface


Detailed diagnostic information can be accessed via the I/O diagnostic interface. For example, you can
ascertain exactly on which module an error has occurred. 16 input bits and 16 output bits, through
which all diagnostic data can be retrieved, are available for accessing the system diagnostics.
The addresses of the input and output bits of the I/O diagnostic interface depend on the
fieldbus used ( Description of the CPX bus node).

Output bits The function no. of the desired data is specified in binary coded form
using the output bits A0 … A12 of the I/O diagnostic interface. The
function number is accepted when control bit A15 supplies a 1 sig-
nal.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1

Function no.

Reserved
Control bit
1 Bit number 2 Outputs
Fig. 8.4 Output bits of the I/O diagnostic interface

Input bits The reply data is output by the MSE6-E2M via the input bits E0 … E7
when the acknowledgement bit E15 supplies a 1 signal.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1

2
Reserved Diagnostic data

Acknowledgement bit
1 Bit number 2 Inputs
Fig. 8.5 Input bits of the I/O diagnostic interface

If control bit A15 supplies a 0 signal, acknowledgement bit E15 will be reset automatically and the
status byte will be shown with the diagnostic data bits.

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 75


8 Diagnostics and error handling

Reading out the diagnostic data flow diagram


The function number is accepted if there is a positive edge at control bit A15. The input bits E0 … E7
supply the diagnostic data when the acknowledgement bit supplies a 1 signal.

Start the read process

Start timeout

Set the function number

Set control bit (A15)

No

Acknow- Timer Yes


No
ledgement expired?
bit =1?

Yes

Accept data
Reset control bit

Reset control bit A15

No

Acknow- Timer
No Yes Timeout
ledgement expired?
bit =0?

Yes

Fig. 8.6 Reading out the diagnostic data flow diagram

76 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


8 Diagnostics and error handling

Example 1: Check to see if there is diagnostic data


Function no. 1937 specifies whether there is diagnostic data and contains, where applicable, the num-
ber of the first module on which an error has occurred ( Section C.4).
Function no. = 1937
1937 dec. = 11110010001 Bin

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1
1 0 0 0 0 1 1 1 1 0 0 1 0 0 0 1
2

Function no.
Control bit
1 Bit number of the outputs 2 Signal status of the outputs
Fig. 8.7 Reading out function no. 1937

There is diagnostic data if bit 6 supplies a 1 signal. Bits 0 … 5 contain the module number of the first
faulty module ( Also Section C.4). If, for example, there was an error on module 1 (1 Dec. = 1 Bin),
there would be the following input data:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1
1 0 1 0 0 0 0 0 1
2
Reserved Diagnostic data

Acknowledgement bit
1 Bit number of the inputs 2 Signal status of the inputs
Fig. 8.8 Reply data (example)

Detailed information on the module diagnostic data can be found in section C.5.

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 77


8 Diagnostics and error handling

Example 2: Read out current error numbers of module 1


With the aid of the module number of the faulty module, you can ascertain the function numbers of the
relevant module diagnostic data ( Also Section C.5). Module diagnostic data can be e.g.:
– The number of the faulty channel
– The module error number.
With the following function number, you can ascertain e.g. the module error number of module 1:
Function no. = 2008 + 4 * 1 + 1 = 2013
2013 Dec. = 11111011101 Bin

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1
1 0 0 0 0 1 1 1 1 1 0 1 1 1 0 1
2

Function no.
Control bit
1 Bit number 2 Signal status of the outputs
Fig. 8.9 Reading out the module error number of module 1

Fig. 8.10 shows the reply data in the case of error number 4, as an example.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1
1 0 0 0 0 0 1 0 0
2
Reserved Diagnostic data

Acknowledgement bit
1 Bit number of the inputs 2 Signal status of the inputs
Fig. 8.10 Reply data with error number 4 (4 Dec. = 100 Bin)

78 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


8 Diagnostics and error handling

8.4 Error numbers


Possible errors of the MSE6-E2M are divided into three error classes with different priority, depending
on the seriousness of the error. If an error occurs, the system error LED (SF LED) will flash depending on
the error class.
Error class Flashing sequence of the SF LED Error weighting Priority
1 1 * flashes, pause time Simple (e.g. simple user error) Low
2 2 * flashes, pause time Medium (standard diagnostics and Medium
extended diagnostics)
3 3 * flashes, pause time High (hardware error/internal error) High
Tab. 8.11 Error classification

If several errors occur together, the error with the highest priority will have precedence. This means
that:
– The system error LED flashes according to the higher priority
– The number of the error with the higher priority will be entered in the system diagnostic data under
function number 1938 (error number).
Within an error class, errors of modules with a lower module number have higher priority. For example,
errors of module number 0 have the highest priority within an error class. Errors of module number 1
have the second highest priority, etc.

Overview of all possible error numbers  Appendix E.

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 79


8 Diagnostics and error handling

The following errors can be signalled by the function module:


Note
In the “Enable parameter” column, it can be seen whether the appropriate error mes-
sage can be deactivated and with which parameter this can be set.

Error Error Description Error handling Enable parameter


no. chan-
nel4)
0 No error or end of a signal state
– – Non-deactivatable
diagnostic message
10 Upper limit exceeded [Upper limit exceeded]1)
Em.0 Upper flow limit ex- • Check flow Standard parameter
ceeded • Check parameterised “Monitor”:
( Parameter “Upper limit value 4828 + m * 64 + 0, Bit 6
flow limit“) • If necessary, adapt the “Monitoring of limit
parameter “Monitor limit values”
values startup”  Tab. 7.3
Em.2 Upper pressure limit ex- • Check pressure
ceeded • Check parameterised
( Parameter “Upper limit value
pressure limit“) • If necessary, adapt the
parameter “Monitor limit
values startup”
Em.3 Upper pressure change • Check pressure change
limit value exceeded • Check parameterised
( Parameter “Upper limit value
limit pressure change“) • If necessary, adapt the
parameter “Monitor limit
values startup”
1) The module displays the relevant error, depending on the parameterisation. The analogue input signals will, however, be processed
further.
2) All the electrical module functions are stopped.
3) The parameter values entered will be ignored, the module operates internally with the last valid parameter values.
4) m = Module number

80 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


8 Diagnostics and error handling

Error Error Description Error handling Enable parameter


no. chan-
nel4)
15 Module/channel failed2)
Em.0 Flow sensor defective • Power off/on necessary. Non-deactivatable
• If this error occurs again, diagnostic message
replace device.
Em.2 Pressure sensor defect- • Check whether the supply
ive pressure is too high.
• Power off/on necessary.
• If this error occurs again,
replace device.
25 Error in parameterisation of the upper limit
[Fault in parametrizing upper limit]1)3)
Em.0 An error has occurred in • Check the Standard parameter
the setting of the “Upper parameterisation “Monitor”:
limit flow” parameter. undertaken and carry out 4828 + m * 64 + 0, Bit 7
Em.2 An error has occurred in the parameterisation “Monitor parameters”
the setting of the “Upper again with the correct  Tab. 7.3
limit pressure”. parameters (valid
Em.3 An error has occurred in parameters  Tab. 7.11).
the setting of the “Upper
limit pressure change”
parameter.
1) The module displays the relevant error, depending on the parameterisation. The analogue input signals will, however, be processed
further.
2) All the electrical module functions are stopped.
3) The parameter values entered will be ignored, the module operates internally with the last valid parameter values.
4) m = Module number

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 81


8 Diagnostics and error handling

Error Error Description Error handling Enable parameter


no. chan-
nel4)
26 Undervoltage in actuator supply
[Fault in actuator supply]1)
Am.0 The 24 VA supply • Check the power supply Standard parameter
voltage for the actuator of the actuator “Monitor”:
technology is beneath technology and, if 4828 + m * 64 + 0, Bit 2
the permitted range. necessary, increase the “Monitor undervoltage in
voltage. actuator supply”
• Check the cabling of the  Tab. 7.3
actuator technology
supply voltage and, if
necessary, repair it.
29 Error in parameterisation
[Fault in parametrizing]1)3)
Em.0 … – Monitor limit values • Check the Standard parameter
Em.3 startup parameterisation “Monitor”:
– Pressure unit undertaken and carry 4828 + m * 64 + 0, Bit 7
– Flow unit out the parameterisation “Monitor parameters”
– Consumption unit again with the correct  Tab. 7.3
– Flow standard parameters (valid
– Pressure change parameters, see
sample time section 7.2).
Channel-dependent
error difference
1) The module displays the relevant error, depending on the parameterisation. The analogue input signals will, however, be processed
further.
2) All the electrical module functions are stopped.
3) The parameter values entered will be ignored, the module operates internally with the last valid parameter values.
4) m = Module number
Tab. 8.12 Error numbers

82 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


A Technical appendix

A Technical appendix

A.1 Technical data


MSE6 -E2M
Operating pressure [bar] 4 … 10
Operating pressure, [bar] 10 … 12
Overload range
Operating medium1) Compressed air to ISO 8573-1:2010 [7:4:4]
Nitrogen
Temperature of medium [°C] 0 … 50
Note on the operating medium Lubricated operation not possible
Mounting position Horizontal ±5°
Standard nominal flow rate 1 } 2 [l/min] 4500
(at P1 = 6 bar, = 5 bar)
Flow direction Unidirectional P1  P2
Standard flow rate 2 } 1 [l/min] 45002)
(at 6 bar)
Product weight [g] 3300
Operating voltage supply
Electronics/sensor
– Nominal voltage [V DC] 24 ±25%
– Current consumption at 24 V [mA] Max. 300
Actuator technology load voltage
supply
– Nominal voltage [V DC] 24 –25%/+10%
– Current consumption [mA] Max. 100
– Undervoltage diagnostic mes- [V] 15 … 17
sage (trigger level without hys-
teresis)
Pressure sensors
– Pressure measuring range [bar] 0 … 14
– Accuracy [%FS] typ. ±3
– Repetition accuracy [%FS] ±0.3
Flow sensor
– Flow measuring range [l/min] 50 … 5000
– Accuracy, zero point [%FS] ±0.3
– Accuracy, range [%FS] ±3
– Repetition accuracy, zero point [%FS] ±0.2
– Repetition accuracy, range [%FS] ±0.8

