Nothing Special   »   [go: up one dir, main page]

ARDL GoodSlides PDF

Download as pdf or txt
Download as pdf or txt
You are on page 1of 44

Introduction ARDL model EC representation Bounds testing Postestimation Further topics Summary

ardl: Estimating autoregressive distributed lag


and equilibrium correction models

Sebastian Kripfganz1 Daniel C. Schneider2

1 University of Exeter Business School, Department of Economics, Exeter, UK


2 Max Planck Institute for Demographic Research, Rostock, Germany

London Stata Conference


September 7, 2018

ssc install ardl


net install ardl, from(http://www.kripfganz.de/stata/)

S. Kripfganz and D. C. Schneider ardl: Estimating autoregressive distributed lag and equilibrium correction models 1/44
Introduction ARDL model EC representation Bounds testing Postestimation Further topics Summary

ARDL: autoregressive distributed lag model

The autoregressive distributed lag (ARDL)1 model is being


used for decades to model the relationship between
(economic) variables in a single-equation time series setup.
Its popularity also stems from the fact that cointegration of
nonstationary variables is equivalent to an error correction
(EC) process, and the ARDL model has a reparameterization
in EC form (Engle and Granger, 1987; Hassler and Wolters, 2006).
The existence of a long-run / cointegrating relationship can
be tested based on the EC representation. A bounds testing
procedure is available to draw conclusive inference without
knowing whether the variables are integrated of order zero or
one, I(0) or I(1), respectively (Pesaran, Shin, and Smith, 2001).

1
Another commonly used abbreviation is ADL.
S. Kripfganz and D. C. Schneider ardl: Estimating autoregressive distributed lag and equilibrium correction models 2/44
Introduction ARDL model EC representation Bounds testing Postestimation Further topics Summary

Analyzing long-run relationships

The ARDL / EC model is useful for forecasting and to


disentangle long-run relationships from short-run dynamics.

S. Kripfganz and D. C. Schneider ardl: Estimating autoregressive distributed lag and equilibrium correction models 3/44
Introduction ARDL model EC representation Bounds testing Postestimation Further topics Summary

Analyzing long-run relationships


Long-run relationship: Some time series are bound together
due to equilibrium forces even though the individual time
series might move considerably.

5
1960 1965 1970 1975 1980

log consumption
log income
log investment

Data: National accounts, West Germany, seasonally adjusted, quarterly, billion DM, Lütkepohl (1993, Table E.1).
S. Kripfganz and D. C. Schneider ardl: Estimating autoregressive distributed lag and equilibrium correction models 4/44
Introduction ARDL model EC representation Bounds testing Postestimation Further topics Summary

ARDL model

ARDL(p, q, . . . , q) model:
p q
β 0i xt−i + ut ,
X X
yt = c0 + c1 t + φi yt−i +
i=1 i=0

p ≥ 1, q ≥ 0, for simplicity assuming that the lag order q is


the same for all variables in the K × 1 vector xt .
ardl depvar [indepvars ] [if ] [in ] [, options ]
ardl options for the lag order selection:
Fixed lag order for some or all variables: lags(numlist )
Optimally with the Akaike information criterion: aic
Optimally with the Bayesian information criterion:2 bic
Maximum lag order for selection criteria: maxlags(numlist )
Store information criteria in a matrix: matcrit(name )
Default: lags(.) bic maxlags(4)
2
The BIC is also known as the Schwarz or Schwarz-Bayesian information criterion.
S. Kripfganz and D. C. Schneider ardl: Estimating autoregressive distributed lag and equilibrium correction models 5/44
Introduction ARDL model EC representation Bounds testing Postestimation Further topics Summary

Reproducible example: ARDL lag specification


. webuse lutkepohl2
(Quarterly SA West German macro data, Bil DM, from Lutkepohl 1993 Table E.1)

. ardl ln_consump ln_inc ln_inv, lags(. . 0) aic maxlags(. 2 .) matcrit(lagcombs)

ARDL(4,1,0) regression

Sample: 1961q1 - 1982q4 Number of obs = 88


F( 7, 80) = 49993.34
Prob > F = 0.0000
R-squared = 0.9998
Adj R-squared = 0.9998
Log likelihood = 304.37474 Root MSE = 0.0080

------------------------------------------------------------------------------
ln_consump | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
ln_consump |
L1. | .4568483 .1064085 4.29 0.000 .2450887 .6686079
L2. | .3250994 .1127767 2.88 0.005 .1006666 .5495322
L3. | .1048324 .1092992 0.96 0.340 -.11268 .3223449
L4. | -.1632413 .0853844 -1.91 0.059 -.3331616 .0066791
|
ln_inc |
--. | .4629184 .078421 5.90 0.000 .3068557 .6189812
L1. | -.202756 .0965775 -2.10 0.039 -.3949513 -.0105607
|
ln_inv | .0080284 .0118391 0.68 0.500 -.0155322 .0315889
_cons | .0373585 .0143755 2.60 0.011 .0087504 .0659667
------------------------------------------------------------------------------

S. Kripfganz and D. C. Schneider ardl: Estimating autoregressive distributed lag and equilibrium correction models 6/44
Introduction ARDL model EC representation Bounds testing Postestimation Further topics Summary

Example (continued): Information criteria

. matrix list lagcombs

lagcombs[12,4]
ln_consump ln_inc ln_inv aic
r1 1 0 0 -585.22447
r2 1 1 0 -585.39189
r3 1 2 0 -583.88179
r4 2 0 0 -590.66282
r5 2 1 0 -592.6904
r6 2 2 0 -591.62792
r7 3 0 0 -588.69069
r8 3 1 0 -590.83183
r9 3 2 0 -589.67101
r10 4 0 0 -590.03466
r11 4 1 0 -592.73282
r12 4 2 0 -592.15636

. estat ic

Akaike’s information criterion and Bayesian information criterion

-----------------------------------------------------------------------------
Model | Obs ll(null) ll(model) df AIC BIC
-------------+---------------------------------------------------------------
. | 88 -64.51057 304.3747 8 -592.7495 -572.9308
-----------------------------------------------------------------------------
Note: N=Obs used in calculating BIC; see [R] BIC note.

