2B, the concentration profile of A is derived and shown to decrease from the initial value to the boundary value over the thickness of the material. The flux of A is calculated to be 0.018 kmol/m2-s. (2) Changes to conditions like increased temperature, doubled particle diameter, and halved fluid velocity are shown to impact properties like viscosity, diffusivity, Reynolds number, Schmidt number, and the mass transfer coefficient. (3) Representative values for these transport properties are calculated for liquid and gas phase systems operating at given conditions."> 2B, the concentration profile of A is derived and shown to decrease from the initial value to the boundary value over the thickness of the material. The flux of A is calculated to be 0.018 kmol/m2-s. (2) Changes to conditions like increased temperature, doubled particle diameter, and halved fluid velocity are shown to impact properties like viscosity, diffusivity, Reynolds number, Schmidt number, and the mass transfer coefficient. (3) Representative values for these transport properties are calculated for liquid and gas phase systems operating at given conditions.">
TRK
TRK
TRK
Anggota :
Penyelesaian :
(a) Diketahui (dari Example 11-1) :
DAB = 0,01 cm2/s = 10-6 m2/s
CT0 = 0,1 kmol/m3
yAB = 0,9
yAδ = 0,2
𝑊𝐵 = −2𝑊𝐴
Z = 0, y = yA0
A 2B
Z = δ, y = 0
𝑊𝐴 = 𝐽𝐴 + 𝑦𝐴 [𝑊𝐴 + 𝑊𝐵 ]
𝑊𝐴 = 𝐽𝐴 + 𝑦𝐴 [𝑊𝐴 + (−2𝑊𝐴 )]
𝑊𝐴 = 𝐽𝐴 + 𝑦𝐴 [−𝑊𝐴 ]
𝑊𝐴 = 𝐽𝐴 − 𝑦𝐴 𝑊𝐴
𝑊𝐴 = 𝐽𝐴 − 𝑦𝐴 𝑊𝐴
𝐽𝐴 = 𝑊𝐴 [1 + 𝑦𝐴 ]
𝐽𝐴
𝑊𝐴 =
1 + 𝑦𝐴
1 −𝐷𝐴𝐵 𝑑𝐶𝐴
𝑊𝐴 = ( )
1 + 𝑦𝐴 𝑑𝑧
1 −𝐶𝑇0 𝐷𝐴𝐵 𝑑𝑦𝐴
𝑊𝐴 = ( )
1 + 𝑦𝐴 𝑑𝑧
−𝐶𝑇0 𝐷𝐴𝐵 𝑑𝑦𝐴
𝑊𝐴 = ( )
1 + 𝑦𝐴 𝑑𝑧
1
(1 + 𝑦 ) 𝑑𝑦𝐴
𝐴
𝑊𝐴 = −𝐶𝑇0 𝐷𝐴𝐵 [ ]
𝑑𝑧
1 𝑊𝐴
( ) 𝑑𝑦𝐴 = ( ) 𝑑𝑧
1 + 𝑦𝐴 −𝐶𝑇0 𝐷𝐴𝐵
1 𝑊𝐴
∫( ) 𝑑𝑦𝐴 = ( ) ∫ 𝑑𝑧
1 + 𝑦𝐴 −𝐶𝑇0 𝐷𝐴𝐵
𝑊𝐴
𝑙𝑛(1 + 𝑦𝐴 ) = 𝑧 ( )
−𝐶𝑇0 𝐷𝐴𝐵
−𝐶𝑇0 𝐷𝐴𝐵
𝑊𝐴 = 𝑙𝑛(1 + 𝑦𝐴 ) (1)
𝑧
Pada 𝑧 = 0, 𝑦𝐴 = 𝑦𝐴𝐵
𝑊𝐴
𝑙𝑛(1 + 𝑦𝐴 ) = 𝑧 ( )
−𝐶𝑇0 𝐷𝐴𝐵
𝑊𝐴
𝑙𝑛(1 + 𝑦𝐴𝐵 ) = 𝑧 ( )
−𝐶𝑇0 𝐷𝐴𝐵
−𝐶𝑇0 𝐷𝐴𝐵
𝑊𝐴 = 𝑙𝑛(1 + 𝑦𝐴 ) = 𝑡𝑖𝑑𝑎𝑘 𝑡𝑒𝑟𝑑𝑒𝑓𝑖𝑛𝑖𝑠𝑖
0
Pada 𝑧 = 0 dan 𝑦𝐴 = 𝑦𝐴𝛿
𝑊𝐴
𝑙𝑛(1 + 𝑦𝐴 ) = 𝑧 ( )
−𝐶𝑇0 𝐷𝐴𝐵
𝑊𝐴
𝑙𝑛(1 + 𝑦𝐴𝛿 ) = 𝑧 ( )
−𝐶𝑇0 𝐷𝐴𝐵
−𝐶𝑇0 𝐷𝐴𝐵
𝑊𝐴 = 𝑙𝑛(1 + 𝑦𝐴𝛿 ) (2)
𝛿
yA0
EMCD
WB=-2Wa
0 𝑧
𝛿
1.0
Dengan menggunakan Persamaan (2), diperoleh nilai flux dari A (WA), sebagai berikut.