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 83


A Technical appendix

MSE6 -E2M
Shut-off valve
– Switch-on pressure [bar] ≤4
– Switch-off pressure [bar] <1
– Residual pressure [bar] <1
Degree of protection to EN 60529 IP65
Electromagnetic compatibility
– Emitted interference  Declaration of conformity (www.festo.com)
– Resistance to interference  Declaration of conformity (www.festo.com)
Vibration and shock3)
– Vibration Tested according to DIN/IEC 68/EN 60068 Part 2-6;
severity level 1
– Shock Tested according to DIN/IEC 68/EN 60068 Part 2-27;
severity level 1
1) Lubricated operation not possible
2) Shut-off valve in the “Pressurise” state
3) Explanations of the severity levels  Tab. A.2.
Tab. A.1 Technical data

Load Severity level 1 (SL1) Severity level 2 (SL2)


Vibration 0.15 mm path at 10 … 58 Hz; 0.35 mm path at 10 … 60 Hz;
2 g acceleration at 58 … 150 Hz 5 g acceleration at 60 … 150 Hz
Shock ± 15 g at 11 ms duration; ± 30 g at 11 ms duration;
5 shocks per direction 5 shocks per direction
Continuous ± 15 g at 6 ms duration; -
shock 1000 shocks per direction
Tab. A.2 Values for vibration and shock as per DIN/IEC68

84 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


A Technical appendix

A.2 Connecting cable

Fieldbus cable
Use a suitable cable for your field bus system. Refer to the manual of your controller for the cable type
to be used. Also take into account here the distance and the fieldbus baud rate.

Operating voltage cable


Use an operating voltage cable with a sufficient cable cross-section. Avoid long distances between the
power unit and the MSE6-E2M. Long operating voltage cables reduce the voltage supplied by the power
supply unit.

Preparing the connecting cable


Caution
The position of the pins on the plug is different from that on the socket!
– Pin allocation of the fieldbus interface, see manual for the appropriate fieldbus
node.
– The operating voltage and load voltage connections are in the form of plugs. Inform-
ation on the pin allocation can be found in the following chapters.

Use plugs and sockets from the Festo product range which match the outside diameter of
the cables used.

Preparing the plugs and cables


Connect the plugs and cables as follows (example):
1. Open the plugs/sockets as follows:
– Power supply socket:
• Insert the mains power socket into the operating voltage connection of the MSE6-E2M.
• Unscrew the housing of the socket.
• Then remove the connecting part of the socket which is inserted in the operating voltage
connection.

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 85


A Technical appendix

1
2

1 Cable 3 Housing
2 Strain relief 4 Connecting part
Fig. A.1 Component parts of the socket and cable throughfeed

2. Open the strain relief on the rear part of the housing. Then pass the cable through.
3. Remove 5 mm of insulation from the end of the conductors and fit wire end sleeves on the stranded
wires.
4. Connect the ends of the conductors.
5. Replace the connecting part on the housing of the plug/socket. Pull the cable back so that there are
no loops inside the housing.
6. Tighten the strain relief.

86 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


B Parameterisation examples

B Parameterisation examples
The following examples for determining parameters must be carried out under normal
production conditions.

B.1 Commissioning example for the automatic shut-off function


Each system must be set individually. The sample values are only intended as an orienta-
tion.

Recommended approach:
1. Recording the relevant function-specific production data
To be able to set the parameters for the automatic shut-off function of the MSE6-E2M
correctly, the following data of the following system is required ( Fig. B.1):
– Minimum flow in production operation
– Pneumatic and electrical in operation
– Actuator technology in action
– Maximum time at continuous minimum flow (e.g. production downtime)
– Maximum flow for production downtime
– Pneumatic and electrical in operation
– Actuators not in action

Short-time Short-time
production production Auto shut-off
downtime downtime Deceleration

1 Minimum flow rate in production operation 3 Maximum flow for production downtime
2 Auto shut-off low flow limit
Fig. B.1

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 87


B Parameterisation examples

Sample values in the “Pressurise” state:


– Minimum flow rate in production operation : 250 l/min
– Maximum pause time in production operation: 2 min
– Maximum flow for production downtime: 80 l/min

2. Set parameters for automatic shut-off function


To avoid unintentional behaviour, additional tolerances and safety additions must be
taken into account during parameterisation.

• The module must be in the “Shut-off ” state for the parameters to be effective (otherwise, the
previously set values apply).
• The “Auto shut-off ” function must be deactivated.
• Parameter “Auto shut-off delay”
Set the parameter higher than the actual pause time, in order to avoid accidental advance shut-
off, in the upper example values, for example, to 10 min.
• Parameter “Auto shut-off low flow limit”
The parameter must be higher than the maximum flow rate at rest, but lower than the minimum
flow in production operation.
In the example, it could be set between 90 and 240 l/min.
3. Activate automatic shut-off function
• The control bit “Auto shut-off ” (B1 in the output word Am.0 “Module control”) must be set.
After the set time, if there is an underrun of the flow limit value, the module should switch to the
“Shut-off ” state.
4. After automatic shut-off, switch the module back to the “Pressurise” state.
– The module has switched automatically to the “Shut-off ” state (shut-off valve closed: Status bit
Shut-off valve Em.3.0 = 1)
– The control bit “Shut-off ” (B0 in the output word “Module control”) must stay deactivated.
• Positive signal flank on control bit B2 in the output word “Module control” (automatic shut-off
function remains active)
• Otherwise, deactivation of the automatic shut-off function by resetting the control bit B1 in the
output word “Module control”; it may occur that the automatic shut-off function may need to be
reactivated.
5. Check the set values over multiple production cycles.
Changes to system parameters can lead to a change in the determined production data.
Check whether the system parameters are still valid.

88 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


B Parameterisation examples

B.2 Commissioning example for monitoring the pressure drop


Each system must be set individually. The sample values are only intended as an orienta-
tion.

Recommended procedure for determining the value for the parameter “Upper limit pressure change”:
1. Switch the MSE6-E2M to the “Pressurise” status.
2. Specify a value for the “Pressure change sample time” parameter.
If your system shows a high pressure drop, start with 100 ms (corresponds to parameter
value 1).
This displays the value for the pressure change every 100 ms. If there is a smaller pres-
sure drop, increase the parameter value for the “Pressure change sample time”, e. g. to
10, meaning that the pressure change every 1 s will be displayed. Vary the value for the
“Pressure change sample time”, until you have determined a suitable value for your sys-
tem.

3. Switch the MSE6-E2M to the “Shut-off ” status.


4. Record the pressure change values of the selectable input word (Em.5). For this, Am.1 must have
the value 0.
A pressure change is a signed value and, when there is a pressure drop, can thus be a
negative value.

5. Generate the amount of the pressure change (sign reversal for negative values).
6. Determine the amount of the largest pressure change value.
7. Through multiple switching from the Pressurise to the Shut-off status, determine the amount of the
maximum pressure change value.
If you have obtained very small values, it may be wise to increase the value for the para-
meter “Pressure change sample time”.

8. Specify this value, with an added safety tolerance, for the parameter “Upper limit pressure change”.
In this way, you can avoid accidental error messages.

Sample values:
– Parameter “Pressure change sample time”: 1 s
– Parameter “Upper limit pressure change”:
– Amount of maximum pressure change value: 160 mbar
– Set limit value incl. safety tolerance: 200 mbar
Monitoring of the pressure change only takes place in the status “Shut-off ”.

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 89


C Parameters and data

C Parameters and data


Overview of the function numbers
Function no. 1) Data and parameters See
0 Operating mode (system data) Tab. C.34
0 Expansion (system data) Tab. C.35
0 Operator unit (system data) Tab. C.36
0 Force mode (system data) Tab. C.37
0 System start (system data) Tab. C.38
1 Fail safe (system data) Tab. C.39
2 Monitoring (system data) Tab. C.40
16 + m * 16 + 0 Module code (module data) Tab. C.44
16 + m * 16 + 13 Revision code (module data) Tab. C.45
784 + m * 4 + 0 Serial number (module data) Tab. C.46
784 + m * 4 + 1
784 + m * 4 + 2
784 + m * 4 + 3
1936 Status bits (system diagnostic data) Tab. C.25
1937 Module number and diagnostic status (system diagnostic data) Tab. C.26
1938 Error number (system diagnostic data) Tab. C.27
2008 + m * 4 + 0 Number of the first faulty channel (module diagnostic data) Tab. C.29
2008 + m * 4 + 1 Module error number (module diagnostic data) Tab. C.30
2008 + m * 4 + 2 Information 2 (module diagnostic data) Tab. C.31
2008 + m * 4 + 3 Information 3 (module diagnostic data) Tab. C.32
3480 Entries remanent with Power ON (diagnostic memory parameters) Tab. C.10
3480 Run/stop filter 1 (diagnostic memory parameters) Tab. C.11
3482 Number of entries in the diagnostic memory (diagnostic memory Tab. C.20
data)
3483 Overflow (diagnostic memory data) Tab. C.21
3483 Status (diagnostic memory data) Tab. C.22
3484 Run/stop filter 2 (diagnostic memory parameters) Tab. C.12
3484 Error end filter (diagnostic memory parameters) Tab. C.13
3484 Error number filter (diagnostic memory parameters) Tab. C.14
3484 Module/channel filter (diagnostic memory parameters) Tab. C.15
3485 Module number MN (diagnostic memory parameters) Tab. C.16
3486 Channel number KN (diagnostic memory parameters) Tab. C.17
3487 Error number FN (diagnostic memory parameters) Tab. C.18
3488 + n Diagnostic memory data (diagnostic memory data) Tab. C.23
4401 Monitoring (system parameters) Tab. C.4
1) m = Module number
n = Function-specific number