S. Kripfganz and D. C. Schneider ardl: Estimating autoregressive distributed lag and equilibrium correction models 7/44
Introduction ARDL model EC representation Bounds testing Postestimation Further topics Summary

Example (continued): Fast automatic lag selection


. timer on 1
. ardl ln_consump ln_inc ln_inv, aic dots noheader

Optimal lag selection, % complete:


----+---20%---+---40%---+---60%---+---80%---+-100%
..................................................
AIC optimized over 100 lag combinations

------------------------------------------------------------------------------
ln_consump | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
ln_consump |
L1. | .3068554 .0958427 3.20 0.002 .1160853 .4976255
L2. | .325385 .0789039 4.12 0.000 .1683307 .4824393
|
ln_inc | .3682844 .041534 8.87 0.000 .285613 .4509558
|
ln_inv |
--. | .0656722 .0180596 3.64 0.000 .0297255 .1016189
L1. | -.0375288 .0225036 -1.67 0.099 -.0823212 .0072636
L2. | .0228142 .0228968 1.00 0.322 -.0227607 .0683892
L3. | -.0129321 .0226411 -0.57 0.569 -.0579981 .0321339
L4. | -.0528173 .0184696 -2.86 0.005 -.0895801 -.0160544
|
_cons | .0469399 .0110639 4.24 0.000 .0249178 .068962
------------------------------------------------------------------------------

. timer off 1
. timer list 1
1: 0.01 / 1 = 0.0150

S. Kripfganz and D. C. Schneider ardl: Estimating autoregressive distributed lag and equilibrium correction models 8/44
Introduction ARDL model EC representation Bounds testing Postestimation Further topics Summary

Example (continued): Slow automatic lag selection


. timer on 2
. ardl ln_consump ln_inc ln_inv, aic dots noheader nofast

Optimal lag selection, % complete:


----+---20%---+---40%---+---60%---+---80%---+-100%
..................................................
AIC optimized over 100 lag combinations

------------------------------------------------------------------------------
ln_consump | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
ln_consump |
L1. | .3068554 .0958427 3.20 0.002 .1160853 .4976255
L2. | .325385 .0789039 4.12 0.000 .1683307 .4824393
|
ln_inc | .3682844 .041534 8.87 0.000 .285613 .4509558
|
ln_inv |
--. | .0656722 .0180596 3.64 0.000 .0297255 .1016189
L1. | -.0375288 .0225036 -1.67 0.099 -.0823212 .0072636
L2. | .0228142 .0228968 1.00 0.322 -.0227607 .0683892
L3. | -.0129321 .0226411 -0.57 0.569 -.0579981 .0321339
L4. | -.0528173 .0184696 -2.86 0.005 -.0895801 -.0160544
|
_cons | .0469399 .0110639 4.24 0.000 .0249178 .068962
------------------------------------------------------------------------------

. timer off 2
. timer list 2
2: 0.75 / 1 = 0.7520

S. Kripfganz and D. C. Schneider ardl: Estimating autoregressive distributed lag and equilibrium correction models 9/44
Introduction ARDL model EC representation Bounds testing Postestimation Further topics Summary

Example (continued): Sample depends on lag selection


. ardl ln_consump ln_inc ln_inv, aic maxlags(8 8 4)

ARDL(2,0,4) regression

Sample: 1962q1 - 1982q4 Number of obs = 84


F( 8, 75) = 56976.90
Prob > F = 0.0000
R-squared = 0.9998
Adj R-squared = 0.9998
Log likelihood = 307.9708 Root MSE = 0.0065

------------------------------------------------------------------------------
ln_consump | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
ln_consump |
L1. | .30383 .0942165 3.22 0.002 .1161411 .491519
L2. | .3195318 .0776321 4.12 0.000 .1648808 .4741828
|
ln_inc | .3767587 .0389267 9.68 0.000 .2992128 .4543046
|
ln_inv |
--. | .0581759 .0170736 3.41 0.001 .0241635 .0921884
L1. | -.0185484 .0214624 -0.86 0.390 -.0613036 .0242068
L2. | .01012 .021505 0.47 0.639 -.0327202 .0529602
L3. | -.0146641 .0213098 -0.69 0.493 -.0571154 .0277872
L4. | -.0488136 .0174121 -2.80 0.006 -.0835003 -.0141269
|
_cons | .0416317 .0107782 3.86 0.000 .0201603 .063103
------------------------------------------------------------------------------

S. Kripfganz and D. C. Schneider ardl: Estimating autoregressive distributed lag and equilibrium correction models 10/44
Introduction ARDL model EC representation Bounds testing Postestimation Further topics Summary

ARDL model: Optimal lag selection


The optimal model is the one with the smallest value (most
negative value) of the AIC or BIC. The BIC tends to select
more parsimonious models.
The information criteria are only comparable when the sample
is held constant. This can lead to different estimates even
with the same lag orders if the maximum lag order is varied.
ardl uses a fast Mata-based algorithm to obtain the optimal
lag order. This comes at the cost of minor numerical
differences in the values of the criteria compared to estat ic
but the ranking of the models is unaffected. The option
nofast avoids this problem but it uses a substantially slower
algorithm based on Stata’s regress command.
For very large models, it might be necessary to increase the
admissible maximum number of lag combinations with the
option maxcombs(# ).
S. Kripfganz and D. C. Schneider ardl: Estimating autoregressive distributed lag and equilibrium correction models 11/44
Introduction ARDL model EC representation Bounds testing Postestimation Further topics Summary

