Edujournal - In: TEST - 6 (Paper-I)
Edujournal - In: TEST - 6 (Paper-I)
Edujournal - In: TEST - 6 (Paper-I)
TEST - 6 (Paper-I)
ANSWERS
PHYSICS CHEMISTRY MATHEMATICS
1. (4) 31. (1) 61. (2)
2. (1) 32. (3) 62. (2)
3. (2) 33. (2) 63. (3)
4. (2) 34. (4) 64. (4)
5. (1) 35. (3) 65. (3)
6. (3) 36. (2) 66. (1)
n
7. (4) 37. (3) 67. (3)
8. (3) 38. (3)
.i 68. (2)
al
9. (2) 39. (3) 69. (1)
10. (4) 40. (1) 70. (3)
n
11. (3) 41. (2) 71. (2)
ur
1/11
All India Aakash Test Series for JEE (Main)-2014 Test - 6 (Paper-I) (Answers & Hints)
PART - A (PHYSICS)
1. Answer (4) 10. Answer (4)
G JJG
2. Answer (1)
v∫ B.dl = μ0i
In both the cases magnetic field at O will be zero.
a /2
a r
3. Answer (2)
⇒ B × 2π 2 = μ 0 ∫ J0
a
× 2πrdr
μ0 μ0
0
(2R )2 iR 2
B1 = i ; B2 =
2 [(2R )2 + (2R )2 ]3/2 2 [R 2 + R 2 ]3/2
2μ0 πJ0 a /2
⇒ B × πa = ∫r
2
B1 4 / 8 4×2 2
3/2 dr
= = = 1: 2 a 0
B2 1/ 2 2 8 × 2 2
4. Answer (2) a /2
2μ0 πJ0 ⎡ r 3 ⎤
Emf induced in the disc will be same as that = ×⎢ ⎥
a ⎢⎣ 3 ⎥⎦0
induced in a rod rotating in a magnetic field.
1 2 μ0 πJ0 a
3
∴ e= Bωa 2 ⇒ B πa =
2 24 a
n
Bωa2
∴ i= μ0 J 0a
2R
.i⇒ B = 12
al
5. Answer (1)
E × 2 πr = πr2.α 11. Answer (3)
n
r 100 100
∴ E= α, XL = ,R= = 10 Ω
ur
2 8 10
At P, E will be along iˆ 1
∴ L=
8π
o
r
uj
∴ F= αe(− iˆ) ⎛ 1 ⎞
2
2 z= ⎜ × 2π × 40 ⎟ + (10)2 = 10 2
⎝ 8 π ⎠
Ed
6. Answer (3)
E 100
−t / τ ∴ i= = =5 2A
i = i0 (1 − e ) z 10 2
12. Answer (3)
i0 ⎛ − R⎞
t
= i0 ⎜ 1 − e L ⎟ i = a + bsinωt
2 ⎜ ⎟
⎝ ⎠ ∴ <i2> = a2 + b2 <sin2ωt> + 2ab<sinωt>
L b2
∴ t= ln 2 = a +
2
R 2
7. Answer (4)
b2
8. Answer (3) ∴ Irms = a 2 +
2
For an element at a distance x of length dx
13. Answer (3)
3
μ 5 5μ0 14. Answer (1)
∫ de = ∫ 2π0 x × 2 × dx = π
ln3
1 15. Answer (2)
9. Answer (2) e = 2 × 2 × 1 = 4 volt, Req = 4Ω
E – (3 + 5t)4 – 6 × (5) = 0 ∴ i through slider is 1 A
⇒ E = 20t + 42 ∴ Fm = i BA = 1 × 2 × 1 = 2N = Fext
2/11
Test - 6 (Paper-I) (Answers & Hints) All India Aakash Test Series for JEE (Main)-2014
1
⇒ e= Bπa 2ω sin ωt v
2
1
∴ Q= Bπa 2c ω sin ωt
2
IL
dQ ⎛ 1 ⎞
∴ i= = Bπa 2cω2 ⎟ cos ωt
dt ⎜⎝ 2
Drawing phasor diagram
⎠
∴ Inet = | IL − IC | = 0.2 A
17. Answer (1)
22. Answer (2)
1
qE0 d = mv 2 If charge on capacitor at time t is θ
2
Q
2qE0 d E=
⇒ v= ε0 A
m
Q A Q
∴ φE = × =
n
18. Answer (4) ε0 A 2 2ε0