90 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


C Parameters and data

Function no. 1) Data and parameters See


4402 Fail safe (system parameters) Tab. C.5
4402 Force mode (system parameters) Tab. C.6
4402 System start (system parameters) Tab. C.7
4402 Analogue process value representation (data format) Tab. C.8
4828 + m * 64 + 0 Monitoring (module parameter) Tab. 7.3
4828 + m * 64 + 7 Monitor limit values startup (module parameter) Tab. 7.4
4828 + m * 64 + 8 Unit pressure (module parameter) Tab. 7.5
4828 + m * 64 + 8 Unit flow (module parameter) Tab. 7.6
4828 + m * 64 + 8 Unit consumption (module parameter) Tab. 7.7
4828 + m * 64 + 8 Flow standard (module parameter) Tab. 7.8
4828 + m * 64 + 10 Pressure change sample time (module parameter) Tab. 7.9
4828 + m * 64 + 11…12 Upper limit flow (module parameter) Tab. 7.10
4828 + m * 64 + 13…14 Upper limit pressure (module parameter) Tab. 7.11
4828 + m * 64 + 15…16 Upper limit pressure change (module parameter) Tab. 7.12
4828 + m * 64 + 17…18 Auto shut-off delay (module parameter) Tab. 7.13
4828 + m * 64 + 19…20 Auto shut-off low flow limit (module parameter) Tab. 7.14
4828 + m * 64 + 29…30 Module operating time (module parameter) Tab. 7.15
4828 + m * 64 + 31…32 Shut-off valve switching cycles (module parameter) Tab. 7.16
1) m = Module number
n = Function-specific number
Tab. C.1 Function numbers, data and parameters

Function no. Fieldbus-specific system data See


– Number of input bytes (Rx size) 1) Tab. C.41
– Number of output bytes (Tx size) 1) Tab. C.42
1) Only relevant with certain fieldbus protocols (see description of CPX bus node)
Tab. C.2 Function numbers, fieldbus-specific system data

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 91


C Parameters and data

C.1 System parameters


The system parameters refer to global functions of the MSE6-E2M. The following system parameters
are available:
Function no. System parameters
4400 Reserved
4401 Monitoring (active/inactive)
4402 Fail safe (behaviour on communication faults)
4402 Force mode (enable/block Force)
4402 System start
4402 Analogue process value display (data format)1)
1) Only relevant with certain fieldbus protocols (see description of CPX bus node)
Tab. C.3 Overview – system parameters

[........] The data and parameters in the text displayed in English on the operator unit are shown in
square brackets in this description, e.g. [Limits]. To the left of this is the translation, e. g.:
Limit values [Limits]

92 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


C Parameters and data

System parameter: Monitoring


Function no. 4401
Description The monitoring of short circuit/overload and undervoltage for the MSE6-E2M
can be activated or deactivated (suppressed). Active monitoring causes the
following. An error registered by the module will be:
– Sent to the higher-order fieldbus master
– Entered, if applicable, in the diagnostic memory (depending on filter settings)
– Entered in the module diagnostic data and, if applicable, in the status bits
– Displayed by the module common error LED
– Displayed by the red SF LED on the node.
Monitoring [Monitor]
Bit Description
0 Short circuit/overload in sensor supply (SCS) [Monitor SCS]
1 Short circuit/overload at the outputs (SCO) [Monitor SCO]
2 Undervoltage of outputs (UOUT) [Monitor Vout]
3 Reserved
4 Short circuit at valves (SCV) [Monitor SCV]
5…7 Reserved
Values 1 = Active (presetting) [Active]
0 = Inactive [Inactive]
Comment The mode of operation of the channel error LED remains unaltered. Monitoring
can also be set separately for each module (see module parameter Monitoring
 Tab. 7.3).
Tab. C.4 Monitoring short circuit/overload/undervoltage

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 93


C Parameters and data

System parameter: Fail safe (reaction to communication errors)


Function no. 4402
Description Specifies which signal status the outputs/actuators are to assume in the event
of fieldbus communication errors, e.g. in the event of:
– Communication failure (bus interruption, PLC/IPC failure)
– Communication stop.
In the following case, the channel-orientated Fail safe settings (module paramet-
ers Error mode and Error state) are reset automatically for safety reasons in
order to avoid undesired signal states:
– When changing from “Assume fault mode” to “Reset all outputs” or to “Hold
last state”.
Bit Bit 0, 1
Values Fail safe [Fail safe]
Bit 1 0 Description
0 0 Reset all outputs (presetting) [Reset outputs]
0 1 Hold last state (retain signal status) [Hold last state]
1 0 Assume Fault mode [Assume fault mode]
Comment The Fault mode status is set with the channel-specific module parameters. Addi-
tional information on this parameter can be found in section D.1.
Tab. C.5 Fail safe

System parameter: Force mode


Function no. 4402
Description Specifies for the MSE6-E2M whether the Force function is blocked or enabled.
By changing this parameter, the channel-orientated Force settings (module para-
meters Force mode and Force state) are reset automatically for safety reasons in
the following cases in order to avoid undesired signal states:
– Change via operator unit: When changed from “Enabled” to “Blocked”.
– Change via fieldbus: When changed from “Enabled” to “Blocked”.
Bit Bit 2, 3
Values Force mode [Force mode]
Bit 3 2 Description
0 0 Blocked (presetting) [Disabled]
0 1 Enabled [Enabled]
Comment Force signals have precedence over Fail safe signals.
Tab. C.6 Force mode

94 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


C Parameters and data

System parameter: System start 1)


Function no. 4402
Description With this parameter, you can determine the start-up reaction of the MSE6-E2M
and save all current parameter settings and the current expansion.
Bit Bit 6
Values System start [System start]
Bit 6 Description
0 System start with default parameterisation (factory [Default parameters]
setting) and current expansion; external parameterisa-
tion is possible (presetting)
1 System start with stored parameterisation and stored [Saved parameters]
expansion; parameter and expansion are stored re-
manently; external parameterisation is blocked; the
M-LED on the fieldbus module is lit
Comment If bit 6 is set to 1, the current parameter settings will be “frozen” (write-protec-
ted) and the current expansion will be saved, except for bit 6 itself and the mod-
ule parameter “Force channel X”.
Recommendation: Select “System start with default parameterisation and cur-
rent CPX equipment status”. The desired parameterisation can then be created
in the start-up phase or after fieldbus interruptions e.g. by the interface module
or the scanner/bus master (depending on the fieldbus used). If “System start
with default parameterisation and current CPX equipment status” is active, the
factory settings for all module and system parameters will become valid after
Power On.
1) This parameter does not exist with the CPX-FEC in the operating modes Stand Alone and Remote Controller (control function act-
ive).
Tab. C.7 System start

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 95


C Parameters and data

System parameter: Analogue process value display (data format) 1)


Function no. 4402
Description Switches the data format for displaying analogue process values. This is a spe-
cial parameter for certain CPX bus nodes only (CPX-FB13, FB33/34).
Bit Bit 7
Values Analogue process value representation [Analogue data format]
Bit 7 Description
0 INTEL byte sequence (LSB-MSB, factory setting): [Intel format]
Process values are displayed in the Intel format (least
significant bit on the left, most significant bit on the
right)
1 MOTOROLA byte sequence (MSB-LSB): [Motorola format]
Process values are displayed in the Motorola format
(most significant bit on the left, least significant bit on
the right)
1) This is a special parameter for certain CPX bus nodes only (CPX-FB13, FB33/34)
Tab. C.8 Analogue process value representation

96 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


C Parameters and data

C.2 Diagnostic memory parameters


The operating method of the diagnostic memory can be adapted to individual requirements by means
of the diagnostic memory parameters.
The diagnostic memory parameters retain their last setting after power off/on. They are
saved securely against power outages. The parameter values marked with Presetting
correspond to the factory condition. Additional information on the working method of the
diagnostic memory can be found in section D.2.

The following parameters can be influenced:


Function no. Diagnostic memory parameters
3480 Entries remanent with power ON
3480 Run/stop filter 1
3484 Run/stop filter 2
3484 End of error filter
3484 Error number filter
3484 Module/channel filter
3485 Module number MN
3486 Channel number CN
3487 Error number FN
Tab. C.9 Overview – Diagnostic parameters

Diagnostic memory parameters: Entries remanent on Power On


Function no. 3480
Description Determines whether the contents of the diagnostic memory are to be retained
after new Power on or whether they are to be deleted.
Bit 0 Entries remanent with new power ON [Entries remanent at Power ON]
Values 1 = Inactive [Inactive]
0 = Active (presetting) [Active]
Comment The diagnostic memory will be deleted if the mode is changed.
Tab. C.10 Entries remanent on Power on

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 97


C Parameters and data

Diagnostic memory parameters: Run/Stop filter 1


Function no. 3480
Description Diagnostic memory filter with which you can determine whether the first 40 er-
rors or the last 40 errors are to be saved.
Bit Bit 1
Values Run/stop filter 1: [Run/Stop 1]
Bit 1 Description
0 Save the first 40 entries (stop after 40 entries); [Save the first 40 entries]
1 Save the last 40 entries (overwrite old entries, [Save the last 40 entries]
presetting)
Comment The diagnostic memory will be deleted if the mode is changed.
Tab. C.11 Run/stop filter 1

Diagnostic memory parameters: Run/Stop filter 2


Function no. 3484
Description Diagnostic memory filter with which you can determine when the registering of
errors is to be started or stopped.
Bit Bit 0 … 2
Values Run/stop filter 2 [Run/Stop 2]
MN = Module number, CN = Channel number,
FN = Error number

Bit 2 1 0 Description
0 0 0 Run/stop filter 2 inactive (presetting) [Inactive]
0 0 1 Register up to the defined FN [Rec. up to def. FN]
0 1 0 Register up to the defined FN + MN [Rec. up to def. FN + MN]
0 1 1 Record up to the defined FN + MN + KN [Rec. up to def. FN + MN + CN]
1 0 0 Record as from the defined FN [Rec. as of def. FN]
1 0 1 Record as from the defined FN + MN [Rec. as of def. FN + MN]
1 1 0 Record as from the defined FN + MN + KN [Rec. as of def. FN + MN + CN]
1 1 1 Reserved –
Comment The numbers are determined by means of the diagnostic memory parameters
“Module, channel and error numbers” (function nos. 3485…3487).
Tab. C.12 Run/stop filter 2