EC representation

Reparameterization in conditional EC form (ardl option ec):

∆yt = c0 + c1 t − α(yt−1 − θxt )


p−1 q−1
ψ 0xi ∆xt−i + ut .
X X
+ ψyi ∆yt−i +
i=1 i=0
Pp
with the speed-of-adjustment coefficient α = 1 − j=1 φi and
Pq
β
j=0 j
the long-run coefficients θ = α .
Alternative EC parameterization (ardl option ec1):

∆yt = c0 + c1 t − α(yt−1 − θxt−1 )


p−1 q−1
0
ψ 0xi ∆xt−i + ut ,
X X
+ ψyi ∆yt−i + ω ∆xt +
i=1 i=1

S. Kripfganz and D. C. Schneider ardl: Estimating autoregressive distributed lag and equilibrium correction models 12/44
Introduction ARDL model EC representation Bounds testing Postestimation Further topics Summary

Example (continued): EC representation

. ardl ln_consump ln_inc ln_inv, aic ec noheader

------------------------------------------------------------------------------
D.ln_consump | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
ADJ |
ln_consump |
L1. | -.3677596 .0406085 -9.06 0.000 -.4485888 -.2869304
-------------+----------------------------------------------------------------
LR |
ln_inc | 1.001427 .0265233 37.76 0.000 .9486337 1.05422
ln_inv | -.0402213 .0309082 -1.30 0.197 -.1017424 .0212999
-------------+----------------------------------------------------------------
SR |
ln_consump |
LD. | -.325385 .0789039 -4.12 0.000 -.4824393 -.1683307
|
ln_inv |
D1. | .080464 .0187106 4.30 0.000 .0432214 .1177066
LD. | .0429352 .0193931 2.21 0.030 .0043342 .0815361
L2D. | .0657494 .0181592 3.62 0.001 .0296045 .1018943
L3D. | .0528173 .0184696 2.86 0.005 .0160544 .0895801
|
_cons | .0469399 .0110639 4.24 0.000 .0249178 .068962
------------------------------------------------------------------------------

S. Kripfganz and D. C. Schneider ardl: Estimating autoregressive distributed lag and equilibrium correction models 13/44
Introduction ARDL model EC representation Bounds testing Postestimation Further topics Summary

Example (continued): Alternative EC representation


. ardl ln_consump ln_inc ln_inv, aic ec1 noheader

------------------------------------------------------------------------------
D.ln_consump | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
ADJ |
ln_consump |
L1. | -.3677596 .0406085 -9.06 0.000 -.4485888 -.2869304
-------------+----------------------------------------------------------------
LR |
ln_inc |
L1. | 1.001427 .0265233 37.76 0.000 .9486337 1.05422
|
ln_inv |
L1. | -.0402213 .0309082 -1.30 0.197 -.1017424 .0212999
-------------+----------------------------------------------------------------
SR |
ln_consump |
LD. | -.325385 .0789039 -4.12 0.000 -.4824393 -.1683307
|
ln_inc |
D1. | .3682844 .041534 8.87 0.000 .285613 .4509558
|
ln_inv |
D1. | .0656722 .0180596 3.64 0.000 .0297255 .1016189
LD. | .0429352 .0193931 2.21 0.030 .0043342 .0815361
L2D. | .0657494 .0181592 3.62 0.001 .0296045 .1018943
L3D. | .0528173 .0184696 2.86 0.005 .0160544 .0895801
|
_cons | .0469399 .0110639 4.24 0.000 .0249178 .068962
------------------------------------------------------------------------------
S. Kripfganz and D. C. Schneider ardl: Estimating autoregressive distributed lag and equilibrium correction models 14/44
Introduction ARDL model EC representation Bounds testing Postestimation Further topics Summary

Example (continued): Attaching exogenous variables

. ardl ln_consump ln_inc, exog(L(0/3)D.ln_inv) aic ec noheader

------------------------------------------------------------------------------
D.ln_consump | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
ADJ |
ln_consump |
L1. | -.3788728 .0420886 -9.00 0.000 -.4626481 -.2950975
-------------+----------------------------------------------------------------
LR |
ln_inc | .9669152 .0039557 244.44 0.000 .9590416 .9747889
-------------+----------------------------------------------------------------
SR |
ln_consump |
LD. | -.346926 .0806726 -4.30 0.000 -.5075007 -.1863512
L2D. | -.1074193 .0790118 -1.36 0.178 -.2646883 .0498497
|
ln_inv |
D1. | .0758713 .0176989 4.29 0.000 .0406425 .1111002
LD. | .0422224 .0191523 2.20 0.030 .0041008 .080344
L2D. | .0678568 .0185208 3.66 0.000 .030992 .1047216
L3D. | .0485441 .0179609 2.70 0.008 .0127938 .0842944
|
_cons | .0504873 .0114518 4.41 0.000 .027693 .0732816
------------------------------------------------------------------------------

S. Kripfganz and D. C. Schneider ardl: Estimating autoregressive distributed lag and equilibrium correction models 15/44
Introduction ARDL model EC representation Bounds testing Postestimation Further topics Summary

EC representation: Interpretation

The long-run coefficients θ are reported in the output section


LR. They represent the equilibrium effects of the independent
variables on the dependent variable. In the presence of
cointegration, they correspond to the negative cointegration
coefficients after normalizing the coefficient of the dependent
variable to unity. The latter is not explicitly displayed.
The negative speed-of-adjustment coefficient −α is reported
in the output section ADJ. It measures how strongly the
dependent variable reacts to a deviation from the equilibrium
relationship in one period or, in other words, how quickly such
an equilibrium distortion is corrected.
The short-run coefficients ψyi , ψ xi (and ω) are reported in the
output section SR. They account for short-run fluctuations not
due to deviations from the long-run equilibrium.

