Nothing Special   »   [go: up one dir, main page]

Mole Concept (Main Solution)

Download as pdf or txt
Download as pdf or txt
You are on page 1of 18

MOLE CONCEPT (MAIN)

FOUNDATION BUILDER (OBJECTIVE)

1. (D)

2. (D)

3. (B)

4. (A)
(Most stable isotope of carbon)

5. (D)

6. (C)

7. (A)
5.6
Moles of gas =  0.25
22.4
7.5
Molecular weight of gas =  30
0.25
Hence NO.

8. (A)
Molecular weight of C60 H122  60 12  122  842.
842
Weight of a molecule = 23
 1.39 10 21 g .
6.022 10
9. (A)
1 mole contains Avogadro number of atoms.

10. (A)
1.4
Moles of N 2   0.05.
28
Number of atoms = 0.05  2  6.02  1023 .
= 6.02  1022 .

11. (D)
22.4  10 3
(A)  NA  6.022  10 23
22400
22
(B)  6.022  10 23  3.011  10 23
44
11.2
(C)  6.022  10 23  3.011 10 23
22.4
(D) 0.1 6.022  10 23  6.022  10 22

12. (C)
Number of gms of H 2SO4  0.25  98  24.5

13. (D)

CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 1



Moles of H 2   0.5
2
Volume of H 2 in l = 0.5  22.4  11.2l .

14. (D)
19.7  1000
Moles of Au =  100
197
Atoms of Au = 100  6.022 10 23  6.022 10 25 .

15. (A)
44
Mass of one molecule of CO 2  23
 7.3110 23
6.02 10

16. (C)
0.224
Number of moles of H 2   0.01
22.4

17. (B)

18. (B)
WH  3  3  9g WN  3  14  42g

19. (C)
In one H2O molecule: 10 proton, 8 neutrons, 10 electrons
36g
Hence in 36 ml, n H2O   2mols
18g / mol
 Protons = 2N A  10  20 N A

20. (A)
w
n atoms  . Hence it should be of same weight ‘W’
at.wt

21. (B)
10 3 N A
no. of moles =  10 3
NA
 wt  103  mol.wt  103 M 0 g  M 0 mg

22. (A)
1 16
A:12 g ; B   16  8g ; C : 10 g ; D   8g
2 2

23. (D)
A : 2.5  5N A  12.5 N A ; B :10NA ; C : 4  3N A  12N A ; D  1.8  8N A  14.4N A .
Hence [D]

24. (C)
52 amu
 13
4 amu

CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 2


25. (B)
One ion contains: 7 + 24 + 1 = 32 e
 total es  2 N A  32  64 NA

26. (D)
n C  0.5  6  3  wt = 36 g

27. (C)
28 46 36 54
A: ; B: ; C: ; D:
44 46 18 108

28. (D)
180
n H 2O   10
18
 no. of es  10 10 N A  100 N A

29. (C)
2.48
n Na 2S2O3 .5H 2O   0.01
248
 nH 2O  5  0.01  molecules  0.05 N A

30. (C)
90 10 1 1
n Ag     atom  N A  5 1022
100 108 12 12

31. (B)
18  333
n H 2O  = 9.
54  (96  3)  (18 18)

32. (C)
0.018
n H2O   103 . Hence, molecules = 103 NA
18

33. (A)
4.2
n N 3   0.3 .  total = 0.3  8N A  2.4N A
14

34. (D)
3.42
n C  12  n C12H 22O11  12 
 0.12
342
 atom = 0.12 N A  [D]

35. (B)
8.4
n MgCO3   0.1
84
Each contain (12 + 6 + 24) protons
Hence, total  0.1 42NA  2.5 1024

36. (B)

CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 3


4.4 2.24
n total    0.2  molecules = 0.2N A
44 22.4

37. [D]
1 14
(i) 
1000 58
1 2
(ii) 
1000 28
1 1
(iii) 
1000 23
(iv) 1ml  1g water
1
3
18

38. (B)
w w
n gas  
mol.wt. 3a

39. (A)
558.5
n Fe   10 moles
55.85
In 60 g carbon, n C  5  twice = 10 moles

40. (B)
Say n Mg  PO   n ; then n O  8n
3 4 2

0.25
 8n = 0.25  n   3.125  10 2
8

41. (B)

nx : ny 
 w  w 
2 : 2  2 :1
10 20

42. (C)
X
46  96  180  180  X  55.9
100

43. (C)
25.4 8 1 1
n I : nO  :  :  2:5
127 16 5 2
Hence I 2O5 .

