Nothing Special   »   [go: up one dir, main page]

Other Inequalities Exercise Solution PDF

Download as pdf or txt
Download as pdf or txt
You are on page 1of 4

A.M. G.M.

, CBS inequality, etc


1.

Obviously, equality holds when


Without lost of generality,

Since

> 0,

(1),

.(1)

a > b > 0.

a b

<b

a+b

a+b

A.M. > G.M. ,

Combining
2.

assume

a b

ab

a=b

(2) and

<b

a +b

>a b
2

a +b

a+b

a+b

a+b

>a

a+b

> a b ba

.(2)

.(3)

a+b

Obviously the inequality holds when x = y.


Without lost of generality,
x
x
< 1
y
y

m n

assume

But

0 < x < y.

x
x
<
y
y

<1

Since

.(2)

x m
x n
1
1
m
m n
n
n m
1 + < 1 + mn [x + y ] < mn [x + y ]
y
y
y
y

(xm + ym)n < (xn + yn)m.

As ymn > 0,
Alternatively,

Let

m = k + n,

w.l.o.g.

x y,

assume

(x n )k

(xm + ym)n = (xnxk + ynyk)n (xnxk + ynxk)n = xkn (xn + yn)n =


< (xn + yn)k+n
W.l.o.g.,
(I)

(x n + yn )k

( x n + y n ) k+n

= (xn + yn)m.

a1 a2 an.

let

If p, q > 0 , then a1p a2p anp

m
n
x m
x n
x
x
1 < 1 + < 1 + 1 + < 1 + ....(1)
y
y
y
y

x
1 < 1 + and m > n
y

Combining (1) and (2),

m n > 0, we have

x m
x m
1 + < 1 +
y
y

3.

a+b

a+b
a b b a

(3),

(aip ajp) (aiq ajq) 0

a1q a2q anq

and

aipajq

aip+q + ajp+q

+ ajpaiq
n

Summing the above inequalities from i = 1, 2, , n

(fix

j),

ai

p+q

.(1)
+ na j

p+q

aj

i =1

Summing again from j = 1, 2, , n,

p+q
i

+n

i =1

Since

i, j

are dummy variables, replace

2n

a
i =1

If

p+ q
i

a a
p

i =1

q
i

i =1

still holds

p+q
j

j=1

p+q
i

i =1

and

a i +a j
p

i =1

a a
q

j=1

p
i

i =1

q
i

i =1

a a
p

j=1

a
q

i =1

by i, we have,

p, q < 0 , then a1p a2p anp


The inequality (1)

i =1

and
(2)

a a

q
i

.(2)

i =1

a1q a2q anq.

follows.
1

(II) If

p<0

and

q > 0 , then

a1p a2p anp

and

a1q a2q anq.

If

p>0

and

q < 0 , then

a1p a2p anp

and

a1q a2q anq.

(aip ajp) (aiq ajq) 0.

In both cases,

As in (I), we have

p+q

i =1

4.

If a, b, c, , k Q .
+

Let

a a
p

i =1

q
i

i =1

m be the L.C.M.

of the denominators of

a, b, c, , k.

Then ma, mb, mc, , mk N+. Apply A.M. G.M., we have,


1
1
1
1
1
ma + mb + mc + ... + mk
ma
mb
mc
mk
ma + mb+ mc+...+ mk

1
1
1
1
k ...
c
b
a


k
ma + mb + mc + ... + mk
a b c
a + b + c + .... + k

On simplification, we have

then infinite sequences

If a, b, c, , k R+,

such that ai a, bi b, ci c, , ki k
Now, since

(1 + x r ) = 1 +
r =1

.(1)

(i = 1, 2, 3, )

as i .
a i + bi + c i +....+ k i

a i i b i i c i i ....k i
a

ki

.(2)

a=b=c==k.

x + x x + x x x
i

i =1

i j

+ ... > 1 +

i j k

r =1

1 tan

tan

1
A + B
A + B =
2
2
=
= tan

= cot
A
B
A
B
2 tan +
2
2
2
tan + tan

2 2
2
2
C
A
A
B
B
C
tan tan + tan tan + tan tan = 1
2
2
2
2
2
2
C
A
B
xy + yz + zx = 1 x2 + y2 + z2 1.
x = tan ,
y = tan ,
z = tan , it remains to show:
2
2
2

A + B + C = tan

Put

But (x y)2 + (y z)2 + (z x)2


7.

ai, bi, ci, , ki Q+,

a + b i + c i + .... + k i
ai, bi, ci, , ki Q+, i

Equality holds

6.

a a b b cc ....k k

i on both sides of (2), we have (1) holds for a, b, c, , k R+.

Taking

5.

a + b +c+....+ k

x2 + y2 + z2 xy + yz + zx = 1.

Proof 1
sin

A
2

sin

B
2

sin

C
2

(s b)(s c) (s c)(s a ) (s a )(s b)


bc

( 2s 2a )( 2s 2 b)( 2s 2c)
8abc

Since

b + c a,

ca

c+ab

( b + c a )( c + a b)

ab

(s a )(s b)(s c)
abc

( b + c a )( c + a b)(a + b c)
8abc
and

a+bc

( b + c a ) + ( c + a b)
2

where s =

a+b+c
2

.(1)

are positive numbers,


=c

(A.M.G.M.)

.(2)

Similarly,
( c + a b)( a + b c) a

....( 3)

( a + b c)( b + c a ) b

....( 4)
2

( b + c a )( c + a b)( a + b c) abc

(2)(3)(4),

.(5)

Result follows by putting (5) to (1).