S. Kripfganz and D. C. Schneider ardl: Estimating autoregressive distributed lag and equilibrium correction models 16/44
Introduction ARDL model EC representation Bounds testing Postestimation Further topics Summary

EC representation: Integration order

The independent variables are allowed to be individually I(0)


or I(1).
The independent variables must be long-run forcing (weakly
exogenous) for the dependent variable, i.e. there can be at
most one cointegrating relationship involving the dependent
variable. (There might be further cointegrating relationships
among the independent variables themselves.)
By default, each independent variable is included in the
long-run relationship. I(0) variables that shall only affect the
short-run dynamics can be specified with the option
exog(varlist ). An automatic lag selection or
first-difference transformation is not performed for the latter.

S. Kripfganz and D. C. Schneider ardl: Estimating autoregressive distributed lag and equilibrium correction models 17/44
Introduction ARDL model EC representation Bounds testing Postestimation Further topics Summary

Testing the existence of a long-run relationship

Pesaran, Shin, and Smith (2001) bounds test:


1 Use the F -statistic
Pto test thejoint null hypothesis
q
H0F : (α = 0) ∩ j=0 β j = 0 versus the alternative
P 
q
hypothesis H1F : (α 6= 0) ∪ β
j=0 j 6
= 0 .3
2 If H0F is rejected, use the t-statistic to test the single
hypothesis H0t : α = 0 versus H1t : α 6= 0.
3 If H1F is rejected, use conventional z-tests (or Wald tests) to
test whether the elements of θ are individually (or jointly)
statistically significantly different from zero.
There is statistical evidence for the existence of a long-run /
cointegrating relationship if the null hypothesis is rejected in
all three steps.

3 Pq 
The test is not directly performed on the long-run coefficients θ = βj /α.
j=0
S. Kripfganz and D. C. Schneider ardl: Estimating autoregressive distributed lag and equilibrium correction models 18/44
Introduction ARDL model EC representation Bounds testing Postestimation Further topics Summary

Testing the existence of a long-run relationship

The distributions of the test statistics in steps 1 and 2 are


nonstandard and depend on the integration order of the
independent variables.
Kripfganz and Schneider (2018) use response surface
regressions to obtain finite-sample and asymptotic critical
values, as well as approximate p-values, for the lower and
upper bound of all independent variables being purely I(0) or
purely I(1) (and not mutually cointegrated), respectively.
These critical values supersede the near-asymptotic critical
values provided by Pesaran, Shin, and Smith (2001) and the
finite-sample critical values by Narayan (2005), among others.

S. Kripfganz and D. C. Schneider ardl: Estimating autoregressive distributed lag and equilibrium correction models 19/44
Introduction ARDL model EC representation Bounds testing Postestimation Further topics Summary

Testing the existence of a long-run relationship

The critical values depend on the number of independent


variables, their integration order, the number of short-run
coefficients,4 and the inclusion of an intercept or time trend.
ardl options for the deterministic model components:
1 No intercept, no trend: noconstant
2 Restricted intercept, no trend: restricted
3 Unrestricted intercept, no trend: the default
4 Unrestricted intercept, restricted trend: trend(varname ) and
restricted
5 Unrestricted intercept, unrestricted trend: trend(varname )

4
The number of short-run coefficients only affects the finite-sample but not the asymptotic critical values
(Cheung and Lai, 1995; Kripfganz and Schneider, 2018). The elements of ω in the ec1 parameterization for
variables that have 0 lags in the ARDL model do not count towards this number.
S. Kripfganz and D. C. Schneider ardl: Estimating autoregressive distributed lag and equilibrium correction models 20/44
Introduction ARDL model EC representation Bounds testing Postestimation Further topics Summary

Testing the existence of a long-run relationship

Test decisions:
Do not reject H0F or H0t , respectively, if the test statistic is
closer to zero than the lower bound of the critical values.
Reject the H0F or H0t , respectively, if the test statistic is more
extreme than the upper bound of the critical values.
The first two steps of the bounds test are implemented in the
ardl postestimation command estat ectest.
By default, finite-sample critical values for the 1%, 5%, and
10% significance levels are provided. Asymptotic critical values
are displayed with option asymptotic. Alternative significance
levels can be specified with option siglevels(numlist ).
The test statistics in step 3 have the usual asymptotic
standard normal (or χ2 ) distributions irrespective of the
integration order of the independent variables.5
5
The OLS estimator for the long-run coefficients θ of I(1) independent variables is “super-consistent” with

convergence rate T instead of T (Pesaran and Shin, 1998; Hassler and Wolters, 2006).
S. Kripfganz and D. C. Schneider ardl: Estimating autoregressive distributed lag and equilibrium correction models 21/44
Introduction ARDL model EC representation Bounds testing Postestimation Further topics Summary

Example (continued): Bounds test

. estat ectest

Pesaran, Shin, and Smith (2001) bounds test

H0: no level relationship F = 40.952


Case 3 t = -9.002

Finite sample (1 variables, 88 observations, 6 short-run coefficients)

Kripfganz and Schneider (2018) critical values and approximate p-values

| 10% | 5% | 1% | p-value
| I(0) I(1) | I(0) I(1) | I(0) I(1) | I(0) I(1)
---+------------------+------------------+------------------+-----------------
F | 4.032 4.831 | 4.958 5.843 | 7.070 8.119 | 0.000 0.000
t | -2.550 -2.899 | -2.861 -3.225 | -3.470 -3.854 | 0.000 0.000

do not reject H0 if
both F and t are closer to zero than critical values for I(0) variables
(if p-values > desired level for I(0) variables)
reject H0 if
both F and t are more extreme than critical values for I(1) variables
(if p-values < desired level for I(1) variables)