19. Answer (1) dφ
20. Answer (1) .i∴ i d = ε0
dt
= ε0 ×
1 ⎛ dQ ⎞ i
⎜ ⎟=
2ε0 ⎝ dt ⎠ 2
al
23. Answer (1)
Q 8CV0 + CV0
n
VC = net = = 3V0 24. Answer (3)
Ceq 3C
ur
di 400
Current will be maximum when L =0 n=
2πR
o
dt
H =ni = 2000 A/m
uj
H 2000
1 1 1 1 2 26. Answer (2)
(2C ) (4V0 )2 + C(V0 )2 = (3C )(3V0 )2 + Limax
2 2 2 2 27. Answer (4)
28. Answer (2)
6C
⇒ Imax = V0 29. Answer (1)
L
30. Answer (2)
PART - B (CHEMISTRY)
31. Answer (1) 32. Answer (3)
p-Nitrochlorobenzene undergoes nucleophilic
aromatic substitution involving carbanion as CH3 – CH = CH – CH = O
intermediate which is stabilished by resonance.
–
Cl O OH +
CH3 – CH – CH = CH – O–
Δ
+
H3O
+ OH
– In addition to resonance shown above, the methyl
group shows + I effect and hyperconjugation.
NO2 NO2 NO2 33. Answer (2)
(X) (Y)
Addition of HOCl to alkenes follows Markownikoff's
rule.
3/11
All India Aakash Test Series for JEE (Main)-2014 Test - 6 (Paper-I) (Answers & Hints)
CH3 – CH = CH2 + HOCl CH3 – CH – CH2 3-bromobutan-2-one (X) because its α-hydrogen is
more acidic.
KOH
OH
(A) 37. Answer (3)
CH3 – CH – CH2
O 18
(B) HOCH2 – C ≡ C – CH2 – CH2OH + H2
Reagent
Lindlar's
18
– HOCH2 CH2 – CH2OH
– O
C2H5O C=C
CH3 – CH – CH2 H H
(SN2)
OC2H5
H+/Δ
C2H5OH 18
n
18
OH HO – CH2 O – CH2
+ +
–H3O
CH3 – CH – CH2
.i H2O – CH2 CH2 CH2 CH2
al
OC2H5 C=C C=C
(C) H H H H
n
ur
(ii) Zn/H2O OH O
CH3 CH3 (A)
4/11
Test - 6 (Paper-I) (Answers & Hints) All India Aakash Test Series for JEE (Main)-2014
– – – –
O O O– O O– O O O O O
n
C C C
+
.i O O
–
O– O
–
al
+
n
– – –
– – – O O O O
O O
ur
O O
C C
o
–
+ O O O O
uj
Acetic acid is the weakest acid because the +I 2, 4, 6-trinitrophenol (Picric acid) and phenol both
effect of CH3 group destabilises its conjugate base. give violet colour with FeCl3.
O O 46. Answer (3)
–
CH3 – C – OH H+ + CH3 → C – O Aliphatic and aromatic primary amines react with
O – CHCl3 and KOH to give a foul smelling isocyanides.
Aromatic
resonance as well as hyperconjugation due to two
α-hydrogen atoms. Other compounds do not give Cl– ions because the
51. Answer (3) carbocation formed after loosing Cl– ion is not stable.
OH OH
52. Answer (2) + +
H
The given compound has 6 stereoisomers, two of O O
n
which are meso and the remaining 4 are optically
active.