44. (A)
mol. Wt = 2 VD = 100
71
w chlorine  100  71g
100
w metal  29 g

45. (C)
Mol.wt.  0.8  28  0.2  32  28.8
CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 4
M
 VD   14.4
2

46. (A)
Dcl2 M cl2 71
Dcl2 wrt air   
Dair M air 29

47. (B)
30.4
Say NO X . Then 14  16x   14  x  2
100
M 46
 Doxide wrt O2  oxide   1.44
MO 2 32

48. (D)

CaCO3   CaO CO2
1 1 1

Quantity of limes tones = wt. of one mole mole of CaCO3


= 100 kg

49. (A)
Moles of H 2S  2
11.2
Moles of SO 2   0.5
22.4
SO 2  2H 2S  3S  2H 2O
moles 1 2 32
3 0.5
given 0.5 2 x  1.5
1
L.R.
50. (C)
100
Moles of Mg  OH 2   1.724
58
Moles 2H 3PO4  3Mg  OH 2  Mg 3  PO 4  2  6H 2 O
Moles 2 3 1 6
2  1.724
Given
3
2  1.724
Weight of H 3 PO 4   98  112.6g
3

51. (D)
n H2O  n CH3OH  2  4  wt  4 18  72g

52. (A)
WO  3.6769  2.0769  1.6g
with
2 mole X   5 mole'O '
with 1.6
' n ' moles   mole 'O '
16

CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 5


0.2
n  0.04
5

53. (A)

Ag 2CO3   2Ag
2.7
WAg   2 108  2.11g
 216  60 
54. (D)
n CO2  2  n C2 H5OH  2
 WCO2  2  44  88g

55. (C)

KClO 3   KCl  3 O 2
2
48g
Hence % loss in wt =  100  39.18
122.5

56. (A)
2 2 2
n Fe   n H 2O   Wiron   56  37.39
3 3 3

57. (B)
1.62
n CaCO3  n CaO   n CaCl2  0.0289
56
0.0289 111
% of CaCl2  100  32.11%
10

58. (D)
3BaCl 2  2Na 3PO4  Ba 3  PO4  2  6NaCl
Moles 3 2 1 6
1 0.2
0.5 0.2  0.1
2
(L.R.)

59. (A)
Ca  OH  2  H 2SO 4 
 CaSO 4  2H 2O
0.2 0.5
LR
n CaSO4  n Ca  OH   0.2
2

60. (B)
A  2B 
 C  3D
5 8
LR
nB n
nC   4 ; n D  3  B  12
2 2

61. (D)

CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 6


n : 4Al  3C 
 Al4C3
1350 2400
50  200
27 12
L.R
given
4Al 144 
given
  w  1800g
50  W 

62. (D)
2A 
 2B
B 
 2C
3C 
 4D
2 2 4
 n D  nA   
2 1 3
32

3

63. (B)
 
n
molality  1000 urea : NH 2 C NH 2 

w solvent  || 
 
 O 
18
 60 1000  0.192
1500 1.052  18
64. (D)
1
n
Molarity  1000  98 1000  0.01
V  mL  1000

65. (A)
 Al3   20  0.2  2  0.2M
  40

66. (D)
1 mole KMnO4 
 5 moles FeSO4
V  0.01 
 50  0.01
 V  10mL

67. (B)
 100  4
n H     0.001 2  2 10
 1000 
 no. of H  2 104 N A  1.2 1020

68. (A)
3 molal  3 mole NaOH in 1000g solvent
  120  1000 
 vol      1009mL
d  1.11 

CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 7


n 3
Molarity  1000   2.97
V  mL  1.009

69. (B)
2.65  1000
Molarity of NO 2 CO 3   0.1 M.
106  250
0.1 10
After dilution of 10 mL solution =  0.001M
1000
70. (A)
n NaCl 1
X NaCl    0.0177
n NaCl  n H 2O 1  1000
18