98 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


C Parameters and data

Diagnostic memory parameters: End of error filter


Function no. 3484
Description Diagnostic memory filter with which you can determine whether running errors
are to be recorded or not.
Bit Bit 3
Values End of error filter [Fault end filter]
Bit 3 Description
0 Record running errors (end of error) (filter inactive, [Rec. outg. faults]
presetting)
1 Do not record running errors (end of error) (filter [Do not rec. outg. faults]
active)
Comment By record the outgoing error, you can ascertain how long the error has existed.
Incoming and running errors each represent one entry. With running errors, the
error number “0” is entered. A maximum of 40 entries are saved together.
Tab. C.13 End of error filter

Diagnostic memory parameters: Error number filter


Function no. 3484
Description With this diagnostic memory filter you can:
– Suppress the recording of a desired error message
– Record exclusively a desired error message.
Bit Bit 4, 5
Values Error number filter [Fault numbers filter]
FN = Error number
Bit 5 4 Description
0 0 Error number filter inactive (presetting) [Inactive]
0 1 Record only defined FN [Rec. only def. FN]
1 0 Do not record defined FN [Do not rec. def. FN]
1 1 Reserved –
Comment The error number is determined by means of the diagnostic memory parameter
“Error number” (function no. 3487).
Tab. C.14 Error number filter

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 99


C Parameters and data

Diagnostic memory parameters: Module/channel filter


Function no. 3484
Description With this diagnostic memory filter, the recording of errors of other modules or
channels can be suppressed in order that errors in a particular module or chan-
nel can be analysed.
Bit Bit 6, 7
Values Module/channel filter [Module/channel filter]
FN = Error number
Bit 7 6 Description
0 0 Module/channel filter inactive (presetting) [Inactiv]
0 1 Record only the FN of a module [Rec. FN of a mod.]
1 0 Record only the FN of a channel [Rec, FN of a ch.]
1 1 Reserved –
Comment The appropriate numbers are determined by means of the diagnostic memory
parameters “Module and channel numbers” (function nos. 3485…3486).
Tab. C.15 Module/channel filter

Diagnostic memory parameters: Module number (MN)


Function no. 3485
Description Module number for the diagnostic memory filter
Bit 0…7 (1 byte)
Values Module number (MN) [Module number MN]
0 … 47 Module number (0 = presetting)
Comment Is only effective if an appropriate diagnostic memory filter is active.
Tab. C.16 Module number (MN)

Diagnostic memory parameters: Channel number (CN)


Function no. 3486
Description Channel number for the diagnostic memory filter
Bit 0…7 (1 byte)
Values Channel number (CN) [Channel number CN]
0 … 63 Channel number (0 = presetting)
Comment Is only effective if an appropriate diagnostic memory filter is active.
Tab. C.17 Channel number (CN)

100 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


C Parameters and data

Diagnostic memory parameters: Error number (FN)


Function no. 3487
Description Error number for the diagnostic memory filter
Bit 0…7 (1 byte)
Values Error number (FN) [Fault numer FN]
0 … 255 Error number (0 = presetting)
Comment Is only effective if an appropriate diagnostic memory filter is active.
Tab. C.18 Error number (FN)

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 101


C Parameters and data

C.3 Diagnostic memory data


The following diagnostic memory data is available:
Function no. Diagnostic memory data
3482 Number of entries in the diagnostic memory
3483 Overflow
3483 Status
3488 + n Diagnostic memory data (10 bytes per diagnostic entry, max. 40 entries)
Tab. C.19 Overview – Diagnostic memory data

Diagnostic memory data: Number of entries in the diagnostic memory


Function no. 3482
Description Specifies the number of entries in the diagnostic memory.
Bit 0…7 (1 byte)
Values Number of entries in the diagnostic memory [recorded faults …]
0 … 40
Comment Can be used as a loop counter if the complete diagnostic memory is to be read out
by PLC program.
Tab. C.20 Number of entries in the diagnostic memory

Diagnostic memory data: Overflow


Function no. 3483
Description Specifies whether the diagnostic memory has overflowed.
Bit Bit 0
Values Overflow
Bit 0 Description
0 No overflow [no overflow]
1 Overflow [overflow]
Comment The overflow is displayed when the first 40 errors are recorded as well as when
the last 40 errors are recorded. Overflow means that more than 40 errors have
occurred.
Tab. C.21 Overflow

102 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


C Parameters and data

Diagnostic memory data: Status


Function no. 3483
Description Specifies whether the error recording is active or inactive.
Bit Bit 1
Values
Bit 0 Description
0 Recording active [Recording active]
1 Recording inactive [Recording inactive]
Comment Error recording can be stopped and started with the run/stop filters.
Tab. C.22 Status

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 103


C Parameters and data

Structure of thediagnostic memory


The diagnostic memory contains up to 40 diagnostic entries. A diagnostic entry consists of 10 bytes.
The first five bytes contain information on the error time. The last five bytes contain information on the
error. The following table shows the structure of diagnostic entries.

Diagnostic memory data (10 bytes per entry, max. 40 entries) Function no. 1)
Byte Description Description Value 3488 + n
no.
1 Days [day] Number of days 2) 0 … 255 n = 10 * d + 0
2 Hours [h] Number of hours 2) 0 … 23 n = 10 * d + 1
3 Minutes [m] Number of minutes 2) 0 … 59 n = 10 * d + 2
4 Seconds [s] Number of seconds 2) 0 … 59 n = 10 * d + 3
5 Milliseconds [ms] Number of 10 msec 2) 0 … 99 n = 10 * d + 4
In addition: Bit 7 is set if it is the first or
entry after Power ON. 128 … 227
6 Module code 3) Module code of the module which 0 … 255 n = 10 * d + 5
registered the error
7 Module position Module number of the module that 0 … 47, n = 10 * d + 6
[Pos] signalled the error;
63 = Error not module-related 63
8 Channel number Bit 7 6 5 … 0: Description 0 … 255 n = 10 * d + 7
3)

0 0 0 … 63: No. of the 1st


defective A
channel
1 0 0 … 63: No. of the 1st
defective Input
channel
0 1 0 … 63: Module error
1 1 0 … 63: Reserved
9 Error number [FN] 0 … 255: Error number (possible error 0 … 255 n = 10 * d + 8
messages  Section 8.4)
10 Following Number of subsequent channels with 0 … 63 n = 10 * d + 9
channels 3) the same error
1) d (Diagnostic event) [NB] = 0 … 39 ; Most current diagnostic event = 0;
2) Measured from the moment the power supply is switched on
3) If the error number = 0, the content of these bytes is also 0. If the error number lies between 128 ... 199 (error class 3), the content
of these bytes is not relevant (servicing required).
Tab. C.23 Diagnostic memory data

104 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


C Parameters and data

C.4 System diagnostics data


The following system diagnostic data is available:
Function no. System diagnostics data
1936 Status bits (error type and error source)
1937 Module number and diagnostic status
1938 Error number
Tab. C.24 Overview - Diagnostic data

System diagnostic data: Status bits


Function no. 1936
Description The 8 status bits display common diagnostic messages (global error messages).
Bits 0 ... 3 display the source of the error and bits 4 ... 7 display the type of the
error.
Bit Status bits [System diagnostics]
Source of Bit 0: Reserved –
error:
Bit 1: Output [Output]
Bit 2: Input [Input]
Bit 3: Analogue/function module [Analogue/function module]
Type of error: Bit 4: Undervoltage [Undervoltage]
Bit 5: Short circuit/overload [Short circuit/overload]
Bit 6: Wire break [Wire fracture]
Bit 7: Other error [Other error]
Values 1 = There is an error; 0 = No error
Tab. C.25 Status bits

System diagnostic data: Module number and diagnostic status


Function no. 1937
Description Function no. 1937 specifies whether there is diagnostic data and contains,
where applicable, the number of the first module on which an error has oc-
curred. With the aid of the module number of the faulty module, you can ascer-
tain the function numbers of the relevant diagnostic data.
Bit Bit 0 … 5 Module number of the first faulty [First faulty module]
module
Bit 6: Diagnostic status
Bit 7: Reserved
Values Bit 0 … 5 0…47 (Module number)
Bit 6: 1 = Diagnostic data is available
0 = There is no diagnostic data
Comment Function no. 1938 contains the relevant error number.
Examples  Fig. 8.7 and Fig. 8.9.
Tab. C.26 Module number and diagnostic status

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 105


C Parameters and data

System diagnostic data: Error number


Function no. 1938
Description Contains the current error number
Bit Bit 0 … 7: Error number [Fault number]
Values 0 … 255 Error number
Comment For possible error messages, see  Section 8.4.
Function no. 1937 specifies whether there is diagnostic data and contains,
where applicable, the number of the first module on which the error occurred.
Tab. C.27 Error number

C.5 Module diagnostics data


The module diagnostic data is assigned to the function numbers 2008 to 2199. There are 4 diagnostic
information items in 4 consecutive bytes for each module. The function numbers of the diagnostic data
of the faulty module are therefore calculated as follows:
Function no. = 2008 + (4 * module number) + information no.
You can ascertain the module number of the first faulty module with the aid of the system
diagnostic data (function no. 1937).