CH3 CH3 .i OH
OH
al
H H CH3 H Cl CH3
C C C C + +
O
Cl C C Cl Cl C C H
n
H H H H O
(Meso) (Dextro)
ur
+
–H
CH3 H CH3 O
Cl CH3 H
o
C C C H
H C C Cl Cl C C Cl
uj
H H H C O
(Levo) (Meso) H CH3
Ed
CH3 H CH3 Cl
C H C H 56. Answer (2)
Cl C C H H C C Cl 57. Answer (4)
H C H C
Cl CH3 H CH3 Dipole moment of CH3 – F is lower than that of
(Dextro) (Levo) CH3 – Cl because C – F bond length is shorter than
53. Answer (1) that of C – Cl bond even though the polarity of
C – F bond is higher.
+ + 58. Answer (3)
CH3 − O − CH2 and CH3 − S − CH2 are stabilised
Butan-2-ol gives positive iodoform test while butan-1-
+ ol does not. Acidic strength of alcohols follows the
by resonance whereas CH3 − CH− CH3 is stabilised
order CH3OH > 1º ROH > 2º ROH > 3º ROH
by +I effect of two CH3 groups and hyperconjugation 59. Answer (4)
due to 6 α-hydrogen atoms.
If BOD level of water is greater than 5 ppm, it is
+ + highly pure water.
CH3 – S – CH2 CH 3 – S = CH2 is more stable
60. Answer (3)
+ +
than CH3 – O – CH2 CH3 – O = CH2 because Aromatic compounds containing strongly deactivating
the latter has +ve charge on more electronegative group like nitrobenzene do not undergo Friedel
Craft's reaction.
O-atom.
6/11
Test - 6 (Paper-I) (Answers & Hints) All India Aakash Test Series for JEE (Main)-2014
PART - C (MATHEMATICS)
61. Answer (2) 64. Answer (4)
Let x = 2secθ Differentiating w.r.t. x, we get
⇒ dx = 2secθ.tanθdθ
dy
3 − cos 2 x + sin( y 2 ).2y . =0
π /3 dx
2 tan θ(2 sec θ.tan θd θ)
Now, I =
∫ 4 sec 2 θ
0
dy − 3 − cos 2 x
⇒ =
dx 2y .sin( y 2 )
π /3 π /3
sin2 θ
= ∫ cos θ
dθ = ∫ (sec θ − cos θ)d θ 65. Answer (3)
0 0
⎛ a⎞
π /3 Equation of tangent at ⎜ at , ⎟ is
= {log(sec θ + tan θ) − sin θ} 0 ⎝ t⎠
a 1
3 y− = − 2 ( x − at )
= log(2 + 3) − t t
2
⇒ x + t2y = 2at
n
− 3
i.e., α = 2 + 3, β =
2 .iSo that A(2at, 0) and B ⎛⎜ 0,
⎝
2a ⎞
t ⎟⎠
al
62. Answer (2)
⎛ a⎞
n
Local maxima at x = 2, Mid point of AB = ⎜ at , ⎟ ≡ P
⎝ t⎠
ur
dy 2ax
As, = 2
⇒ a + 14 ≤ 45 dx x − a2
Ed
log(e x ) − log(1 + e x ) y ( x 2 + a2 )
f (x) + c = ∫ dx =
2ax
1+ ex
⎛ dx ⎞ ⎛ x 2 − a2 ⎞
⎛ e x ⎞ Length of subtangent = y ⎜ ⎟ = y ⎜⎜ ⎟⎟
log ⎜⎜ ⎟⎟ ⎝ dy ⎠ ⎝ 2ax ⎠
⎝ 1+ e
x
⎠ dx
∫ 1+ e x
= Therefore required sum
y (2.x 2 ) xy
= =
= −∫
(
log 1 + e − x ). e −x
dx
2ax
67. Answer (3)
a
−x
1+ e
As, f(x) is a polynomial function, is continuous and
differentiable for all real x.