S. Kripfganz and D. C. Schneider ardl: Estimating autoregressive distributed lag and equilibrium correction models 22/44
Introduction ARDL model EC representation Bounds testing Postestimation Further topics Summary

Example (continued): EC model with restricted trend

. ardl ln_consump ln_inc, exog(L(0/3)D.ln_inv) trend(qtr) aic ec restricted noheader

------------------------------------------------------------------------------
D.ln_consump | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
ADJ |
ln_consump |
L1. | -.341178 .0431316 -7.91 0.000 -.4270464 -.2553096
-------------+----------------------------------------------------------------
LR |
ln_inc | 1.14358 .0782318 14.62 0.000 .9878321 1.299327
qtr | -.0036516 .0016171 -2.26 0.027 -.006871 -.0004322
-------------+----------------------------------------------------------------
SR |
ln_consump |
LD. | -.4362663 .0851 -5.13 0.000 -.6056874 -.2668452
L2D. | -.1899566 .0825977 -2.30 0.024 -.354396 -.0255172
|
ln_inv |
D1. | .0842961 .0173889 4.85 0.000 .0496775 .1189146
LD. | .0517241 .0188448 2.74 0.008 .0142069 .0892412
L2D. | .0726232 .017972 4.04 0.000 .0368437 .1084027
L3D. | .0482872 .0173383 2.79 0.007 .0137693 .0828051
|
_cons | -.3188651 .1422961 -2.24 0.028 -.602155 -.0355753
------------------------------------------------------------------------------

S. Kripfganz and D. C. Schneider ardl: Estimating autoregressive distributed lag and equilibrium correction models 23/44
Introduction ARDL model EC representation Bounds testing Postestimation Further topics Summary

Example (continued): Bounds test with restricted trend

. estat ectest

Pesaran, Shin, and Smith (2001) bounds test

H0: no level relationship F = 31.557


Case 4 t = -7.910

Finite sample (1 variables, 88 observations, 6 short-run coefficients)

Kripfganz and Schneider (2018) critical values and approximate p-values

| 10% | 5% | 1% | p-value
| I(0) I(1) | I(0) I(1) | I(0) I(1) | I(0) I(1)
---+------------------+------------------+------------------+-----------------
F | 4.066 4.582 | 4.784 5.351 | 6.396 7.057 | 0.000 0.000
t | -3.107 -3.384 | -3.412 -3.704 | -4.014 -4.327 | 0.000 0.000

do not reject H0 if
both F and t are closer to zero than critical values for I(0) variables
(if p-values > desired level for I(0) variables)
reject H0 if
both F and t are more extreme than critical values for I(1) variables
(if p-values < desired level for I(1) variables)

S. Kripfganz and D. C. Schneider ardl: Estimating autoregressive distributed lag and equilibrium correction models 24/44
Introduction ARDL model EC representation Bounds testing Postestimation Further topics Summary

Further information on the bounds test

The validity of the bounds test relies on normally distributed


error terms that are homoskedastic and serially uncorrelated,
as well as stability of the coefficients over time.
If in doubt about remaining serial error correlation, increase
the lag order for testing purposes (e.g. use the AIC instead of
the BIC to obtain the optimal lag order).
A more parsimonious model for interpretation and forecasting
purposes can be estimated after the testing procedure.
If the bounds test does not reject the null hypothesis of no
long-run relationship, an ARDL model purely in first differences
(without an equilibrium correction term) might be estimated.

S. Kripfganz and D. C. Schneider ardl: Estimating autoregressive distributed lag and equilibrium correction models 25/44
Introduction ARDL model EC representation Bounds testing Postestimation Further topics Summary

Postestimation commands

Besides estat ectest, the ardl command supports


standard Stata postestimation commands such as estat ic,
estimates, lincom, nlcom, test, testnl, and lrtest.
predict allows to obtain fitted values (option xb) and
residuals (option residuals) in the usual way. In addition,
the option ec generates the equilibrium correction term:
b t = yt−1 − θ̂xt after ardl, ec
ec
b t = yt−1 − θ̂xt−1 after ardl, ec1
ec
The diagnostic commands sktest, qnorm, and pnorm are
helpful as well to detect nonnormality of the residuals.

S. Kripfganz and D. C. Schneider ardl: Estimating autoregressive distributed lag and equilibrium correction models 26/44
Introduction ARDL model EC representation Bounds testing Postestimation Further topics Summary

Postestimation commands

The final ardl estimation results are internally obtained with


the regress command. These underlying regress estimates
can be stored with the ardl option regstore(name ) and
restored with estimates restore name .
Subsequently, all the familiar regress postestimation
commands are available, in particular:
estat hettest and estat imtest for heteroskedasticity and
normality testing,
estat bgodfrey and estat durbinalt for serial-correlation
testing,6
estat sbcusum, estat sbknown, and estat sbsingle for
structural-breaks testing.

6
estat dwatson is not valid for ARDL / EC models because the lagged dependent variable is not strictly
exogenous by construction.
S. Kripfganz and D. C. Schneider ardl: Estimating autoregressive distributed lag and equilibrium correction models 27/44
Introduction ARDL model EC representation Bounds testing Postestimation Further topics Summary

Example (continued): Serial-correlation testing


. quietly ardl ln_consump ln_inc, exog(L(0/3)D.ln_inv) trend(qtr) aic ec regstore(ardlreg)
. estimates restore ardlreg
(results ardlreg are active now)

. estat bgodfrey, lags(1/4) small

Breusch-Godfrey LM test for autocorrelation


---------------------------------------------------------------------------
lags(p) | F df Prob > F
-------------+-------------------------------------------------------------
1 | 0.116 ( 1, 77 ) 0.7341
2 | 0.068 ( 2, 76 ) 0.9340
3 | 0.364 ( 3, 75 ) 0.7791
4 | 0.453 ( 4, 74 ) 0.7702
---------------------------------------------------------------------------
H0: no serial correlation