−𝐶𝑇0 𝐷𝐴𝐵
𝑊𝐴 = 𝑙𝑛(1 + 𝑦𝐴𝛿 )
𝛿
𝑘𝑚𝑜𝑙 𝑚2
− (0,1 3 ) (10−6 𝑠 )
𝑚
𝑊𝐴 = 𝑙𝑛(1 + 0,2)
10−6 𝑚
𝑘𝑚𝑜𝑙
𝑊𝐴 = 0,018 2
𝑚 .𝑠
(b) Diketahui dari Example 11-2 :
CAs = 0
CAB = 1 M = 1 mol/dm3 = 103 mol/m3
d1 = 1 cm = 10-2 m
d2 = 2(1cm) = 2cm = 2x10-2 m
U1 = (0,1) m/s
U2 = (0,1) m/s = 0,05 m/s
T1 = 300K, 𝜇1 ≈ 0,883 cP
T2 = 350K, 𝜇2 ≈ 0,380 cP
Perubahan temperatur saat reaksi berlangsung berpengaruh pada perubahan nilai v dan
DAB :
𝜇1 𝑚2
= 𝑣1 = 0,5 𝑐𝑆 = 0,5𝑥10−6
𝜌 𝑠
𝜇2 𝜇2 0,380 𝑐𝑃 −6
𝑚2
= 𝑣2 = 𝑣1 ( ) = (0,5 𝑐𝑆) ( ) = 0,215𝑥10
𝜌 𝜇1 0,883 𝑐𝑃 𝑠
𝐷𝐴𝐵1 = 10−10 𝑚2 /𝑠
𝜇2 −10
𝑚2 0,380 𝑐𝑃 −10
𝑚2
𝐷𝐴𝐵2 = 𝐷𝐴𝐵1 ( ) = (10 )( ) = 2,324𝑥10
𝜇1 𝑠 0,883 𝑐𝑃 𝑠
𝑚2
𝑣 (0,215𝑥10−6 )
𝑠
𝑆𝑐 = = = 925,13
𝐷𝐴𝐵2 −10 𝑚2
(2,324𝑥10 𝑠 )
𝑛
Menentukan nilai −𝑟𝐴𝑠 .
𝑛
𝑊𝐴𝑟 = −𝑟𝐴𝑠 = 𝑘𝑐 (𝐶𝐴𝐵 − 𝐶𝐴𝑠 )
𝑛
𝑚 𝑚𝑜𝑙 𝑚𝑜𝑙
−𝑟𝐴𝑠 = (4,656𝑥10−6 ) (103 3 − 0 3 )
𝑠 𝑚 𝑚
𝑛
𝑚𝑜𝑙
−𝑟𝐴𝑠 = 4,656𝑥10−3 2
𝑚 .𝑠
𝑛
𝑚𝑜𝑙
−𝑟𝐴𝑠 = 0,004656 2
𝑚 .𝑠
Dapat disimpulkan bahwa, perubahan laju reaksi per unit area permukaan katalis dengan
diameter partikel (d) dua kali lipat, temperatur (T) lebih besar 50oC, dan kecepatan fluida
(U) setengah kali lipat sebesar 0,004656 mol/m2.s, mendekati laju reaksi awal yaitu
0,00461 mol/m2.s.
𝑚 𝑚𝑜𝑙
𝑊𝐴 = −𝑟𝐴′′ = 𝑘𝑐2 𝐶𝐴𝐵 = (4,61𝑥10−6 ) (103 3 )
𝑠 𝑚
𝑚𝑜𝑙
−𝑟𝐴′′ = 0,00461
𝑚2 . 𝑠
(c) Campuran 50-50 hydrazine dan helium hanya akan sedikit mempengaruhi viskositas
kinematik sehingga, konversi tercapai dengan sempurna.
Penambahan diameter sebanyak 5
Diketahui dari Example 11-3 :
dP = 5 kali lipat
DP = 0,25 cm = 0,0025 m
LP = 0,5 cm = 0,005 m
LB = 0,05 m
U = 15 m/s
T = 750 K
v = 4,5 x 10-4 m2/s
DAB = 0,69 x 10-4 m2/s saat kondisi standar (298 K)
750𝑘 1,75
DAB (750 K) = 0,69 x 10-4 m2/s (298𝑘 )
𝑋 = 1 − exp(−0,2449965)
𝑋 = 1 − 0,7827
𝑋 = 0,2173
𝑋 = 21,73%
Dengan demikian, konversi reaksi dari campuran Hydrazine dan helium dengan
komposisi 50 : 50 dan peningkatan dP lima kali lipat adalah sebesar 21,73%.