The following module diagnostic data is available:


Function no. 1) Module diagnostics data
2008 + m * 4 + 0 Number of the first faulty channel
2008 + m * 4 + 1 Module error number
2008 + m * 4 + 2 Information 2 (reserved)
2008 + m * 4 + 3 Information 3 (reserved)
1) m=1
Tab. C.28 Overview - Module diagnostic data

106 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


C Parameters and data

Module diagnostic data: Number of the first faulty channel


Function no. 2008 + m * 4 + 0 m = Module number (1)
Description Specifies the number of the faulty channel (bits 0...5)
Bit Bit 7 6 5 … 0: Description
0 0 0 … 63: No. of the 1st defective A channel
1 0 0 … 63: No. of the 1st defective Input channel
0 1 0 … 63: Module error
1 1 0 … 63: Reserved
Values Bit 0…5: 0 … 63 (Channel number)
Bit 6: 0…1
Bit 7: 0…1
Comment With the aid of the module number of the faulty module (see system diagnostic
data, byte address 1937), you can ascertain the function numbers of the relev-
ant diagnostic data.
Tab. C.29 Number of the first faulty channel

Module diagnostic data: Module error number


Function no. 2008 + m * 4 + 1 m = Module number (1)
Description Error number
Bit Bit 0 … 7: Error number
Values 0 … 255 (Error number)
Comment For possible error messages, see  Section 8.4.
Tab. C.30 Module error number

Module diagnostic data: Information 2 (reserved)


Function no. 2008 + m * 4 + 2 m = Module number (1)
Description Reserved
Tab. C.31 Information 2 (reserved)

Module diagnostic data: Information 3 (reserved)


Function no. 2008 + m * 4 + 3 m = Module number (1)
Description Reserved
Tab. C.32 Information 3 (reserved)

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 107


C Parameters and data

C.6 System data


System data provides information about global system settings and system states. System data is lost
after Power Off (non-remanent). The following system data is available:
Function no. System data
0 CPX operating mode
0 Expansion
0 Operator unit
0 Force mode
0 System start
1 Fail safe
1 System idle mode 1)
2 Monitoring MSE6-E2M
– Number of input bytes (Rx size) 1)
– Number of output bytes (Tx size) 1)
1) Only relevant for certain fieldbus protocols
Tab. C.33 Overview – System data

System data: CPX operating mode


Function no. 0
Description Specifies the CPX operating mode that is currently active.
In the operating mode “Remote I/O”, all functions are controlled via the protocol
implemented in the fieldbus node.
In the operating mode “Remote controller”, the FEC takes complete control of
the I/Os. 8 I/O bytes are provided for communication with the CPX bus node.
Bit Bit 0…3
Values CPX operating mode [CPX mode]
Bit 3 2 1 0 Description
0 0 0 1 Remote I/O without FEC [Remote I/O]
0 0 1 0 Remote I/O with FEC [Remote I/O with FEC]
0 1 0 0 Remote controller without fieldbus node [Remote controller]
1 0 0 0 Remote controller with fieldbus node [Remote contr. with FB]
Comment The CPX operating mode is determined and entered during the start-up phase.
Tab. C.34 CPX operating mode

108 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


C Parameters and data

System data: Expansion


Function no. 0
Description Specifies whether the current expansion to the corresponds to the saved expansion.
Bit Bit 4
Values Expansion [CPX structure]
Bit 4 Description
0 Equal [equal]
1 Not equal [unequal]
Comment See also system parameter “System start”.
Tab. C.35 Expansion

System data: Operator unit


Function no. 0
Description Specifies whether or not an operator unit is connected.
Bit Bit 5
Values Operator unit [Handheld]
Bit 5 Description
0 No operator unit is connected –
1 Operator unit connected [connection OK]
Comment Information for the higher-order controller.
If necessary for test purposes, a parameterisation carried out using an operator
unit is to be cancelled by reloading the parameters, or forcing by higher-order
PLC/IPC is to be blocked whilst an operator unit is connected.
Tab. C.36 Operator unit

System data: Force mode


Function no. 0
Description Specifies whether Force is blocked or enabled.
Bit Bit 6
Values Force mode [Force mode]
Bit 6 Description
0 Blocked [Disabled]
1 Enabled [Enabled]
Comment  Also system parameter Force mode, Tab. C.6.
Tab. C.37 Force mode

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 109


C Parameters and data

System data: System start


Function no. 0
Description Specifies how the system start of the MSE6-E2M is to be carried out.
Bit Bit 7
Values System start [System start]
Bit 7 Description
0 System start with default parameterisation (factory [Default parameters]
setting) and current expansion
1 System start with saved parameterisation and saved [Saved parameters]
equipment status
Comment  Also system parameter “System start”, Tab. C.7 .
Tab. C.38 System start

System data: Fail safe


Function no. 1
Description Specifies whether Fail safe is active or inactive.
Bit Bit 0, 1
Values Fail safe [Fail safe]
Bit 1 0 Description
0 0 Reset all outputs [Reset outputs]
0 1 Hold last state (retain signal status) [Hold last state]
1 0 Assume Fault mode [Assume fault mode]
Tab. C.39 Fail safe

110 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


C Parameters and data

System data: Monitoring


Function no. 2
Description Specifies whether the monitoring of short circuit/overload and undervoltage is
active or inactive.
Monitoring [Monitor]
Bit Description
0 Short circuit/overload in sensor supply (SCS) [Monitor SCS]
1 Short circuit/overload at the outputs (SCO) [Monitor SCO]
2 Undervoltage of outputs (UOUT) [Monitor Vout]
3 Reserved –
4 Short circuit at the valve (SCV) [Monitor SCV]
5 Reserved –
6 Reserved –
7 Reserved –
Values 1 = Active
0 = Inactive
Comment  Also system parameter Monitoring, Tab. C.4
Tab. C.40 Monitoring

System data: Number of input bytes (Rx size)


Function no. –
Description Specifies the number of input bytes of the MSE6-E2M.
Comment Only relevant with certain fieldbus protocols ( Description of CPX bus node)
Tab. C.41 Number of input bytes

System data: Number of output bytes (Tx size)


Function no. –
Description Specifies the number of output bytes of the MSE6-E2M.
Comment Only relevant with certain fieldbus protocols ( Description of CPX bus node)
Tab. C.42 Number of output bytes

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 111


C Parameters and data

C.7 Module data


Please note
With regard to the module codes, the MSE6-E2M is classified as an analogue module.

The following module data is available for identifying modules:


Function no. 1) Module data
16 + 16 m + 0 Module code
16 + 16 m + 13 Revision code
784 + m * 4 + 0 Serial number
784 + m * 4 + 1
784 + m * 4 + 2
784 + m * 4 + 3
1) m = Module number
Tab. C.43 Overview of module data

Module data: Module code


Function no. 16 + 16 m + 0; m = Module number (0 … 1)
Description Specifies the module code of the module.
Bit 0…7
Values
Values Module [Modul code]
code Energy efficiency module MSE6-E2M
143: CPX bus node
202 … 245:
Comment See description for the relevant module
Tab. C.44 Module code

Module data: Revision code


Function no. 16 + 16 m + 13; m = Module number (0 … 1)
Description Specifies the output status of the module.
Bit 0…7
Values Revision code [Revision]
0 … 255
Comment See rating plate
Tab. C.45 Revision code

112 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


C Parameters and data

Module data: Serial number


Function no. 784 + m * 4 + 0 (Byte 0)
784 + m * 4 + 1 (Byte 1)
784 + m * 4 + 2 (Byte 2)
784 + m * 4 + 3 (Byte 3); m = Module number ((0 … 1)
Description Specifies the serial number of the module.
Tab. C.46 Serial number

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 113


D Fundamentals of parameterisation

D Fundamentals of parameterisation

D.1 Influencing signal states


You can influence the signal states of the MSE6-E2M through the following functions:
Function Priority Brief description Signals able to
be influenced
Force 2) 1 Influences signal states independently of actual I/O signals
signal states ( Section D.1.1)
Fail safe 2 Specifies signal states, which take effect in the A signals
case of fieldbus communication errors
( Section D.1.2)
1) Only relevant for certain fieldbus protocols
2) Mainly used for test purposes in the commissioning phase.
Tab. D.1 Functions for influencing signal states

If several functions are active at the same time, the following applies:
– Force signals have the highest priority

Overview on the Force, Failsafe functions


Influencing output signals
With system parameters, you enter the fundamental settings for the respective function. With appropri-
ate setting of the system parameter, you can specify, through channel-specific module parameters, the
desired signal status for each channel individually. The following diagrams give an overview of this:

114 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


D Fundamentals of parameterisation

Output signal (e.g. over fieldbus)

Fail safe Memory

1 0

Hold last state


Module parameters
Fail safe channel X

Assume error mode Reset outputs 0


System parameters
Fail safe

Yes No
Fieldbus communication error

Force 0 1
Disable
Module parameters
Force channel X
Enable Disable
System parameters
Force mode
1
Output

1 Status LED of the respective output


Fig. D.1 Influencing output signals

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 115


D Fundamentals of parameterisation

Influencing input signals

Input
1
Force 0 1
Disable
Module parameters
Force channel X

Enable Disable
System parameters
Force mode

Input signal

1 Status LED of the respective input


Fig. D.2 Influencing input signals

Forcing an input does not modify the input signal itself. The logical status of the input only changes
internally and may be effective in a program.
Obtain further information on Fail safe and Force from the following sections.

D.1.1 Force

Fundamentals
The function Force permits the manipulation of signal states independently of actual operating condi-
tions. Force enables input and output signals to be overwritten. Input signals actually present or
changes in status by the program will be ignored. The input signals actually present and the output
signals generated by the user program only become valid again when the Force function is deactivated.
Warning
Depending on the functions of the machine/system, the manipulation of signal states
can cause serious injury to human beings and damage to property.
Use the Force function very carefully, in order to avoid damage.

The “Force” function is used mainly in the commissioning phase in order to set certain signals to the
desired status for test purposes even if the wiring is not complete.

116 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


D Fundamentals of parameterisation

Parameterisation
With MSE6-E2M, Force parameterisation can be used for:
– Inputs of the I/O diagnostic interface and status bits
– Outputs of the I/O diagnostic interface and status bits
By means of a system parameter, Force is enabled globally for the MSE6-E2M or blocked.
System parameters Settings Description
Force mode Blocked Force is blocked for the complete MSE6-E2M
(Presetting)
Enabled Force is enabled for the complete MSE6-E2M
Tab. D.2 System parameter Force mode

The signal status can be determined in channel-orientated manner (output/input) for each module
( Tab. D.3).
Module parameters Settings Description
Force mode Blocked Force is blocked for the channel
(Presetting)
Force state Accept the signal status defined by Force state
Force state Reset signal (presetting) Reset input/output signal
– Digital signal Set signal Set input/output signal
– Analogue signal Analogue value Value of the analogue signal
(0 = Presetting)
Tab. D.3 Module parameters “Force mode” and “Force state”

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 117


D Fundamentals of parameterisation

Mode of operation
Input information actually present will be replaced by the values entered in the Force table in the pro-
cess image inputs. Information actually present in the process image outputs will be replaced by the
values entered in the Force table and transmitted to the physical outputs.