1
{ }
2
= log(1 + e − x ) +c
2 Also,
and f (− 2) = 0 = f ( 2)
7/11
All India Aakash Test Series for JEE (Main)-2014 Test - 6 (Paper-I) (Answers & Hints)
f′(x) = 0 ⇒ dx = πsec2θdθ
⇒ 6x2 + 2x – 4 = 0
1⎛ ⎞
∞ π /2 π /2
log x
2 ∴ ∫ x 2 + π2 dx = π ⎜⎜ ∫ log πd θ + ∫ logtan θd θ ⎟⎟
⇒ x= , −1 0 ⎝ 0 0 ⎠
3
68. Answer (2) 1 1 1
= log π + × 0 = log π
f′(x) = 6x – 1 = 0 2 π 2
⎛ 1 ⎞ 3 1 25 ⎛ 1⎞
f⎜ ⎟= − + =2 A ⎜ 1, ⎟
n
⎝ 6 ⎠ 36 6 12 ⎝ 2⎠
⇒ r = 3 −1 We can write
69. Answer (1)
o
x 3/2
y =x±
uj
⎧ x 2 − 5 x + 6, 0 ≤ x ≤ 2 2
⎪
As, f ( x ) = ⎨ 12 From graph Required area
⎪ −( x − 5 x + 6), 2 < x ≤
2
Ed
⎩ 5
1
⎛ x 3/2 ⎞
1
⎛ x 3/2 ⎞
⎧2 x − 5, 0 ≤ x < 2 = ∫ ⎜⎜ x +
2 ⎠
⎟⎟ dx − ∫ ⎜⎜ x −
2 ⎟⎠
⎟ dx
⎪ 0⎝ 0⎝
⇒ f ′( x ) = ⎨ 12
⎪⎩ −2x + 5, 2 < x ≤ 5
1
2
∫x dx =
3/2
Now, f′(x) = 0 = sq. units
0
5
5 ⎡ 12 ⎤ 72. Answer (3)
⇒ x = ∉ ⎢0, ⎥
2 ⎣ 5⎦
Differentiating w.r.t. x, we get
Also, f ′(2) does not exist. (x4 + 1)1/3x7
Therefore x = 2 is the only critical point.
⎧ 4 4 4 ⎫
= k ⎨( x + 1) .16 x + ( x + 1) .4 x (4 x − 3)⎬
4/3 3 1/3 3 4
f′(x) changes sign from negative to positive ⎩ 3 ⎭
So, f is minimum at x = 2 and minimum value
⎪⎧ 16 x 3 ⎪⎫
= f(2) = 0 ⇒ x 7 = k ⎨16 x 3 ( x 4 + 1) + (4 x 4 − 3)⎬
⎪⎩ 3 ⎪⎭
⎛ 12 ⎞ 6
Also, f(0) = 6, f ⎜ ⎟ = , hence maximum value = 6
⎝ 5 ⎠ 5
3
⇒ k=
So, required sum = 0 + 6 = 6. 112
8/11
Test - 6 (Paper-I) (Answers & Hints) All India Aakash Test Series for JEE (Main)-2014
n
−1
tan (2+ 3 )
∫ 3dx
=
1
2
loge (t 2 − 1) + c
.i
+
tan −1
3
al
⎛ −1 π⎞ −1 −1
=
1
loge {( x − y )2 − 1} + c = ⎜ tan 2 − ⎟ + 2(tan 3 − tan 2)
⎝ 4⎠
n
2
+ 3(tan−1(2 + 3 ) − tan−1 3)
ur
2cos x + 1 −π 5π
I=∫ dx = − (tan−1 2 + tan−1 3) + 3 ×
o
(2 + cos x )2 4 12
5 π π ⎧ −1 ⎛ 3 + 2 ⎞ ⎫
uj
I= ∫ (2cosecx + cot x )2 =
π
4
dt
= −∫ , where 2 cosecx + cotx = t 78. Answer (4)
t2
We have,
1
= +c F′(x) = 4sinx + 3cosx
t
⎛ −1 3 ⎞
1 = 5 sin ⎜ x + tan
=
2cosecx + cot x
+c ⎝ 4 ⎟⎠
9/11