3

sin A + sin B + sin C

A
B
C
2
2
2 ,
sin sin sin

2
2
2
3

Proof 2

sin

A /2 + B/2 + C/2
,

= sin

1
A+ B+C
1
= sin = =

6
6 2
8

(A.M.G.M.)

sine function is concave on [0, ]

since
3

Proof 3
2

1 sin C + sin C

A
B
C 1
AB
A + B
C 1
C
C 1
2
2 =1
sin sin sin = cos
cos
sin

sin
sin

2
2
2 2
2
2
2 2
2
2 2
2
8

8.

(i)

cos A + cos B + cos C = 2 cos


= 2 cos
4

(ii)

1
8

A+B
2

cos

AB
2

cos( A + B) = 2 cos

A+B
2

cos

AB
2

2 cos 2

A+B
2

AB
A + B
A+B
A
B
A
B
C
A+B
cos
cos
+ 1 = 2 cos
2 sin sin + 1 = 4 sin sin sin + 1
2
2
2
2
2
2
2
2
2
+1 =

, by No. 7.

A+ B+C

(sin A + sin B + sin C ) sin

Proof 1

cos

Proof 2

cos A + cos B + cos C

A
B
C
2
2
2 ,
cos cos cos

2
2
2
3

cos

cos

3
4

sin

3 3
8

(A.M.G.M.)

3
3
3

1 A B C
3 3
=
cos + + = cos =
,

3 2 2 2
6 2
8

9.

(a)

(i)

Let f(x) = ln x,

f(x)

and

x ,

Now,
(ii)

ln a

then

cosine function is concave on [0, /2]

since

x > 0.

f(x) = 1/x > 0

is an increasing function.
0<x1

ln b

f(x) f(1)

ln a ln b

Let g(x) = x 1 ln x,

g(x) = 1 1/x

g(x) 0

g(1) = 0 with

This implies that

g(1) = 0

g(x) = x 1 ln x g(1) = 0

ln x x 1 x > 0.

ln x ln 1 = 0
ln (a/b) 0

0<x<1

(1)
a/b 1,

and g(x) 0

by (1)

a b.

x > 1.

is the minimum value of g(x).


x > 0

The equality holds if and only if

x = 1.

(b)

By the above result, when

t1, t2, , tn

1, 2, , n

and

are positive numbers, we have

1 ln t1 + 2 ln t2 + + n ln tn 1 (t1 1) + 2 (t2 1)+ + n (tn 1)


= (1 t1 + 2 t2 + + n tn) (1 + 2 + + n) = 1 1 = 0
ln (t 1 1 t 2 2 ....t n

m1a1 + m 2a 2 + ... + m n a n

i =1

(i)

x p+1 1
p +1

t 1 1 t 2 2 ....t n

m1

m2

a 1 a 2 ....a n
xp 1

1
mi

i =

i = 1, 2, , n.

m1 + m 2 + ... + m n

mn

1
mi

m1 + m2 +...+ m n
( m1 + m 2 + ... + m n )

1
m1a 1 + m 2 a 2 + ... + m n a n

m a + m 2 a 2 + .... + m n a n

1 1
m1 + m 2 + .... + m n

pxP+1 p pxp + xp p 1

(a )
n

mi

m1 + m 2 +...+ m n

i =1

m 1 + m 2 +...+ m n

pxP+1 pxp + xp + 1 0

(x 1) [ pxp xp-1 xp-2 x 1] 0 (x 1)2 [pxp-1 + (p 1)xp-2 + + 3x2 + 2x + 1] 0

True statement since the expression is the product of a complete square and a positive quantity

Equality holds

x1=0

xi 1
m

(ii)

( m1 + m 2 + ... + m n )a i

m1a 1 + m 2 a 2 + ... + m n a n

10.

By the above,
n

1 t1 + 2 t2 + . + n tn = 1 + 2 + . + n = 1

It can be seen that

t 1 1 t 2 2 ....t n

( m1 + m 2 + ... + m n )a i

ti =

Now, let

) 0

(a)

By (i),

m
n

xi

m 1

...

m 1

xi n 0
m

i =1

x=0

xi 1

xi 1

i =1

xi 1

i =1

xj

xi 1
m

we have

xi 1

i =1

xj 1

xj 1, then

s.t.
xi 1
1

>

x j 1
1

>

xi 1

i =1

, since equality holds

jth

xi =

i =1

i =1

n
n

i =1

yi
A

A
1

yi =

i =1

yi n 1

A
n

xi =

m
i

=nn

Am

m=1

or

m
i

= n.

Then

xi n ,
m

y1 + y 2 + .... + y n
m

i =1

or

by (ii)(a).

i =1

If the equality holds, by (ii)(b), then either


i.e. either

term.

i =1

i = 1, 2, , n.

nA

yi

jth
n

x i > n , which contradicts to the given

i =1

y1 + y 2 + ... + y n

x = 1.

term, we have

Strict inequality holds since there is a strict inequality in the


n

A=

Following the same method in (a), we have

(iii) Let

xi n = n n = 0

i =1

Summing up all inequalities from i = 1, 2, , n including the


n

i =1

Suppose on the contrary


i j,

xi n
m

(b)

m=1

or

y1 + y 2 + .... + y n

xi = 1 i = 1, 2, , n.

y1 = y2 = . = yn.
4