1 1 1 0 1 0 1 0
1

Force mode
0 = Force blocked 1 1 0 0 1 0 0 0
2 1 = Force state
Force state
0 = Reset signal 0 1 0 1 0 1 1 0
1 = Set signal

3
0 1 1 0 0 0 1 0

1 Signal status previously 3 Signal status afterwards


2 Module parameter (channel-orientated)
Fig. D.3 Force parameterisation – example for binary signals

321 288 333 432 400 505 11 500


1

Force mode
0 = Force blocked 1 1 0 0 1 0 0 0
2 1 = Force value
Force state
100 505 100 321 202 110 80 50

3
100 505 333 432 202 505 11 500

1 Analogue signal previously 3 Analogue signal afterwards


2 Module parameter (channel-orientated)
Fig. D.4 Force parameterisation – example for analogue signals

118 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


D Fundamentals of parameterisation

D.1.2 Signal status in the event of an error (fail safe)

Fundamentals
With the aid of the so-called fail safe parameterisation, the signal status, which the outputs are to as-
sume in the event of fieldbus communication errors, can be determined (fail safe status). In this way, a
defined machine/system status should be created in the event of fieldbus communication errors (e.g.
failure of the higher-order PLC/IPC).
Warning
Depending on the functions of the machine/system, the manipulation of signal states
can cause serious injury to human beings and damage to property.
Use the fail safe parameterisation very carefully, in order to avoid damage.

Parameterisation
With the MSE6-E2M, fail safe parameterisation can be used for:
– Digital outputs
– Analogue outputs.
By means of the system parameter Fail safe, you can globally determine the signal status which the
outputs/valves are to assume in the event of fieldbus communication errors, e.g. in the event of:
– Communication failure (fieldbus interruption, PLC failure)
– Communication stop.
System parameters Settings Description
Fail safe Reset outputs Reset all outputs, shut-off valve switches to the
(Presetting) “Pressurise” state
Hold last state Retain current signal status for all outputs
Assume Fault mode Accept the signal status defined for the relevant
value channel
Tab. D.4 System parameter “Fail safe”

D.2 Diagnostic memory

Fundamentals
A diagnostic memory serves for logging error states. Recording the time when errors occur and error
sequences facilitates the search for the cause of the errors which are otherwise difficult to locate. If the
causes are eliminated, errors can be avoided in the long term.

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 119


D Fundamentals of parameterisation

Parameterisation
Various diagnostic memory filters can be parameterised by means of diagnostic memory parameters
( Section 4.2.2). With these filters, the recording of certain system states can be suppressed, and
both starting and stopping can be controlled. The mode of operation of the diagnostic memory filters is
shown in Fig. D.5.

Start: Error

Run/stop filter 1 The first 40 errors or the last 40 errors

End of error filter Record end of error or not

Error number filter Record defined error number or not

Module/channel filter Record only error number of a module/channel

Run/Stop
Filter 2

0 = Always record

1 = Record up to the defined error number

2 = Record up to the defined error number + module number


Diagnostic
memory

3 = Record up to the defined error number + module number +


channel number
4 = Record as from the defined error number

5 = Record as from the defined error number + module number


6 = Record as from the defined error number + module
number + channel number
MN = module number, CN = channel number, FN = error number

Fig. D.5 The mode of operation of the diagnostic memory filters

120 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


D Fundamentals of parameterisation

Mode of operation
With the MSE6-E2M, the start and end of an error can be logged in the internal diagnostic memory. The
diagnostic memory contains up to 40 entries. In addition to information on localising the error, the rel-
evant time point is saved, measured from the moment the power supply is switched on. A diagnostic
entry consists of 10 bytes. The first 5 bytes contain information on the time. The last five bytes contain
information on the error ( Section C.3).
With the aid of the function number, entries in the diagnostic memory can be read out via
the I/O diagnostic interface, irrespective of the fieldbus protocol used. The various field-
bus protocols provide, where applicable, further possibilities for reading out and config-
uring the CPX diagnostic memory ( Description of CPX bus node).

D.3 Monitoring errors

Fundamentals
Monitoring functions that run automatically can be activated and deactivated by parameterisation.
The activation of monitoring functions helps to guarantee the functionality of the machine/system and
to avoid unnecessary idle periods. The deactivation of monitoring functions helps to avoid disturbing
error messages, e.g.:
– During commissioning
– During an EMERGENCY OFF, if the EMERGENCY OFF concept of the machine/system requires that
the load voltage for the valves and output modules be switched off. The error messages (e.g. under-
voltage), which are triggered when the load voltage is switched off, should be frequently sup-
pressed here.

Parameterisation
The MSE6-E2M permits the monitoring of various types of fault (e.g. limit monitoring, undervoltage,
etc.). The different monitoring functions can be activated or deactivated globally by system parameters
for the complete MSE6-E2M and by module parameters for a single module or an individual channel.
Activation of a monitoring function causes the following:
Monitoring Behaviour on activation
Module parameters An error on the module will be:
Monitoring – Passed on to the fieldbus node
– Displayed by the module common error LED
System parameters An error registered by the module will be:
Monitoring – Sent to the higher-order fieldbus master
– Displayed by the red SF-LED on the fieldbus node
– Entered in the module diagnostic data and, if applicable, in the status bits
– Entered, if applicable, in the diagnostic memory
Tab. D.5 Monitoring

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 121


D Fundamentals of parameterisation

The following monitoring functions can be activated or deactivated globally:


System parameter monitoring Description
Undervoltage at outputs Monitors the load voltage supply for the shut-off valve.
Tab. D.6 System parameter monitoring

The following monitoring functions can be activated or deactivated by modules, providing the module
supports the relevant monitoring function:
Module parameter monitoring Description
Undervoltage actuator technology Monitors the load voltage supply for the shut-off valve.
MSE6-E2M
Limit values Monitors the upper limit value
Parameterisation error Monitors module parameterisation (plausibility check)
Tab. D.7 Module parameter monitoring

122 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


E Possible error numbers

E Possible error numbers


Not all error numbers are supported by MSE6-E2M.

Error numbers of error class 2


No. Handheld display Operating status Error elimination
0 [No error] No error -
1 [General diagnosis] General diagnostics (module- See description for the relev-
specific error) ant module
2 [Short circuit] Short circuit/overload in Eliminate short circuit/over-
sensor supply (SCS) or at load (see description for the
output (SCO) specific module)
3 [Wire fracture/idling Wire break/idling at current Check and, if necessary, re-
current I/O] input/output place the cable and connec-
ted sensors/actuators
4 [Short circuit in actuator Failure of load voltage supply Check connected actuators
supply] due to short circuit/overload as well as their connections
(on output side)
5 [Undervoltage in power Undervoltage in power sup- Eliminate undervoltage at
supply] ply (on input side) system supply or additional
power supply (pin allocation
 Tab. 3.1)
6…8 Reserved
9 [Lower limit exceeded] Value falling below nominal Check signal range and para-
range meterised limit value
10 [Upper limit exceeded] Value exceeding nominal Check signal range and para-
range meterised limit value
11 [Short circuit valve] Short circuit at valve Check valve and pneumatic
interface
12 Reserved
13 [Wire fracture (open load)] Wire break at valve (open Check valve and pneumatic
load) interface
14 [Condition counter Limit value of the condition Set or delete the limit value
exceeded] counter exceeded of the condition counter by
parameterising
15 [Module/channel failure] Module/channel failed Check module (function/in-
stallation), replace if neces-
sary

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 123


E Possible error numbers

Error numbers of error class 2


No. Handheld display Operating status Error elimination
16 [Module code incorrect] – Saved configuration is For the terminal:
different to the actual • Check the structure and
system structure resave, if necessary (for
the procedure, see
 Section C.1, System
parameter System start)
For the fieldbus module:
• Modify the System Start
parameter to “Default
parameterisation and cur-
rent CPX expansion”
With the CPX-FEC:
• Save the actual configura-
tion as the set configura-
tion using the FST software
17 [I/O length incorrect] Saved I/O length of the mod- For the terminal:
ule is different to the actual • Check the structure and
system structure. resave, if necessary (for
the procedure, see
With CPX-CP interface:  Section C.1, System
– The saved string alloca- parameter System start)
tion of the CPX-CP inter- For the fieldbus module:
face is not the same as • Modify the System Start
the configuration saved in parameter to “Default
the CPX bus node or in parameterisation and cur-
the CPX-FEC rent CPX expansion”
With the CPX-FEC:
• Save the actual configur-
ation as the set configur-
ation using the FST soft-
ware
18 [Address range exceeded] Number of I/O points ex- Check the DIL switch setting
ceeded or the terminal expansion.
See description for the spe-
cific CPX bus node/CPX-FEC
19 [Life cycle exceeded] Nominal service life/product Replace module or spare
lifecycle exceeded part (e.g. air filter)
See description for the relev-
ant module