. estat durbinalt, lags(1/4) small

Durbin’s alternative test for autocorrelation


---------------------------------------------------------------------------
lags(p) | F df Prob > F
-------------+-------------------------------------------------------------
1 | 0.102 ( 1, 77 ) 0.7505
2 | 0.059 ( 2, 76 ) 0.9426
3 | 0.314 ( 3, 75 ) 0.8150
4 | 0.389 ( 4, 74 ) 0.8162
---------------------------------------------------------------------------
H0: no serial correlation

S. Kripfganz and D. C. Schneider ardl: Estimating autoregressive distributed lag and equilibrium correction models 28/44
Introduction ARDL model EC representation Bounds testing Postestimation Further topics Summary

Example (continued): Heteroskedasticity testing

. estat hettest

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity


Ho: Constant variance
Variables: fitted values of D.ln_consump

chi2(1) = 0.26
Prob > chi2 = 0.6067

. estat imtest, white

White’s test for Ho: homoskedasticity


against Ha: unrestricted heteroskedasticity

chi2(54) = 52.03
Prob > chi2 = 0.5508

Cameron & Trivedi’s decomposition of IM-test

---------------------------------------------------
Source | chi2 df p
---------------------+-----------------------------
Heteroskedasticity | 52.03 54 0.5508
Skewness | 12.24 9 0.2000
Kurtosis | 0.02 1 0.8967
---------------------+-----------------------------
Total | 64.29 64 0.4664
---------------------------------------------------

S. Kripfganz and D. C. Schneider ardl: Estimating autoregressive distributed lag and equilibrium correction models 29/44
Introduction ARDL model EC representation Bounds testing Postestimation Further topics Summary

Example (continued): Normality testing


. predict resid, residuals
(4 missing values generated)

. sktest resid

Skewness/Kurtosis tests for Normality


------ joint ------
Variable | Obs Pr(Skewness) Pr(Kurtosis) adj chi2(2) Prob>chi2
-------------+---------------------------------------------------------------
resid | 88 0.3270 0.8107 1.04 0.5939

. qnorm resid
. pnorm resid

.02 1.00

.01 0.75

0 0.50

−.01 0.25

−.02 0.00
−.02 −.01 0 .01 .02 0.00 0.25 0.50 0.75 1.00

S. Kripfganz and D. C. Schneider ardl: Estimating autoregressive distributed lag and equilibrium correction models 30/44
Introduction ARDL model EC representation Bounds testing Postestimation Further topics Summary

Example (continued): Structural-breaks testing


. estat sbcusum

Cumulative sum test for parameter stability

Sample: 1961q1 - 1982q4 Number of obs = 88


Ho: No structural break

1% Critical 5% Critical 10% Critical


Statistic Test Statistic Value Value Value
------------------------------------------------------------------------------
recursive 1.4690 1.1430 0.9479 0.850
------------------------------------------------------------------------------

Recursive cusum plot of D.ln_consump


with 95% confidence bands around the null
4

−2

−4
1961 1966 1971 1976 1981

S. Kripfganz and D. C. Schneider ardl: Estimating autoregressive distributed lag and equilibrium correction models 31/44
Introduction ARDL model EC representation Bounds testing Postestimation Further topics Summary

Example (continued): Structural-breaks testing


. estat sbcusum, ols

Cumulative sum test for parameter stability

Sample: 1961q1 - 1982q4 Number of obs = 88


Ho: No structural break

1% Critical 5% Critical 10% Critical


Statistic Test Statistic Value Value Value
------------------------------------------------------------------------------
ols 0.6793 1.6276 1.3581 1.224
------------------------------------------------------------------------------

OLS cusum plot of D.ln_consump


with 95% confidence bands around the null
2

−1

−2
1961 1966 1971 1976 1981

S. Kripfganz and D. C. Schneider ardl: Estimating autoregressive distributed lag and equilibrium correction models 32/44
Introduction ARDL model EC representation Bounds testing Postestimation Further topics Summary

Example (continued): Structural-breaks testing

. estat sbsingle, all


----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5
.................................................. 50
..........

Test for a structural break: Unknown break date

Number of obs = 88

Full sample: 1961q1 - 1982q4


Trimmed sample: 1964q3 - 1979q3
Ho: No structural break

Test Statistic p-value


-----------------------------------------------
swald 20.1088 0.3040
awald 13.9245 0.1019
ewald 7.9897 0.1939
slr 22.7977 0.1605
alr 16.3306 0.0330
elr 9.3047 0.0886
-----------------------------------------------
Exogenous variables: L.ln_consump ln_inc LD.ln_consump L2D.ln_consump D.ln_inv LD.ln_inv
L2D.ln_inv L3D.ln_inv qtr
Coefficients included in test: L.ln_consump ln_inc LD.ln_consump L2D.ln_consump D.ln_inv LD.ln_inv
L2D.ln_inv L3D.ln_inv qtr _cons

S. Kripfganz and D. C. Schneider ardl: Estimating autoregressive distributed lag and equilibrium correction models 33/44
Introduction ARDL model EC representation Bounds testing Postestimation Further topics Summary

Example (continued): Structural-breaks testing

. estat sbsingle, breakvars(L.ln_consump ln_inc) all


----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5
.................................................. 50
..........

Test for a structural break: Unknown break date

Number of obs = 88

Full sample: 1961q1 - 1982q4


Trimmed sample: 1964q3 - 1979q3
Ho: No structural break

Test Statistic p-value


-----------------------------------------------
swald 8.9039 0.1457
awald 2.5060 0.2608
ewald 2.0321 0.1738
slr 9.7492 0.1046
alr 2.8269 0.2027
elr 2.3571 0.1225
-----------------------------------------------
Exogenous variables: L.ln_consump ln_inc LD.ln_consump L2D.ln_consump D.ln_inv LD.ln_inv
L2D.ln_inv L3D.ln_inv qtr
Coefficients included in test: L.ln_consump ln_inc

Note: This is a test for a structural break in the speed-of-adjustment and long-run coefficients.

