Nothing Special   »   [go: up one dir, main page]

Reinforced Concrete Tanks 4 Year Civil: Rectangular Tanks Continued By: Abdel Hamid Zaghw

Download as pdf or txt
Download as pdf or txt
You are on page 1of 33

Reinforced Concrete Tanks

4th year Civil

Lecture 2
Rectangular Tanks Continued
By: Abdel Hamid Zaghw
2
Prof. Abdel Hamid Zaghw

Example
a- Design the open channel tank shown below.
b- Design the top beam and tie

Given:
−fcu = 25 N/mm2 fy = 360 N/mm2
−Spacing between top ties is 5m.
−Spacing between columns in the direction of the open channel is 6m.
3
Prof. Abdel Hamid Zaghw

Solution:

Concrete Dimensions: Assume tf = tw = 30cm


Loads:
ww  hw w  5.0 10  50 kN/m2
w f  t f  c  hw w  0.3  25  5.0 10  57.5 kN/m2
Distribution Factors:
0.75  I 5.0
Dba   0.6
0.75  I 5.0  0.5  I 5.0
Dbc  1  Dba  0.4
Fixed End Moments:
ww h 2 50  52
FEM ab     83.33 kN.m
15 15
wf l 2
57.5  52
FEM bc    119.8 kN.m
12 12
4
Prof. Abdel Hamid Zaghw

Reactions
50  52 50  52
 5Ra   105.21  0 5Ra   105.21  20.62kN
6 6
50  52
Rb   20.62  104.38kN
2
Zero Shear
10 x 2 2  20.62
 20.62 x  2.03
2 10

Max Positive Moment


10 x 3 10  2.033
M ive  Ra x   20.62  2.03   27.92 kNm
6 6
5
Prof. Abdel Hamid Zaghw

Design of Sections
Section 1
Mw = 105.21 kNm, Tw = 143.75 kN (Water Side Section)
Mw 105.21
t 10 4  30  104  30  622.2mm take t = 700 mm
3 3
6 105.21103
f ct M w    1 .288 N/mm 2
f ct  N w  
143.75
 0.205 N/mm 2

7002 700
  f ct ( N w )    .205 
tv  t 1   
   7001     811.6 mm η =1.7
  f ct ( M w )    1.288 
fctr  0.6 fcu  0.6 25  3
6
Prof. Abdel Hamid Zaghw

f ct   f ct ( N w )  f ct ( M w )  f ct  .205  1.288  1.493 


f ctr 3
(OK)
 1.7
Reinforcement Calculations
Mu = 105.21 x 1.5 = 157.8 kNm, Tu = 143.75 x 1.5 = 215.6 kN

M u 157.8 1000
e   731.9
Nu 215.6
es = e – t/2 + cover = 731.9 – 350 + 30 = 411.9 mm
Mus = N . es = 88.8 kN.m   0.01
Assume φmax = 18 mm  cr  0.75
f cu Nu 25 215.6 1000 1.15
As  bd   0.011000  670 
 cr f y f 0.75  360 0.75  360
y
 cr
s
= 1538.67 mm2 choose 7φ18 /m
7

Prof. Abdel Hamid


Zaghw

Section 2
Mw = 74.48 kNm, Tw = 104.38 kN (Air Side Section, t=300mm)
Mu = 74.48 x 1.5 = 111.72 kNm, Tu = 104.38 x 1.5 = 156.57 kN

M u 111.8 1000
e   714.06
Nu 156.57
es = e – t/2 + cover = 714.06 – 150 + 25 = 589.06 mm
Mus = N . es = 92.23 kN.m   0.06
Assume φmax = 18 mm  cr  0.85
f cu Nu 25 156.57 1000 1.15
As  bd   0.06  1000  275 
 cr f y fy 0.85  360 0.85  360
 cr
s
= 1936.46 mm2 choose 8φ18 /m
8
Prof. Abdel Hamid Zaghw

Section 3
Mw = 27.92 kNm, Tw = 58.36 kN (Air Side Section, t=300mm)
Design similar to section 2
Assume φmax = 12 mm  cr  1.0
As = 7φ12 /m

Design of Top beam and Tie

Tie: (axial tension Nw = 103.1 kN)

N w103 f cr 3 1.7 N w103 N w103


  t  0.6 mm
bt  1.7 3 b b
9
Prof. Abdel Hamid Zaghw

b=250mm
N w103 103.1103
t  0.6  0.6  247.44mm
b 250
Take tie 250 x 250 mm
Reinforcement Calculations
Nu = 1.5 x 103.1 = 154.65 kN
Assume φmax = 16 mm  cr  0.75
Nu 154.65 103
As    659 mm 2 Choose 4 φ16
fy 360
 cr 0.75
s 1.15

Top Beam Case 1


Section 1 (water side -pure bending Mw = 42.96 kNm)

6M w 106 f cr 3 1.6 6M w Mw
  t  106  107 mm
bt 2  1.6 3 b 3b

Mw 42.96 Take t=800mm


t 107  107  757mm
3b 3  250
10
Prof. Abdel Hamid Zaghw

Top Beam Reinforcement Calculations

Case (1)
Section 1
Design as Category 3 R Sec

Section 2
Design as Category 2 L Sec
11
Prof. Abdel Hamid Zaghw

Top Beam Reinforcement Calculations Cont.