124 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


E Possible error numbers

Error numbers of error class 2


No. Handheld display Operating status Error elimination
20 [Fault in parametrizing Error in parameterisation Check the parameterisation
signal range] (signal range) undertaken and, if necessary,
undertake the parameterisa-
tion again with the correct
parameters
21 [Fault in parametrizing data Error in parameterisation Check the parameterisation
format] (data format) undertaken and, if necessary,
undertake the parameterisa-
tion again with the correct
parameters
22 [Fault in parametrizing Error in parameterisation (lin- Check the parameterisation
linear scaling] ear scaling) undertaken and, if necessary,
undertake the parameterisa-
tion again with the correct
parameters
23 [Fault in filter meas.value] Error in parameterisation Check the parameterisation
(measured value smoothing) undertaken and, if necessary,
undertake the parameterisa-
tion again with the correct
parameters
24 [Fault in parametrizing Error in parameterisation Check the parameterisation
lower limit] (lower limit value) undertaken and, if necessary,
undertake the parameterisa-
tion again with the correct
parameters
25 [Fault in parametrizing Error in parameterisation Check the parameterisation
upper limit] (upper limit value) undertaken and, if necessary,
undertake the parameterisa-
tion again with the correct
parameters
26 [Fault in actuator supply] Error in actuator supply Eliminate short circuit/over-
load or check actuator sup-
ply, if necessary, check con-
nected actuators
27 [Wrong device type Missing or incorrect spare Replace module or spare
mounted] part part (e.g. air filter)
See description for the relev-
ant module
28 [Alarm value reached] Alarm value reached Check operating conditions
See description for the relev-
ant module

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 125


E Possible error numbers

Error numbers of error class 2


No. Handheld display Operating status Error elimination
29 [Fault in parametrizing] Error in parameterisation Check the parameterisation
undertaken and, if necessary,
undertake the parameterisa-
tion again with the correct
parameters
30 [No new output data Error in internal communica- Replace module if Power Off/
(slave)] tion (no new output data) On does not remedy problem
31 [No bus connection (slave)] Bus connection interrupted Set up bus connection or
check configuration
32 [No STI read access (slave)] STI read access defective Repeat STI read access
33 [No parameter access Read access parameter de- Repeat read access parameter
(slave)] fective
34 [CP module lost / fault] – Incorrect string allocation • Check CP strings (CP
ascertained during opera- modules and CP cables),
tion (e.g. CP module failed if necessary replace CP
or CP cable defective) modules or CP cables
– More than one module • Switch power supply off
failed during operation – and then on again. If the
modules are no longer re- error still occurs, check
cognised. and, if necessary, replace
CP cables and CP mod-
ules
35 [CP configuration failure] – When the power supply is • Check CP strings (CP
switched on, the string al- modules and CP cables),
location does not match if necessary replace CP
the saved string alloca- modules or CP cables
tion • With correct string alloca-
– Incorrect module recog- tion: String allocation
nised during operation must be saved (see de-
(different type, see de- scription of CPX-CP inter-
scription of CPX-CP inter- face)
face) • Check string allocation, if
necessary replace CP
module
36 [Short circuit CP-Line] Short circuit in CP string • Check string assign-
(24 V EL/SEN or 24 V VAL) ments, if necessary re-
– Communication on CP place CP cable
string interrupted
37 [Fault in controlling] Defect in the controller func- Check pressure and actuator
tion (e. g. setpoint value can- supply
not be reached)
38 [Missing valve] No valve recognised Check valve (function/install-
ation), replace if necessary

126 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


E Possible error numbers

Error numbers of error class 2


No. Handheld display Operating status Error elimination
39 [Maintenance required] Maintenance required See description for the relev-
ant module
40 [CO-Life Guard] Error resulting from Life Check cabling, check CAN
Guard monitoring bus load, check Guard Time
and Life Factor and adjust if
necessary
41 [CO-Heart Beat] Error resulting from Heart Check cabling, check CAN
Beat monitoring bus load, check Heart Beat
Time, adjust if necessary
42 Reserved
43 [CO-CAN Overrun (Objects Telegrams have been lost Check CAN bus load
lost)]
44 [CO-Invalid PDO received] PDO received with too few Possibly correct PDO map-
data bytes ping or increase number of
PDO bytes
45 [CO-CAN WarnLimit Some defective CAN tele- Check cabling
reached] grams have been discovered
46 [CO-CAN recovered from Defective CAN telegrams Check cabling; a CAN parti-
BusOff ] have been increasingly dis- cipant may be defective
covered
47 [CO-Bus Power lost] No supply voltage at the CAN Check power supply at
interface 24 VDC bus and 0 V bus
48 [Fault in Calibration] Calibration error (factory ad- Replace module
justment missing)
49 [Lower drop out signal] Current loop is in the lower Check the installation/para-
drop-out range meterisation of the actuator
technology
See description for the relev-
ant module
50 [Upper drop out signal] Current loop is in the upper Check the installation/para-
drop-out range meterisation of the actuator
technology
See description for the relev-
ant module
51 [Sensor limit exceeded] Physical limit value for a – Check structure (compli-
sensor exceeded ance with module spe-
– Process value invalid cification)
– Possible hardware damage – Check module for dam-
age, if necessary replace
52 [Short circuit cold junction Short circuit at cold junction Eliminate short circuit or
comp.] compensation check connected CJC sensors

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 127


E Possible error numbers

Error numbers of error class 2


No. Handheld display Operating status Error elimination
53 [Open load cold junction Wire break at cold junction Check and, if necessary, re-
comp.] compensation place the cable and connec-
ted CJC sensors
54 [Calibration data incorrect] Calibration data is faulty Replace module
55 [Invalid process value] Formation of the process Check structure (compliance
value is invalid due to faulty with module specification)
structure
56 … 63 Reserved
64 [Number of Modules The number of modules in Correct module expansion or
incorrect] the current CPX equipment save new one
status does not equal the
saved expansion
65 … 69 Reserved
70 [CC-L: Station equip. status CPX expansion is greater Check DIL switch setting (in-
incorrect] than the number of stations crease number of stations)
set
71 [CC-L: Bus connection lost] Bus connection interrupted Check cabling
72 … 77 Reserved
78 [Value out of range] Measured value outside the See description for the relev-
rated range ant module
79 Reserved
80 [Function failure] Module-specific malfunction See description for the relev-
ant module
81 … 99 Reserved
100 [Configuration error] Error in configuration or para- Check configuration, correct
meterisation if necessary or repeat com-
missioning
101 [Execution error] Error executing a positioning Check and, if necessary, cor-
job rect the positioning job
102 [Record error] Error executing a positioning Check and, if necessary, cor-
record rect the positioning job
103 [Control error] Error in control or in the para- Check and, if necessary, cor-
meters of a positioning job rect the positioning job
104 [System error A] Error in the process control Check system configuration
or the system configuration or positioning job, I/O signals
or system status and correct
as necessary
105 [System error B] Error in the peripherals; Check peripherals, power
power supply, operating supply and operating pres-
pressure, etc. sure
106 [Error in valve] Error in valve or on axis string Check valve or lines for dam-
age, if necessary replace

128 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


E Possible error numbers

Error numbers of error class 2


No. Handheld display Operating status Error elimination
107 [Controller error] Error in the controller or drive Check controller or drive regu-
regulator lator for damage, if necessary
replace
108 [Encoder error] Error in measuring system or Check measuring system or
on axis string lines for damage, if neces-
sary replace
109 [Error motor or power stage] Error in the motor or power Check motor or power sec-
section tion for damage, if necessary
replace
110 … Reserved
114
115 [Subsystem module/ Module/channel in a subor- Check subordinate module
channel failure] dinate system has failed (function/installation), re-
place if necessary
See description for the relev-
ant module
Tab. E.1 Possible errors (error class 2)

Error numbers of error class 3


No. Handheld display Operating status Error elimination
128 [Switch unit defective] Hardware defective in the Check module, if necessary
switch unit replace
129 [CBUS asic not ready] Hardware defective Replace module
130 [CPU Hardware Trap] System error has occurred Replace module if Power
Off/On does not remedy
problem
131 [CBUS C-manager not ready] Error in internal Check terminal and, if
communication necessary, replace
132 [Watchdog overflow] System error has occurred Replace module if Power
Off/On does not remedy
problem
133 [Remanent memory Hardware defective Replace module
defective]
134 [Flash system memory Hardware defective Replace module
defective]
135 [Number of mod. Error in internal configuration Check terminal and, if
params.more than 64] necessary, replace
136 [Slave not ready] System error has occurred Replace module if Power
Off/On does not remedy
problem

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 129


E Possible error numbers

Error numbers of error class 3


No. Handheld display Operating status Error elimination
137 [CBUS diagnostic telegram] Error in internal Check terminal and, if
communication necessary, replace
138 [CBUS init fault (gap)] Error in internal configuration Check module array (there
must not be any
configuration gaps in the
terminal)
139 [Order queue full] Error in internal Check terminal and, if
communication necessary, replace
140 [CBUS-EEPROM error] Hardware defective Replace module
141 [CBUS C-timeout error] Error in internal Check terminal and, if
communication necessary, replace
142 [CBUS telegram fault] Error in internal Check terminal and, if
communication necessary, replace
143 [BIU access error] System error has occurred Replace module if Power
Off/On does not remedy
problem
144 [Licence error] Module does not have a valid Procure licence, if necessary
licence replace module
145 … Reserved
149
150 [NETOS fatal error] System error has occurred Replace module if Power
Off/On does not remedy
problem
151 … Reserved
199
Tab. E.2 Possible errors (error class 3)

130 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


E Possible error numbers

Error numbers of error class 1


No. Handheld display Operating status Error elimination
200 [Fault param. transfer Error in parameterisation Replace module if Power Off/
module n] (parameter transfer failed) On does not remedy problem
201 [Invalid field bus address] Address incorrect Check the DIL switch setting,
correct if necessary
202 [Protokoll Asic not ready] Initialisation of the protocol Replace module if Power Off/
chip defective On does not remedy problem
203 [MMI serves CPX module] MMI serves CPX modules, Terminate MMI access
parameterisation is not pos-
sible via the fieldbus node or
FEC
204 [Invalid setting switch unit] Invalid switch setting Check the DIL switch setting,
correct if necessary
205 … Reserved
254
255 [unknown fault]
Tab. E.3 Possible errors (error class 1)