S. Kripfganz and D. C. Schneider ardl: Estimating autoregressive distributed lag and equilibrium correction models 34/44
Introduction ARDL model EC representation Bounds testing Postestimation Further topics Summary

Further topics

The ardl command can estimate autoregressive models


without independent variables. In this case, the bounds test
collapses to the familiar augmented Dickey-Fuller unit root
test. The Kripfganz and Schneider (2018) critical values cover
this special case, too.
The forecast command suite can be used for model
forecasting after ardl.
ardl does not compute robust standard errors. Yet, once the
optimal lag order is obtained, the final model can be
reestimated with the newey command to obtain Newey-West
standard errors.

S. Kripfganz and D. C. Schneider ardl: Estimating autoregressive distributed lag and equilibrium correction models 35/44
Introduction ARDL model EC representation Bounds testing Postestimation Further topics Summary

Example (continued): Augmented Dickey-Fuller regression

. ardl dln_inv, aic ec restricted

ARDL(4) regression

Sample: 1961q2 - 1982q4 Number of obs = 87


R-squared = 0.6462
Adj R-squared = 0.6289
Log likelihood = 154.12285 Root MSE = 0.0424

------------------------------------------------------------------------------
D.dln_inv | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
ADJ |
dln_inv |
L1. | -.755277 .2295731 -3.29 0.001 -1.211971 -.2985831
-------------+----------------------------------------------------------------
LR |
_cons | .015006 .0060544 2.48 0.015 .0029618 .0270501
-------------+----------------------------------------------------------------
SR |
dln_inv |
LD. | -.4633003 .2005284 -2.31 0.023 -.8622152 -.0643855
L2D. | -.4938993 .1577325 -3.13 0.002 -.8076796 -.180119
L3D. | -.3133117 .1029967 -3.04 0.003 -.5182049 -.1084184
------------------------------------------------------------------------------

Note: The aim is to test whether dln inv, the first difference of ln inv, is nonstationary.

S. Kripfganz and D. C. Schneider ardl: Estimating autoregressive distributed lag and equilibrium correction models 36/44
Introduction ARDL model EC representation Bounds testing Postestimation Further topics Summary

Example (continued): Augmented Dickey-Fuller test

. estat ectest

Pesaran, Shin, and Smith (2001) bounds test

H0: no level relationship F = 5.478


Case 2 t = -3.290

Finite sample (0 variables, 87 observations, 3 short-run coefficients)

Kripfganz and Schneider (2018) critical values and approximate p-values

| 10% | 5% | 1% | p-value
| I(0) I(1) | I(0) I(1) | I(0) I(1) | I(0) I(1)
---+------------------+------------------+------------------+-----------------
F | 3.823 3.812 | 4.677 4.659 | 6.644 6.601 | 0.026 0.025
t | -2.565 -2.569 | -2.869 -2.874 | -3.463 -3.472 | 0.017 0.017

do not reject H0 if
both F and t are closer to zero than critical values for I(0) variables
(if p-values > desired level for I(0) variables)
reject H0 if
both F and t are more extreme than critical values for I(1) variables
(if p-values < desired level for I(1) variables)

Note: The null hypothesis is that dln inv follows a unit root process (without drift).

S. Kripfganz and D. C. Schneider ardl: Estimating autoregressive distributed lag and equilibrium correction models 37/44
Introduction ARDL model EC representation Bounds testing Postestimation Further topics Summary

Example (continued): Augmented Dickey-Fuller test

. dfuller dln_inv if e(sample), lags(3) regress

Augmented Dickey-Fuller test for unit root Number of obs = 87

---------- Interpolated Dickey-Fuller ---------


Test 1% Critical 5% Critical 10% Critical
Statistic Value Value Value
------------------------------------------------------------------------------
Z(t) -3.290 -3.528 -2.900 -2.585
------------------------------------------------------------------------------
MacKinnon approximate p-value for Z(t) = 0.0153

------------------------------------------------------------------------------
D.dln_inv | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
dln_inv |
L1. | -.755277 .2295731 -3.29 0.001 -1.211971 -.2985831
LD. | -.4633003 .2005284 -2.31 0.023 -.8622152 -.0643855
L2D. | -.4938993 .1577325 -3.13 0.002 -.8076796 -.180119
L3D. | -.3133117 .1029967 -3.04 0.003 -.5182049 -.1084184
|
_cons | .0113337 .0060208 1.88 0.063 -.0006437 .023311
------------------------------------------------------------------------------

S. Kripfganz and D. C. Schneider ardl: Estimating autoregressive distributed lag and equilibrium correction models 38/44
Introduction ARDL model EC representation Bounds testing Postestimation Further topics Summary

Example (continued): Forecasting


. quietly ardl ln_consump ln_inc ln_inv if qtr < tq(1981q1), trend(qtr)
. estimates store ardl
. forecast create ardl
Forecast model ardl started.

. forecast estimates ardl, predict(xb)


Added estimation results from ardl.
Forecast model ardl now contains 1 endogenous variable.

. forecast exogenous ln_inc ln_inv qtr


Forecast model ardl now contains 3 declared exogenous variables.

. forecast solve, begin(tq(1981q1))

Computing dynamic forecasts for model ardl.


-------------------------------------------
Starting period: 1981q1
Ending period: 1982q4
Forecast prefix: f_

1981q1: ...........
1981q2: ...........
1981q3: ...........
1981q4: ...........
1982q1: ...........
1982q2: ..........
1982q3: ..........
1982q4: ...........

