Tan X Sin X Cos X Cot X Cos X Sin X CSC X 1 Sin X Sec X 1 Cos X Cot X 1 Tan X Sin Tan Cot
Tan X Sin X Cos X Cot X Cos X Sin X CSC X 1 Sin X Sec X 1 Cos X Cot X 1 Tan X Sin Tan Cot
Tan X Sin X Cos X Cot X Cos X Sin X CSC X 1 Sin X Sec X 1 Cos X Cot X 1 Tan X Sin Tan Cot
cos x 1
cot x= sec x=
sin x cos x
1
cot x=
tan x
Pythagorean Identities Even-Odd Identities
sin 2 x +cos 2 x=1 sin (−x ) =−sin x
tan 2 x +1=sec 2 x csc (−x )=−csc x
dx , except when
n=−1
d 1
( c )=0
dx ∫ cos ax dx= a sin ax+C
d 1
dx
( sin x ) =cos x ∫ sin ax dx=− cos ax+C
a
1
d ∫ sec2 ax dx= tan ax+C
a
( cos x )=−sin x
dx
1
∫ csc2 ax dx=− cot ax +C
a
d
( tan x )=sec 2 x
dx 1
∫ csc ax cot ax dx=− a csc ax +C
d x
( e )=e x 1
dx ∫ sec ax tan ax dx= a sec ax+C
d 1 1
dx
( ln x )=
x
∫ e ax dx= a e ax +C
1
d x
( a )=a x ln a
∫x dx=ln|x|+C
dx