Case (2)
Section 1
Design as Category 3 L Sec

Section 2
Design as Category 2 R Sec
12
Prof. Abdel Hamid Zaghw

Design Wall as Deep Beam


• Load = ow + load from slab

• Load = 0.3 x 5.0 x 25 x1.5 + 557.5 x 1.5 x 2.5=271.875 kN/m

• Get Moment as Continuous beam with span 6m

• M-ive = wL2/12=816 kN.m get T As

• M+ive = wL2/24=408 kN.m get T As


13

Prof. Abdel Hamid


Zaghw

Detailing Notes
Note (1)
14
Prof. Abdel Hamid Zaghw

Detailing Notes
Note (2)
15
Prof. Abdel Hamid Zaghw

Wall Floor Connection


Note (3)

Shallow Cantilever Deep

Shallow and Medium


16
Prof. Abdel Hamid Zaghw

Example Detailing
17
Prof. Abdel Hamid Zaghw

Deep Tanks

Deflected Load Load in Load in


shape
Distribution Horizontal Vertical
Direction Direction

Deflected
shape in
Deep Tanks
18
Prof. Abdel Hamid Zaghw

Design of Deep Tanks


Design in the Vertical Direction

Take α and β in floor loads from Grashoff tables


19
Prof. Abdel Hamid Zaghw

Deep Tanks
FEM for wall load in the Vertical Direction

Fixed Free Fixed Hinged Fixed Fixed


20

Prof. Abdel Hamid


Zaghw

Design of Deep Tanks Cont.


Design in the horizontal Direction

Distribution Factors:
0.5  I L1 1 L1
Dab  
0.5  I L1  0.5  I L2 1 L1  1 L2
Dad  1  Dab
Fixed End Moments:
0.75 w hL1 0.75 w hL2
2 2
FEM ab  FEM ad 
12 12
Final Moment:

M f  FEM ab  ( FEM ab  FEM ad ) Dab


21
Prof. Abdel Hamid Zaghw

Deep Tanks - Design in the horizontal Direction Cont.

Final Bending Moment and Normal Force Diagrams


in the Horizontal Direction
22

Prof. Abdel Hamid


Zaghw

Design of Walls as Deep Beam


For Beam L1

Repeat for Beam L2


23
Prof. Abdel Hamid Zaghw

Medium Tanks
mL L1 0.76 L1
r 
mh h 0.87h
Take α and β in wall loads form Grashoff tables
if mL L1 mh h PV    wh PH    wh
if mL L1  mh h PV    wh PH    wh assuming in above figure that
mLL1>mhh

Load in Horizontal Direction Load in Vertical Direction


24
Prof. Abdel Hamid Zaghw

Design of Medium Tanks


Design in the Vertical Direction

Strip 1 Strip 2
PV 1  1  wh PH 1  1  wh
PV 2   2  wh PH 2   2  wh
25
Prof. Abdel Hamid Zaghw

Medium Tanks
FEM for wall load in the Vertical Direction

Fixed Free Fixed Hinged Fixed Fixed


26
Prof. Abdel Hamid Zaghw

Design of Medium Tanks Cont.


Design in the horizontal Direction
27
Prof. Abdel Hamid Zaghw

Design of Medium Tanks Cont.


Design in the horizontal Direction

Distribution Factors:
0.5  I L1 1 L1
Dab  
0.5  I L1  0.5  I L2 1 L1  1 L2
Dad  1  Dab
Fixed End Moments:
2 2
0.75PH L1 0.75PH L2
FEM ab  FEM ad 
12 12
Final Moment:

M f  FEM ab  ( FEM ab  FEM ad ) Dab


28
Prof. Abdel Hamid Zaghw

Medium Tanks - Design in the horizontal Direction Cont.

Final Bending Moment and Normal Force Diagrams


in the Horizontal Direction
29

Prof. Abdel Hamid


Zaghw

Design of Walls as Deep Beam


For Beam L1

Repeat for Beam L2


30
Prof. Abdel Hamid Zaghw

Corner Effects in Shallow Tanks

Shallow Tank
31

Prof. Abdel Hamid


Zaghw

Corner Effects in Shallow Tanks Cont.

Simply Supported Top Hinged Top Fixed Top


32
Prof. Abdel Hamid Zaghw

Continuity Factor for Cantilever Walls

All edges
Simply αw
h
supported

(1-α) w

The deflections of strip (1) and strip (2) at point a should be the same
5(1   ) wh 4 5wL4 h4 L4
 (1   )h  L 4 4
  4 4 ,  4 4
384 EI 384 EI L h L h

Grashoff Distribution
33
Prof. Abdel Hamid Zaghw

Continuity Factor for Cantilever Walls


Free αw

(1-α) w
Simply Simply
supported supported

Fixed

L
The deflections of strip (1) and strip (2) at point a should be the same
(1   ) wh 4 5wL4 5L4 9.6h 4 (1.76h) 4
 (1   )h 
4
 4  4
8EI 384 EI 48 L  9.6h 4
L  (1.76h) 4

The continuity factor for free edge can be taken equal to 1.76

You might also like