GET EQUIPPED FOR JEE MAIN

1. (A)

KClO3   KCl  3 O 2 , n O2  3
2 2
2Al  3 O 2   Al 2O 3
2
nO
n Al2O3  2  1
3
2

2. (A)
Consider 1 L solution
29
  d 1000   H 2SO4  3.6  98
100
 d = 1.22 g/mL

3. (A)
N2  3H2 
 2NH3
n: 10 15 
LR
10  5  10 moles
n N2  5 n H2  0

4. (C)
Fe2  SO 4 3  3BaCl2 
 3BaSO 4  2FeCl3
n: ? 1
2
n BaCl2 n FeCl3 1
  n BaCl2  2  3  0.75moles
3 2 2

5. (C)
 Al2  SO4 3  3Cu
3CuSO4  2Al 
displaces
54g Al  192 g Cu
displaces
27g Al  
  96g

CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 8


6. (A)
CH4  2O2 
 CO2  2H2O
5 8 – –
5–4=1 – 4 8
n CO2  4 ; nCH4 (remaining) = 1

7. (C)
X
C10H X  nO 2 10CO 2    H 2O
2
X
Hence, n  10 
4
with  X
1 mole C10 H X    10   moles
 4
with
2.5 moles   32.5 moles
x 32.5 1
i.e. 10    13
4 2.5
 x  13  10   4  12

8. (D)
with
100g CaCO3   2mole HCl
with  25L 
 g     0.75 M HCl
 1000 
   0.9375g

9. (B)
2.125
n AgCl  n Cl  n HCl   V  L   Molarity
143.5
2.125  1000
 Molarity   0.59
143.5  25

10. (D)
with
2X   3 16g Oxygen
with
1g   0.16g Oxygen
3 16
 X  150
0.16  2

11. (D)
3
2Al  O2   Al2O3
2
n: n 1
2
with 3
2  27g Al   mole O2
2
with 1
   mole
2
2  27
  18g
3

CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 9


12. (D)
n BaSO4  nSO2  nS (POAC on S)
8 1
 
32 4

13. (B)
n NaBr  n1 , n KBr  n 2  say 
0.97
n AgBr  n Br  n1  n 2   0.00516
108  80 
Also, n1  103  n 2  119   0.560
0.56  103  0.00516
 n2   0.00178
16
 WKBr  119n 2  0.212 g

14. (A)
16g 31.2
A : nH  4  4 ; B : nH  4  1.64
16g 76
34.2 36
C : n H  22   2.2 ; D : n H  12   2.4
342 180

15. (C)
Total atoms = 200  0.05  NA  1020  NA
 0.05 NA  31022

16. (C)
Mol. Wt of A 2 B3  150  96  246
 For 5 mol,  246  5 g = 1.23 kg

17. (A)
200 144
A :10N A ; B :11  6.43 N A ; C  N A  3  9N A
342 48
D : 2.5  3N A  7.5N A .
Hence [A]

18. (D)
60
(i) 5g (ii)  35.5 (iii) 0.1 35.5 (iv) 0.5  71
106.5

19. (A)
1 1 1 1
A:  3N A ; B :  26N A ; C :  8N A ; D :  2N A
44 114 30 26

20. (C)
9.2
 2  n 1  n  0.4  wt  0.4  30  12g
46

CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 10


21. (D)
8 1
n CO2  n , say. Then n O  2n  n
16 4

22. (A)
3 1023
A : 0.2  14 g  2.8g ; B : 12 g  6g ; C : 32 g ; D : 7 g.
6 1023

23. (D)
1 gram molecule: 44 g
1 molecule of CO 2 = 44 amu

24. (A)
n H  n  2  2n  4  10n
n C  2n 1  2n
n C : n H  1: 5

25. (D)
Total charge = 1 N A  3e  3N A e coulomb

26. (D)
69.98
 Mol.wt  2112  mol.wt  360
100

27. (D)
12g H 2O 8% H 2O

45g silica 
 45g silica
43g others 43g others
100goriginal ' w 'grams
8 % of w = water
i.e. 92 % of w = silica others
92
Hence,  w  88g  w  95.65
100
45
% of silica  100  47%
95.65

