Nothing Special   »   [go: up one dir, main page]

Handout 435 535

Download as pdf or txt
Download as pdf or txt
You are on page 1of 3

THE AM-GM INEQUALITY

MATH CIRCLE (ADVANCED) 11/11/2012

The arithmetic mean (AM ) and geometric mean (GM ) of the numbers a1 , a2 , . . . , an ≥ 0
are given by
a1 + · · · + an √
AM = and GM = n a1 · · · an .
n
0) a) Calculate the AM and GM of the following sets of numbers:
i) 1, 2, 3, 6
ii) 0, 4, 8, 20
iii) 1, 3, 4, 7, 8
iv) 4, 4, 4, 4
b) What do you notice about AM compared to GM ?
See ↓
The AM-GM inequality states that if a1 , a2 , . . . , an ≥ 0, then

a1 + · · · + an √
≥ n a1 · · · an with equality if and only if a1 = a2 = · · · = an .
n
2) a) Write out the AM-GM inequality for the numbers a, b.
b) Prove your statement in a).

a+b √
≥ ab ⇔ (a + b)2 ≥ 4ab ⇔ a2 + 2ab + b2 ≥ 4ab ⇔ a2 − 2ab + b2 ≥ 0 ⇔ (a − b)2 ≥ 0
2
3) Prove the following:
x2 + y 2
a) ≥ xy for any x, y.
2
Use AM-GM inequality with a = x2 , b = y 2 .
b) 2(x2 + y 2 ) ≥ (x + y)2 for any x, y.
Use a) and the fact that 2(x2 + y 2 ) ≥ (x + y)2 ⇔ x2 + y 2 ≥ 2xy.
1 1 4
c) + ≥ for x, y ≥ 0.
x y x+y
Hint: Find a common denominator.
4) Prove that
a) x2 + y 2 + z 2 ≥ xy + yz + zx for any x, y, z.
c
Copyright 2008-2012 Olga Radko/Los Angeles Math Circle/UCLA Department of Mathematics .
1
LAMC handout 2
Hint: Use 3a) and add up three inequalities.
b) (a + b)(a + c)(b + c) ≥ 8abc
Hint: Use the AM-GM inequality three times.
c) x2 + y 2 + 1 ≥ xy + x + y if x, y ≥ 1, (for a challenge prove it for any x, y!).
Using 3a) we have x2 + y 2 + 1 ≥ 2xy + 1 so it is enough to prove 2xy + 1 ≥ xy + x + y if
x, y ≥ 1. We have 2xy + 1 ≥ xy + x + y ⇔ xy − x − y + 1 ≥ 0 ⇔ (x − 1)(y − 1) ≥ 0.
In general, x2 + y 2 + 1 − xy − x − y = (x − y)2 + (x − 1)2 + (y − 1)2 /2.
d) x4 + y 4 + z 4 ≥ xyz(x + y + z) for any x, y, z.
Hint: Use 4a) twice.
5) The sum of two non-negative numbers is 10. What is the maximum and minimum
value of the sum of their squares?
The sum of the squares is x2 + (10 − x)2 = 2x2 − 20x + 100 = 2[(x − 5)2 + 20]. The
minimum occurs at x = 5 while the maximum occurs at x = 0 or x = 10.
6) Prove the AM-GM inequality for n = 4.
Using 2a) twice we have:

1 √ √  √ √ √
  q
a+b+c+d 1 a+b c+d 4
= + ≥ ab + cd ≥ ab cd = abcd
4 2 2 2 2
7) Prove that: (Hint: You may use the AM-GM inequality for any n.)
a) a4 + b4 + 8 ≥ 8ab for any a, b.
Hint: Apply AM-GM to x = a4 , y = b4 , z = 4, w = 4.
1 1 1 1
b) (a + b + c + d)( + + + ) ≥ 16 for a, b, c, d ≥ 0.
a b c d
Hint: What does AM-GM tell use about the two terms of the left-hand side?
c) 3x3 − 6x2 + 4 ≥ 0 for x ≥ 0.
Hint: Apply AM-GM to a = 2x3 , b = x3 , c = 4.
a b c
d) + + ≥ 3 for a, b, c ≥ 0.
b c a
Hint: Simply use AM-GM.
8)
a) Prove the AM-GM inequality for n = 3.
Suppose
√ a, b, c are our three numbers. Applying AM-GM to x = a, y = b, z = c, w =
3
abc we have

x+y+z+w √ √4 a+b+c √ 3
≥ 4 xyzw = w4 = w ⇒ x + y + z ≥ 3w ⇒ ≥ abc.
4 3
b)* Prove by induction that the AM-GM inequality holds for n a power of 2.
Hint: Use the same trick as in 6) for the induction step.
2
LAMC handout 3

c)* Prove the AM-GM inequality for all n.


Hint: Use the same trick as in 8a).
Some problems are taken from:
• D. Fomin, S. Genkin, I. Itenberg “Mathematical Circles (Russian Experience)”

You might also like