Forecast 1 variable spanning 8 periods.


---------------------------------------
S. Kripfganz and D. C. Schneider ardl: Estimating autoregressive distributed lag and equilibrium correction models 39/44
Introduction ARDL model EC representation Bounds testing Postestimation Further topics Summary

Example (continued): Forecast versus actual data


. twoway (tsline f_ln_consump if qtr>=tq(1979q1)) (tsline ln_consump if qtr>=tq(1979q1)), tline(1981q1)

7.75

7.7

7.65

7.6

7.55
1979 1980 1981 1982

log consumption (ardl f_)


log consumption

Note: The forecast period (1981q1 – 1982q4) is excluded from the estimation period (1961q1 – 1980q4).
S. Kripfganz and D. C. Schneider ardl: Estimating autoregressive distributed lag and equilibrium correction models 40/44
Introduction ARDL model EC representation Bounds testing Postestimation Further topics Summary

Example (continued): Newey-West standard errors


. quietly ardl ln_consump ln_inc, exog(L(0/3)D.ln_inv) trend(qtr) aic regstore(ardlreg)
. quietly estimates restore ardlreg
. local cmdline ‘"‘e(cmdline)’"’
. gettoken cmd cmdline : cmdline
. newey ‘cmdline’ lag(4)

Regression with Newey-West standard errors Number of obs = 88


maximum lag: 4 F( 9, 78) = 62645.21
Prob > F = 0.0000

------------------------------------------------------------------------------
| Newey-West
ln_consump | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
ln_consump |
L1. | .2225557 .0931767 2.39 0.019 .0370552 .4080562
L2. | .2463097 .1003579 2.45 0.016 .0465125 .4461068
L3. | .1899566 .1013927 1.87 0.065 -.0119008 .3918141
|
ln_inc | .3901642 .0400174 9.75 0.000 .3104956 .4698327
|
ln_inv |
D1. | .0842961 .0258047 3.27 0.002 .0329229 .1356693
LD. | .0517241 .0158053 3.27 0.002 .0202582 .08319
L2D. | .0726232 .0156803 4.63 0.000 .0414061 .1038404
L3D. | .0482872 .017342 2.78 0.007 .013762 .0828124
|
qtr | -.0012458 .000383 -3.25 0.002 -.0020083 -.0004833
_cons | -.3188651 .1104624 -2.89 0.005 -.5387789 -.0989513
------------------------------------------------------------------------------

S. Kripfganz and D. C. Schneider ardl: Estimating autoregressive distributed lag and equilibrium correction models 41/44
Introduction ARDL model EC representation Bounds testing Postestimation Further topics Summary

Example (continued): Long-run coefficient

. nlcom _b[ln_inc] / (1 - _b[L.ln_consump] - _b[L2.ln_consump] - _b[L3.ln_consump])

_nl_1: _b[ln_inc] / (1 - _b[L.ln_consump] - _b[L2.ln_consump] - _b[L3.ln_consump])

------------------------------------------------------------------------------
ln_consump | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_nl_1 | 1.14358 .0691576 16.54 0.000 1.008033 1.279126
------------------------------------------------------------------------------

Note: This is the same long-run coefficient as earlier but with Newey-West standard errors.

S. Kripfganz and D. C. Schneider ardl: Estimating autoregressive distributed lag and equilibrium correction models 42/44
Introduction ARDL model EC representation Bounds testing Postestimation Further topics Summary

Summary: The ardl package for Stata

The ardl command estimates an ARDL model with optimal


or prespecified lag orders, possibly reparameterized in EC form.
The bounds test for the existence of a long-run /
cointegrating relationship is implemented as the
postestimation command estat ectest.
Asymptotic and finite-sample critical value bounds are
available (Kripfganz and Schneider, 2018).
The augmented Dickey-Fuller unit root test is a special case in
the absence of independent variables.
The usual regress postestimation commands can be applied.
ssc install ardl
net install ardl, from(http://www.kripfganz.de/stata/)

help ardl
help ardl postestimation

S. Kripfganz and D. C. Schneider ardl: Estimating autoregressive distributed lag and equilibrium correction models 43/44
Introduction ARDL model EC representation Bounds testing Postestimation Further topics Summary

References

Cheung, Y.-W., and K. S. Lai (1995). Lag order and critical values of the augmented Dickey-Fuller test.
Journal of Business & Economic Statistics 13(3): 277–280.
Engle, R. F., and C. W. J. Granger (1987). Co-integration and error correction: representation, estimation,
and testing. Econometrica 55(2): 251–276.
Hassler, U., and J. Wolters (2006). Autoregressive distributed lag models and cointegration. Allgemeines
Statistisches Archiv 90(1): 59–74.
Kripfganz, S., and D. C. Schneider (2018). Response surface regressions for critical value bounds and
approximate p-values in equilibrium correction models. Manuscript, University of Exeter and Max Planck
Institute for Demographic Research, www.kripfganz.de.
Lütkepohl, H. (1993). Introduction to Multiple Time Series Analysis (2nd edition), Berlin, New York:
Springer.
Narayan, P. K (2005). The saving and investment nexus for China: evidence from cointegration tests.
Applied Economics 37(17): 1979–1990.
Pesaran, M. H., and Y. Shin (1998). An autoregressive distributed-lag modelling approach to cointegration
analysis. In Econometrics and Economic Theory in the 20th Century. The Ragnar Frisch Centennial
Symposium, ed. S. Strøm, chap. 11, 371–413. Cambridge: Cambridge University Press.
Pesaran, M. H., Y. Shin, and R. Smith (2001). Bounds testing approaches to the analysis of level
relationships. Journal of Applied Econometrics 16(3): 289–326.

S. Kripfganz and D. C. Schneider ardl: Estimating autoregressive distributed lag and equilibrium correction models 44/44

You might also like