All India Aakash Test Series for JEE (Main)-2014 Test - 6 (Paper-I) (Answers & Hints)
2
y=x
A(1, 1)
y = –x
y = 1/x
X X
O 1/2 1
0 B(2, 0)
Required area
(3, –3)
1
⎛1 2⎞
= ∫ ⎜⎝ x − x ⎟ dx
⎠
1/2
Solving y = 2x – x2 and y = –x, we get x = 0, 3
1
Required area ⎪⎧ x 3 ⎪⎫ 7
= ⎨log x − ⎬ = loge 2 −
⎩⎪ 3 ⎪⎭
1/2 24
n
3
∫ {(2x − x }
) − ( − x ) dx
2 7
= So, p =
0
.i 24
al
82. Answer (3)
3
∫ (3 x − x
2
) dx 2
n
= 3
0 As, f(0) = f(2) = 0 and ∫ f ( x )dx = 4
ur
3 0
⎪⎧ 3 x x 3 ⎪⎫
2
= ⎨ − ⎬ 2 2
0
0 0
uj
9
= 3 3
2 = 2f (2) − = 0−
Ed
4 4
80. Answer (2)
3
= −
Y 4
83. Answer (4)
2 n
y = 4a(2a – x) 1
lim Sn = lim
n →∞ n →∞
∑r + rn
O r =1
X
2
y = 4ax
n
11
lim
n →∞
∑r r n
.
= r =1
+
n n
We have,
⎧ 4ax, if x < a 1 1
y2 = ⎨ dx 2tdt
⎩ 4a(2a − x ) if x ≥ a = ∫ =∫
t + 1)
(t = x )
0 x + x 0
t (
Therefore required area
= 2{log(t + 1)}0
a 1
16a2
= 4∫ 4ax =
3
0
= 2loge2
10/11
Test - 6 (Paper-I) (Answers & Hints) All India Aakash Test Series for JEE (Main)-2014
n
−2
Differentiating, we get
2(2t + 1)(t + 2) .i
Statement-2 is false.
al
φ′(t ) = 89. Answer (4)
(1 − t 2 )2
Statement-1: The integral can be written as
n
1
∫ e ( ( x tan x ) + ( x sec x + tan x ) ) dx = e x tan x + c
x 2
Since, –1 < t < 1, hence t = −
ur
only
2
⇒ f(x) = ex tanx ⇒ f(0) = 0
o
⎜ ⎜ x + ⎟ + ⎜ 1 − 2 ⎟ ⎟ dx = e ⎜ x + ⎟ + c
x
2
⎝ ⎝ x ⎠ ⎝ x ⎠ ⎠ ⎝ x ⎠
1
Hence, φ is minimum at t = − and least value =
2 1
⇒ f ( x) = x + ⇒ f(1) = 2
2 x
⎛ 1⎞
⎜2 − ⎟
⎝ 2⎠
=3.
Hence statement-2 is true
1
1− 90. Answer (3)
4
Statement-1: The integral can be written as
86. Answer (1)
π π /2 π
Statement-1 : f ′ ( x ) = 3 x 2 + 2bx + c > 0 ∫ [ sin x ] dx = ∫ 0.dx + ∫ 0.dx = 0
0 0 π /2
⇒ 4b2 – 4 × 3 × c < 0
Hence statement-1 is true
⇒ b2 < 3c
Statement-2: The integral can be written as
⇒ 0 ≤ b 2 < 3c
20 π π
Hence statement-1 is true. ∫ sin x dx = ( 20 − 10 ) ∫ sin x dx = 10 × 2 = 20
10 π 0
Statement-2 is clearly true and statement-2 explains
statement-1. Statement-2 is false.
11/11