(d) Dikerahui:
The flow of fluid consist of catalysts
Velocity of fluid (U) = 10 cm/s = 0.1 m/s
Pipe Diameter (D) = 5 cm = 0.05 m
Particle Diameter (dp) = 0.2 cm = 0.002 m
Untuk fasa cair, diasumsikan menggunakan air pada temperatur 298K. Properti air pada
temperatur 298K adalah sebagi berikut.
ρ = 1000 kg/m3
μ = 10-3 kg/m.s
Untuk fasa gas, diasumsikan menggunakan udara pada temperatur 298K. Properti udara
pada temperatur 298K adalah sebagi berikut.
ρ = 1 kg/m3
μ = 10-5 kg/m.s
𝑘𝑔 𝑚
𝜌𝑈𝑑 (1 𝑚3 ) (0,1 𝑠 ) (0,05𝑚)
𝑅𝑒 = = = 500
𝜇 (10−5 𝑃𝑎. 𝑠)
𝜇 (10−5 𝑃𝑎. 𝑠)
𝑆𝑐 = = =1
𝜌𝐷𝐴𝐵 𝑘𝑔 𝑚2
(1 3 ) (10−5 𝑠 )
𝑚
1 1 1 1
𝑆ℎ = 2 + 0,6(𝑅𝑒)2 (𝑆𝑐)3 = 2 + 0,6(500)2 (1)3 = 15,416
𝑚2
𝑆ℎ𝐷𝐴𝐵 (15,416𝑥10−5 𝑠 ) 𝑚
𝑘𝑐 = = = 0,077
𝑑𝑝 (0,002𝑚) 𝑠
(e) Terlebih dahulu harus mengetahui nilai temperatur dan konversi. Dari Example 11-4:
The same reaction as the example 11-4 is being carried out in the same two reactors in
series A. A new engineer suggests that the rate of reaction could be increased by factor
of 210 by increasing the reaction temperature from 400oC to 500oC, reasoning that the
reaction rate doubles for every 10oC increase in temperature. Another engineer arrives
on the scene and berates the new engineer. She points out that itis valid only for spesific
activation energi within spesific temperature range. She then suggest that he go ahead
with the proposed temperature increase but should only expect an increase on the order
of 23 or 24. What do you think? Who is correct?
Kasus 1 : T = 400oC X=0,865
Kasus 2 : T = 500oC X=?
1
𝑙𝑛 1 − 𝑋 𝑘𝑐2 𝐿2 𝑈2
2
= ( )
1 𝑘𝑐1 𝐿1 𝑈1
𝑙𝑛 1 − 𝑋
1
4000𝐾
𝑣(𝑇2 ) = 𝑣(𝑇1 ) exp [− ]
𝑇
Disederhanakan menjadi :
𝑣2 (𝑇2 ) 1 1 1 1
−4000( − )
=𝑒 𝑇1 𝑇2 = 𝑒 −4000(773−873) = 0,463
𝑣1 (𝑇1 )
𝜇 1
Dimana 𝑣 = 𝜌 sehingga 𝑣~𝜇 dan 𝐷~ 𝜇
−1
𝐷𝐴𝐵2 𝜇1 𝑣2 (𝑇2 ) 1
=( )=( ) =
𝐷𝐴𝐵1 𝜇2 𝑣1 (𝑇1 ) 0,463
𝑈1 𝑘𝑐2 2
=( )
𝑈2 𝑘𝑐1
1
𝑙𝑛 1 − 𝑋 𝑘𝑐2 𝑈1 𝑘𝑐1 1/2 𝑘𝑐2 𝑘𝑐2 −1
2
= =( ) =( )
1 𝑘𝑐1 𝑈2 𝑘𝑐2 𝑘𝑐1 𝑘𝑐1
𝑙𝑛 1 − 𝑋
1
−1 −1 5 5
𝑘𝑐2 −1 𝐷𝐴𝐵2 2/3 𝑣1 1/6 𝜇1 2/3 𝜇1 1/6 𝜇1 −6 1 −6
( ) = (( ) ( ) ) = (( ) ( ) ) =( ) =( )
𝑘𝑐1 𝐷𝐴𝐵1 𝑣2 𝜇2 𝜇2 𝜇2 0,463
𝑘𝑐2 −1
( ) = 0,526
𝑘𝑐1
Sehingga
1
𝑙𝑛 1 − 𝑋 𝑘𝑐2 −1
2
=( )
1 𝑘𝑐1
𝑙𝑛 1 − 𝑋
1
1 1 𝑘𝑐2 1
𝑙𝑛 = 𝑙𝑛 = 𝑙𝑛 (0,526) = 1,052
1 − 𝑋2 1 − 𝑋1 𝑘𝑐1 1 − 0,865
1
𝑙𝑛 = 1,052
1 − 𝑋2
𝑋2 = 0,65