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 131


F Glossary

F Glossary
Term/abbreviation Significance
Bus node Consists, in terms of functions and numbers, of two independent modules:
A fieldbus module and a pressure sensor module.
DIL switches Dual-in-line switches consist of several switch elements with which
settings can be made.
Fieldbus module Component of the bus node, which creates the communicative connection
to a certain fieldbus, conducts control signals to the connected modules
and monitors their functioning capability.
I Input
I/O diagnostics The I/O diagnostic interface is a bus-independent diagnostic interface at
interface I/O level, permitting access to internal data of the MSE6-E2M.
I/Os Inputs and outputs
O Output
PLC/IPC Programmable logic controller/industrial PC
Status bits Internal inputs that supply coded common diagnostic messages.
Tab. F.1 Product-specific terms and abbreviations

132 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


MSE6-E2M

Index
A – Run/stop filter 1 . . . . . . . . . . . . . . . . . . . . . . 98
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 132 – Run/stop filter 2 . . . . . . . . . . . . . . . . . . . . . . 98
Diagnostics
B – I/O diagnostics interface . . . . . . . . . . . . 73, 74
Bus termination . . . . . . . . . . . . . . . . . . . . . . . . 36 – On-site . . . . . . . . . . . . . . . . . . . . . . . . . . 68, 70
– Status bits . . . . . . . . . . . . . . . . . . . . . . . . . . 73
C – Via fieldbus . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Cable
– Pre-assembling the connecting cable . . . . . 85 E
– Selecting the fieldbus cable . . . . . . . . . . . . . 85 Earthing, Potential equalisation . . . . . . . . . . . 22
– Selecting the operating voltage cable . . . . . 85 EMERGENCY OFF concept . . . . . . . . . . . . . . . . 21
CE marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Error class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Changeable module parameters . . . . . . . . . . . 59 Error control . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Commissioning Error numbers . . . . . . . . . . . . . . . . . . . . . . . . . 79
– Preparations . . . . . . . . . . . . . . . . . . . . . . . . . 26 Example of connection, Electrical . . . . . . . . . . 23
– Profibus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
– Start-up behaviour . . . . . . . . . . . . . . . . . . . . 38 F
Current Fail-Safe . . . . . . . . . . . . . . . . . . . . . 94, 114, 119
– External fuse protection . . . . . . . . . . . . . . . . 21 Fail-Safe parameterisation . . . . . . . . . . . . . . . 119
– Fuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Fieldbus, Connect . . . . . . . . . . . . . . . . . . . . . . . 34
Fieldbus plug . . . . . . . . . . . . . . . . . . . . . . . . . . 35
D Force . . . . . . . . . . . . . . . . . . . . . . . . . . . 114, 116
Diagnostic memory . . . . . . . . . . . . . . . . . 14, 104 Force-Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
– Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Functional earth . . . . . . . . . . . . . . . . . . . . . . . . 22
– Fundamentals . . . . . . . . . . . . . . . . . . . . . . . 119 Fuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
– Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Diagnostic memory data . . . . . . . . . . . . . . . . 102 I
– Number of entries in the diagnostic I/O diagnostics interface . . . . . . . . . . . . . . 14, 74
memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Input data
– Overflow . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 – Consumption measurement . . . . . . . . . . . . . 55
– Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 – Selectable . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Diagnostic memory filters . . . . . . . . . . . . . . . . 28 – Shut-off function . . . . . . . . . . . . . . . . . . . . . 55
Diagnostic memory parameters . . . . . . . . . 28, 97 Input word
– Channel number (CN) . . . . . . . . . . . . . . . . . 100 – Em.0 [Flow] . . . . . . . . . . . . . . . . . . . . . . . . . . 52
– End of error filter . . . . . . . . . . . . . . . . . . . . . . 99 – Em.1 [Consumption] . . . . . . . . . . . . . . . . . . . 52
– Entries remanent with power ON . . . . . . . . . 97 – Em.2 [Pressure P2] . . . . . . . . . . . . . . . . . . . . 53
– Error number (FN) . . . . . . . . . . . . . . . . . . . . 101 – Em.3 [Status] . . . . . . . . . . . . . . . . . . . . . . . . 55
– Error number filter . . . . . . . . . . . . . . . . . . . . 99 – Em.4 [Selected input address] . . . . . . . . . . . 56
– Module number (MN) . . . . . . . . . . . . . . . . . 100 – Em.5 [Selected input data] . . . . . . . . . . . . . . 57
– Module/channel filter . . . . . . . . . . . . . . . . . 100 Intended use . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 133


MSE6-E2M

M Output word
Malfunction . . . . . . . . . . . . . . . . . . . . . . . . . . 119 – Am.0 [Module control] . . . . . . . . . . . . . . . . . 50
Module code . . . . . . . . . . . . . . . . . . . . . . . . . 112 – Am.1 [Input address] . . . . . . . . . . . . . . . . . . 56
Module data . . . . . . . . . . . . . . . . . . . . . . . . . . 112
– Module code . . . . . . . . . . . . . . . . . . . . . . . . 112 P
– Revision code . . . . . . . . . . . . . . . . . . . . . . . 112 Parameter, Types . . . . . . . . . . . . . . . . . . . . . . . 27
– Serial number . . . . . . . . . . . . . . . . . . . . . . . 113 Pin allocation
Module diagnostics data . . . . . . . . . . . . . . . . 106 – Fieldbus interface . . . . . . . . . . . . . . . . . . . . . 34
– Module error number . . . . . . . . . . . . . . . . . 107 – System supply . . . . . . . . . . . . . . . . . . . . . . . 22
– Number of the first faulty channel . . . . . . . 107 Potential equalisation . . . . . . . . . . . . . . . . . . . 22
Module number . . . . . . . . . . . . . . . . . . . . . . . . 26 Pre-assembling . . . . . . . . . . . . . . . . . . . . . . . . 85
Module parameters
– Auto shut-off delay . . . . . . . . . . . . . . . . . . . . 65 R
– Auto shut-off low flow limit . . . . . . . . . . . . . 66 Read-only module parameters . . . . . . . . . . . . 59
– Flow standard . . . . . . . . . . . . . . . . . . . . . . . . 62 Revision code . . . . . . . . . . . . . . . . . . . . . . . . . 112
– Force mode . . . . . . . . . . . . . . . . . . . . . . . . . 117
– Force state . . . . . . . . . . . . . . . . . . . . . . . . . 117 S
– Module operating time . . . . . . . . . . . . . . . . . 66 Safety instructions, General . . . . . . . . . . . . . . . 7
– Monitor limit values startup . . . . . . . . . . . . . 60 Serial number . . . . . . . . . . . . . . . . . . . . . . . . . 113
– Monitoring . . . . . . . . . . . . . . . . . . . . . . 60, 121 Set
– Pressure change sample time . . . . . . . . . . . 63 – Diagnostic mode . . . . . . . . . . . . . . . . . . . . . . 33
– Shut-off valve switching cycles . . . . . . . . . . 67 – Operating mode . . . . . . . . . . . . . . . . . . . . . . 32
– Unit flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 – Station number . . . . . . . . . . . . . . . . . . . . . . . 33
– Unit pressure . . . . . . . . . . . . . . . . . . . . . . . . 61 Settings on the CPX node . . . . . . . . . . . . . . . . . 20
– Unit consumption . . . . . . . . . . . . . . . . . . . . . 62 Status bits . . . . . . . . . . . . . . . . . . . . . . . . . 14, 73
– Upper limit flow . . . . . . . . . . . . . . . . . . . . . . 64 Structure of the diagnostic memory . . . . . . . 104
– Upper limit pressure . . . . . . . . . . . . . . . . . . . 64 System data . . . . . . . . . . . . . . . . . . . . . . . . . . 108
– Upper limit pressure change . . . . . . . . . . . . 65 – CPX operating mode . . . . . . . . . . . . . . . . . . 108
Monitoring – Fail-Safe . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
– Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 – Force-Mode . . . . . . . . . . . . . . . . . . . . . . . . . 109
– Module parameters . . . . . . . . . . . . . . . . . . 122 – Monitoring the CPX terminal . . . . . . . . . . . . 111
– System parameters . . . . . . . . . . . . . . . . . . 122 – Nominal/actual configuration . . . . . . . . . . 109
– Number of input bytes . . . . . . . . . . . . . . . . 111
O – Number of output bytes . . . . . . . . . . . . . . . 111
Operating mode . . . . . . . . . . . . . . . . . . . . . . . . 32 – Operator unit . . . . . . . . . . . . . . . . . . . . . . . 109
Operating voltage . . . . . . . . . . . . . . . . . . . . . . 23 – Standard parameterisation . . . . . . . . . . . . 110
Output data System diagnostics data . . . . . . . . . . . . . . . . 105
– Consumption measurement . . . . . . . . . . . . . 51 – Error number . . . . . . . . . . . . . . . . . . . . . . . . 106
– Shut-off function . . . . . . . . . . . . . . . . . . . . . 51 – Module number and diagnostic status . . . . 105
– Status bits . . . . . . . . . . . . . . . . . . . . . . . . . 105
Error diagnostics, Bus error . . . . . . . . . . . . . . . 37

134 Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English


MSE6-E2M

System parameters . . . . . . . . . . . . . . . . . . . . . 92 T
– Fail-Safe . . . . . . . . . . . . . . . . . . . . . . . . 94, 119 Technical data . . . . . . . . . . . . . . . . . . . . . . . . . 83
– Force-Mode . . . . . . . . . . . . . . . . . . . . . . 94, 117
– Monitoring . . . . . . . . . . . . . . . . . . . . . . 93, 121 V
– System start with ... . . . . . . . . . . . . . . . . . . . 95 Voltage, Connect . . . . . . . . . . . . . . . . . . . . . . . 21
System start . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Festo – GDCB-MSE6-E2M-PB-EN – 1404NH – English 135


Copyright:
Festo AG & Co. KG
Postfach
73726 Esslingen
Germany

Phone:
+49 711 347-0

Fax:
+49 711 347-2144

e-mail:
service_international@festo.com
Reproduction, distribution or sale of this document or communica-
tion of its contents to others without express authorization is Internet:
prohibited. Offenders will be liable for damages. All rights re- www.festo.com
served in the event that a patent, utility model or design patent is
registered. Original: de

You might also like