28. (C)
M3N2 . 28 % nitrogen
28
   3M  28   28  M  24
100

29. (D)
0.014%  mol.wt  2  at.wt of N
0.014
i.e.  M  2 14  28
100
2800
M  3
 2 105
14 10

CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 11


30. (A)
90  20  21x  22  10  x 
Average atomic mass =  20.11
100
x = 9%

31. (B)
A. A. M = Mole fraction of O18 18  Mole fraction of O16 16

32. (C)
6.023  10 23
Moles of Ca  OH  2  1
6.023  10 23
3.01 10 22
Moles of HCl =  0.05
6.02  1023
3.01  10 22
HCl   0.05
6.02  10 23
Ca  OH  2  2HCl  CaCl 2  2H 2 O
1 2 1
0.05  1
1 0.05  0.025
2
 L.R.
33. (A)
1.595
Moles of CuSO 4   0.01
1595
Weight of solvent = 100 – 1.595 = 98.505
98.505
Volumes of solvent   82  10 3 L
1.2  1000
0.01
Molarity   0.12M
82  103
34. (B)
28
(A) atoms of O 2   6.022  10 23 ~ 3  10 23
32
3
(B) atoms of Be   6.022  10 23 ~ 2  10 23
9
8
(C) atoms of C   6.022  10 23  4  10 23
12
19
(D) atoms of F2   6.022  10 23  1 10 23
19

35. (C)
X Y X Y
20 80
: 1 : 2  XY2
10 200

36. (C)
Avogadro hypothesis

37. (A)
3 2.68
Moles of magnesium =
  0.00335
24 100
CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 12
Number of magnesium atoms = 0.00335  6.022  10 23
 2.011021 atoms.
38. (D)
25  10 3
Moles of comphon   0.164  10 3
10  12  16  16
Number of atoms  0.164  103  6.022  10 23  27 (1 Molecule has 27 atoms).
 2.67 1021
39. (D)
Moles of e   52  2  54 .

40. (B)
1
Moles of Ag = .
107
1
Moles of Ag 2S required =
107  2
Mass of Ag 2S 
107  2  32   1.1495
107  2
1.1495
Mass of ore required =  100  85.78g
1.34

41. (D)
Moles of Al = 27 1
27
2Al  2NaOH  2H 2 O  2NaAlO 2  3H 2
Moles 2 2 2 2 3
31
Given 1 excess  1.5
2
(L.R.)
Vol. of H 2 evolved = 1.5  22.4  33.6 L .

WINDOW TO JEE MAIN

1. (A)
n solub le
Molarity 
Vso lub le Lt 
Vsolution is affected by Temperatuere.

2. (C)
560
n Fe   10
56
No. of atoms = 10 NA
70
In 70 g of N no. of atoms =  N A  5 NA
14
20
In 20 g of H no. of atoms =  N A  20 N A
1

3. (A)
Mole ratio of C : H : N
9 1 3.5
: :
12 1 14

CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 13


3 1 1
: :
4 1 4
3 : 4 : 1
Empirical formula  C3 H 4 N
Empirical formula mass  36  4  14
 54
108
n 2
54
Molecular formula  C3 H 4 N  2
 C 6 H8 N 2

4. (D)
2BCl3  3H 2  2B  6HCl
no.of moles of H 2 3

no. of moles of B 2
3 21.6
No. of moles of H 2   3
2 10.8
Volume of H 2  3  22.4 L  67.2L

5. (B)
6.02 10 20
NA
Molarity   0.01
0.1

6. (C)
Refer theory

7. (C)
V=1L
Wtotal  11.021000  1020g
nsoluble = 2.05
352.8
Wtotal  100  1216.55g
29
= 1020 – 123 = 897 g
2.05
molality   2.28
0.897

8. (B)
no. of moles of oxygen atom 8

no. of moles of Mg 3  PO 4  2 1
0.25
No. of moles of Mg 3  PO 4 2 
8
 0.03125

9. (A)
V = 1L
nsoluble = 3.6
wsoluble = 3.6  98  352.8
352.8
w total  100  1216.55g
29
CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 14
1216.55
density 
1000
= 1.22 g/ml

10. (C)
2Al  s   6HCl  aq   2Al 3  aq   6Cl   aq   3H 2  g 
Per mole of HCl, no. of moles of
1
H 2 formed 
2
1
Volume of H 2 at STP   22.4
2
 11.2L

11. (B)
Molality  5.2 m .
i.e. if wt. of H 2 O  1000gm
then no. of moles of CH 3OH  5.2
5.2
X CH 3OH   0.0856
1000
5.2 
18

12. (C)
Volume of solution 
1000  120  m
1.15
1120
 m
1.15
120 1.15 1000
Molarity   2.05M
60 1120

13. (C)
Molarity 
 750  0.5   250  2   0.875M
750  250
14. (A)
weight
Number of atoms   N A  species
atomic weight
 In 4 g of hydrogen
4
Number of atoms   N A  2  4N A
2
[Here species = 2 because hydrogen is present as H2]
In 71 g of chlorine = 2NA
71
Number of atoms =  N A  2  2N A
71
In 127 g of iodine,
127
Number of atoms =  N A  2  2N A
127
In 48 g of magnesium,
48
Number of atoms =  N A 1  2N A
24
[Here Mg is present as Mg so species = 1]
Thus, the number of atoms are largest in 4 g of hydrogen.

CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 15


15. (B)
Heavy water is D2O
In it,
Number of p   1 2  8  10
Number of e  1 2  8  10
Number of n 0  1 2  8  10
(D have1 n0 because it is actually, 1H2)

16. (D)
18 g H2O contains 2 g H
 0.72 g H2O contains 0.08 g H.
44 g CO2 contains 12 g C
 3.08 g CO2 contains 0.84 g C
0.84 0.08
 C:H  :  0.07 : 0.08  7 : 8
12 1
 Empirical formula = C7H8

17. (C)
3 M solution means 3 moles of solute (NaCl) are present in 1000 L of solution.
Mass of solution = volume of solution  density
 1000 1.252
= 1252 g
Mass of solute = No. of mole  molar mass of NaCl
 358.5g
= 175.5 g
Mass of solvent = (1252 – 175.5)g
= 1076.5 g
= 1.076 kg
moles of solute
Molality 
mass of solvent in kg
3
  2.79m
1.076

18. (A)
M1V1  M 2V2
Final concentration, M 
V1  V2
10  2  200  0.5

200  10
20  100

210
120
  0.57 M
210

19. (B)
N O2 n O2 WO 2 M O 2 WO 2 M N2 1 28
     
N N2 n N2 WN 2 M N 2 WN 2 M O2 4 32
7

32

20. (B)
BaCl2  H 2SO 4  BaSO4  2HCl

CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 16


20.8gm 4.9gm 0.05 mole
20.8 4.9
 mole  mole  0.05  233gm
208 98
 0.1mole  0.05mole  11.65gm

21. (B)
1000  120
Volume of solution  ml
1.12
 1000ml
120 1000
Molarity   2M
60 1000

22. (D)
Molecular mass of compound  16  2  32gm
4
% of H in N 2 H 4  100
32
12.5%

23. (A)
No. of moles of acetic acid absorbed by 3gm charcoal
  0.6  0.042   50  10 3
 9 104 mole
Wt. absorbed by  9 104  64gm
3gm  0.054gm
0.054
Wt. absorbed per gram   0.018gm
3
 18mg
24. (C)
A  2B  3C  AB2C3
6
mole 1mole 0.036
60
 0.1mole mole
C is limiting reagent
No. of moles of AB2 C3 formed  0.012
Wt. of AB2 C3 formed  4.8gm
4.8
Molecular wt. of AB2C3   400
0.012
60  2x   3  80   400
x  50

25. (B)
BaCl2 .xH 2 O
18x 9

208  18x 61
208  18x  122x
x2

CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 17


26. (B)
1 32
8 100
x
x  400

27. (B)
 y y
C x H y   x   O 2  xCO 2  H 2O
 4 2
5 25
y
x
4  25  5
1 5
y
x 5
4
C3 H 8

CENTERS: MUMBAI / DELHI / AKOLA / KOLKATA / LUCKNOW / NASHIK / GOA / PUNE # 18

You might also like